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Abstract
Combinatorial auctions provide a valuable mecha-
nism for the allocation of goods in settings where
buyer valuations exhibit complex structure with re-
spect to substitutability and complementarity. Most
algorithms are designed to work with explicit bids
for concrete bundles of goods. However, logical
bidding languages allow the expression of complex
utility functions in a natural and concise way. We
introduce a new, generalized language where bids
are given by propositional formulae whose subfor-
mulae can be annotated with prices. This language
allows bidder utilities to be formulated more nat-
urally and concisely than existing languages. Fur-
thermore, we outline a general algorithmic tech-
nique for winner determination for auctions that use
this bidding language.

1 Introduction
Combinatorial auctions (CAs) have been proposed as a means
of dealing with the allocation of goods to buyers whose pref-
erences exhibit complex structure with respect to complemen-
tarity and substitutability [Rassenti et al., 1982; Rothkopf et
al., 1998; Wellman et al., 2001]. Instead of selling items indi-
vidually, the seller allows bids on bundles of items, allowing
bidders to deal with the entities of direct interest and avoid the
risk of obtaining incomplete bundles. Given a set of combi-
natorial bids, the seller then decides how best to allocate in-
dividual goods to those bundles for which bids were placed,
with the aim of maximizing revenue. Because bundles gen-
erally overlap, this is—conceptually—a straightforward opti-
mization problem, equivalent to weighted set packing. As a
result, optimal winner determination for CAs is NP-complete
[Rothkopf et al., 1998].

By expressing her preferences (prices) directly over bun-
dles, a potential buyer can, in principle, very accurately re-
flect her utility function, regardless of its structure. In prac-
tice, however, specifying explicit bids over all relevant bun-
dles may be difficult: many utility functions will require the
specification of a number of bundle bids that is exponential in
the number of goods of interest to the bidder. This is espe-
cially true for utility functions involving the complementari-
ties and substitutability for which CAs are best-suited. In con-

trast, the logical structure of a complex utility function might
allow such preferences to be expressed relatively concisely in
a suitable language. Several researchers have proposed mech-
anisms for expressing bids logically [Sandholm, 1999; 2000;
Hoos and Boutilier, 2000; Nisan, 2000].

In this paper, we describe a generalized language for ex-
pressing bids that captures the most important elements of ex-
isting bidding languages. In our logical combination of bids
and goods model, one specifies a bid using a logical formula,
but is allowed to associate prices with arbitrary subformulae.
For example, suppose in an auction for shipping capacity a
bidder can send her shipment using two standard containers,� and

�
, or one oversized container � . The shipment has an in-

herent value of ��� , but the convenience of using an oversize
container is worth � . We can express a suitable bid for ser-
vices as ��� �	� ��
 �
������� 
 �
� 
 ���
� in our language, capturing the
overall value of 50 for satisfying the requirement ��� � ��� , as
well as the premium of 5 for the oversized container. We will
see examples like this below where our language allows the
logical structure of a utility function to be expressed directly
within a bid. Furthermore, our language allows one to make
the very important distinctions between sharable and consum-
able goods, unlike existing bidding languages. We show that
our language affords complete expressiveness, and that for
certain natural classes of utility functions, it can express bids
exponentially more compactly than existing languages. In ad-
dition, we argue that it provides a natural and concise mecha-
nism for expressing complex bids.

We also propose an algorithmic framework for solving the
winner determination problem for a set of bids expressed in
our generalized logical language. We formulate a stochas-
tic search procedure that works directly with our logical bids,
sidestepping the problem of converting a logical bid into
a (potentially, exponentially) large number of explicit bids.
Though we have yet to study its computational properties, we
expect this approach to offer a significant advance over exist-
ing algorithms.

We briefly review CAs and logical bidding languages in
Section 2. In Section 3 we present our generalized logical bid-
ding language, describing its syntax and semantics, discuss
various properties of this language, and illustrate its ability to
handle certain types of utility functions much more naturally
and concisely than existing logical languages. In Section 4,
we describe a stochastic local search procedure that exploits



the structure of our logical bids to search through the space
of bid� allocations to solve the winner determination problem.
We conclude in Section 5 with a discussion of future work.

2 Logical Languages for Schematic Bids
In this section, we briefly review CAs and prior proposals for
logical bidding languages.

2.1 Combinatorial Auctions
We suppose a seller has a set of goods ��������� 
�� ���!
 �
"$# to be
auctioned. Potential buyers value different subsets or bundles
of goods,

�&% � , and offer bids of the form � �'
)( � where
(

is
the amount the buyer is willing to pay for bundle

�
. Given a

collection of bids *��+�
� �-,-
)(., �-# , the seller must find an allo-
cation of goods to bids that maximizes revenue. We define an
allocation to be any /0�+�
� �-,-
)(., �-# % * such that the bundles� ,

making up / are disjoint. The value of an allocation 1�23/	4 is
given by 5+� ( ,�6 � � , 
)( , �870/�# . An optimal allocation is any
allocation / with maximal value (taken over the space of allo-
cations). The winner determination problem is that of finding
an optimal allocation given a bid set * . We sometimes con-
sider assignments 9 6 �;:<* of goods to bids. Assignment9 induces allocation />= whose bids are those that have been
assigned all goods (i.e.,

�-,>% 9@? � 2A� �-,-
)(., �!4 ).
The winner determination problem is equivalent to the

weighted set packing problem [Rothkopf et al., 1998] and as
such is NP-complete. Algorithms for weighted set packing
and related combinatorial problems can be used for winner
determination. Search algorithms—both complete methods
[Fujisima et al., 1999; Sandholm, 1999] as well as stochastic
techniques [Hoos and Boutilier, 2000]—have been proposed
in the AI literature and have proven quite successful at solving
medium-sized problems. Though the problem is known not
to be approximable in polynomial time, the afore-mentioned
stochastic approximation technique tends to find optimal so-
lutions very quickly for problems that can be handled by the
complete methods.

2.2 Logical Languages
Most work on combinatorial auctions assumes that a bid is ex-
pressed using a simple bundle of goods associated with a price
for that bundle. Such a bundle naturally captures the comple-
mentarities among the goods within that bundle. However, a
buyer with a complex utility function will often need to ex-
press multiple bundle bids in order to accurately reflect her
utility function.

Logical bidding languages can overcome this by allowing
a bidder to express complex bids in which the logical struc-
ture of the utility function is captured. There are two dis-
tinct classes of logical bidding languages in the literature: lan-
guages that allow logical combinations of goods as formu-
lae, and associate a price with each such formula (we call this
the B G family of languages); and languages that allow logi-
cal combinations of bundle bids as formulae, where the sub-
formulae (or atomic bids) themselves have prices associated
with them (we call this the B B family of languages). We dis-
cuss these briefly in turn in this section, but refer to the cited
papers for further details. In what follows we assume a set of
goods � over which bids are expressed.

An B G language is one in which logical formulae are con-
structed from goods; that is, goods are taken as atomic propo-
sitions and are combined using logical connectives to express
a bid. A price is attached to this formula expressing the
amount the bidder is prepared to offer for the satisfaction of
that formula. Such languages can be used to capture some of
the logical structure of a utility function. The language B pos

G

proposed by Hoos and Boutilier [2000] is of this type, with
the restriction that only positive formulae (i.e., without nega-
tion) are considered. Formally, if �C7D� then �C7EB pos

G ; and ifF � 
 F>G 7HB pos
G , then F �I� F>G 7JB pos

G and F � �KF>G 7JB pos
G . A

logical bid � F 
3( � is simply a formula F 7LB pos
G and an associ-

ated price
(

. Semantically, an assignment of goods to this bid
satisfies the bid if the corresponding logical formula is satis-
fied viewing the assignment as a truth assignment (i.e., those
goods assigned to the bid are “true” and those not are “false”).
As an example, should a bidder desire (for price

(
) either � �

or MN� , and � G or M G , and �
O or M.O , and �
P or M.P , she must
formulate sixteen explicit bids of the form ����� 
 � G 
 �
O 
 �
P'# ,�Q� � 
 � G 
 � O 
 M P # , etc. In contrast, B pos

G allows such preferences
to be expressed relatively concisely using a logical bid of the
form:

�R2S� � �EM � 4 � 2T� G �EM G 4 � 2T� O �EM O 4 � 2S� P �EM P 4 
)( �
Variants of this language have been proposed by Hoos and

Boutilier [2000], including the use of k-of clauses, expressing
a desire to have any U goods from a given set, and focusing on
special forms such as CNF. It is important to note that a bid-
der generally must express a number of logical bids in B pos

G to
capture her utility function: the fact that only one price can be
attached to a formula means that independent preferences are
captured by independent bids (e.g., the same bidder might bid
both � � 
�V � and � ��
-W � ). While perfect substitution is captured
by disjunction in B pos

G , imperfect substitutes must be dealt with
using multiple bids and dummy goods [Fujisima et al., 1999].
For example, if an agent wants only one of ��� �

or � ��X , and
slightly prefers �Y� �

, she could specify two bids,

� �Z� � � � 
3( � and ��� �EXZ� � 
3(�[ �
with

(]\;(�[
. The insertion of dummy good � prevents both

bids from being satisfied. There is an implicit assumption of
free disposal in the semantics of B pos

G . If a bid � � � �'
)( � is of-
fered, the same price is paid if the bid is assigned � alone,

�
alone, or both � and

�
. If this assumption is violated, this bid

must be broken into multiple (exclusive) bids.
A different approach is taken by Sandholm [1999; 2000]

and Nisan [2000], who use B B languages. Intuitively, these
languages take bundle bids as their atomic elements and com-
bine these using various logical connectives. For instance,
Sandholm proposed the use of B or

B , combining atomic bids us-
ing disjunction, as in �!� � 
-� # 
 V �^�_�!� � 
 ��# 
-W � . Semantically,B B languages are interpreted by assigning goods to the com-
ponent atomic bids (e.g., to � � 
-� # and � � 
 ��# in the example
above), rather than to the formula as a whole (in contrast with
the B G model). The price paid is determined by the logical re-
lationship of the component bids. In B or

B , for instance, the sum
of the prices of satisfied atomic bids is paid.

Several interesting varieties of B B languages are studied by
both Sandholm and Nisan, who consider languages using OR,



XOR ( B xor
B ), and two-level nesting of such connectives (OR-

of-XOR` and XOR-of-OR). The use of bundle bids as atomic
elements allows one to express complementarities; OR (as inB or

B ) allows one to capture independent preferences; and XOR
allows the expression of substitutability. Nisan also proposes
(and favors) the language B or*

B , essentially B or
B with dummy

goods allowed within atomic bids. B or*
B is fully expressive

and is generally more compact than the other B B languages
for many types of utility functions. We refer to Nisan [2000]
for a discussion of the relative merits of these languages. Be-
cause multiple prices occur within a single formula, a bidder
can express her preferences completely using a single bid (in
contrast with the B G model). However, preferences involving
disjunction are often expressible much more compactly withinB G than B B. For instance, the preference function above in-
volving multiple clauses of the form � , �EM , requires a bid of
exponential size in any B B language.

3 A Generalized Language for Logical Bids

Both language families B G and B B have certain drawbacks. InB G languages a bidder who wants to offer different prices for
related logical combinations of goods is forced to specify dis-
tinct bids for those combinations. This prevents the bids from
exploiting any logically common substructure. B B languages
are unable to exploit the logical structure of disjunctive com-
binations of goods that exhibit perfect substitutability. Fur-
thermore, B B languages are unable to exploit the fact that a
good may be “sharable,” that is, it may contribute to the sat-
isfaction of multiple atomic bids within a single bidder’s log-
ical bid. This is due to the fact that each good is assigned to
an atomic bid within the B B semantics and cannot be shared.
This can be a severe drawback. Consider an example in which
a bidder desires a single reusable resource, say a machine a ,
and some number of consumable resources, say raw materi-
als b'� , b G , etc. to be processed on a . The bidder may value
each of the b , independently, but only if the machine is avail-
able on which to process these materials. In such a case, it is
most natural to express preferences for the ��a 
 b , � pairs, al-
lowing a to contribute to the satisfaction of each such bid or
subformula.

In this section, we introduce the language B GB of general-
ized logical bids that allows for the logical combination of
both goods and bids within a single formula. Specifically, a
positive propositional formula over goods may have prices as-
sociated with arbitrary subformulae. As such, both goods and
bids can be combined in arbitrary ways. We will see that the
expressive power afforded by this approach offers a number of
advantages, both in terms of the naturalness and conciseness
of the representation of certain classes of utility functions. It
inherits the fundamental advantages of both B G and B B lan-
guages.

Our new language will allow us to formulate logical bids
that reflect such structured utility functions directly and con-
cisely. We first describe the syntax and semantics of our lan-
guage in fairly abstract terms. We then discuss various formal
and informal properties of our language, comparing it to the
languages mentioned above in terms of expressiveness, natu-
ralness, and conciseness.

3.1 Syntax
Let � denote the set of goods, forming the atomic elements of
our language. The language of B GB is defined as follows:c �d� 
3( ��7DB GB, for any good �C70� and any non-negative

price
( 7DeCfg .c If

� � 
-� G 7EB GB, then � � � � � G 
3( � , � � �h� � G 
3( � , and � � �^i� G 
)( � are all in B GB for any non-negative price
(

.

Bids so-defined correspond to arbitrary propositional formu-
lae over the goods, using connectives � (conjunction), � (dis-
junction) and i (valuative XOR, the naming of which will be-
come clear below), where each subformula is annotated with
a price. We often don’t mention the price for a subformula
if
( �j� , and call such a subformula priceless. A sentence� 7KB GB is called a generalized logical bid (GLB). Examples

of GLBs include

��� � 
 V � � � ��
RW � 
 �
� and � � � �'
RW �kil��� 
Rm � .
The formula associated with

�
, denoted no2 � 4 , is the logical

formula obtained by removing all prices from subformulae.

3.2 Semantics
The semantics of GLBs defines the price to be paid by a bidder
given a particular assignment of goods to her GLB. Roughly,
the underlying idea is that the value of a GLB

�
is given by

summing the prices associated with all satisfied subformulae
(with one exception). We first define what it means for an as-
signment to satisfy a (priceless) formula.

Let 9 be an assignment 9 6 � : * of goods to
GLBs. Let no2 � 4 be the formula associated with

�
. We writep 23no2 � 4 
 9o4I� V

to denote that 9 satisfies
�
, and p 2 ��
 9q4����

to denote that 9 does not satisfy
�
. The satisfaction relation p

is defined as follows:c If no2 � 4>�r� for some �C7D� thenp 23no2 � 4 
 9o4>� V
iff 9s2T�t4u� �

.c If no2 � 4>��n � �En G thenp 23no2 � 4 
 9o4>�wvEx�y�2 p 23n � 
 9q4 
 p 23n G 
 9q4�4c If no2 � 4>��nY�hiJn G thenp 23no2 � 4 
 9o4>�wvEx�y�2 p 23nY� 
 9q4 
 p 23n G 
 9q4�4c If no2 � 4>��nY� � n G thenp 23no2 � 4 
 9o4>�wv{z}|$2 p 23n � 
 9q4 
 p 23n G 
 9o4!4
Notice that the satisfaction relation is identical for the connec-
tives � and i . The difference between the connectives will
become evident when we define the value of a bid.

Given a bid
�

and assignment 9 of goods to bids, we define
the value of

�
under 9 , denoted ~s2 ��
 9q4 , recursively. If � is a

good,
� � 
-� G are bids, and

(
is a price:

~s2���� 
)( � 
 9q4	� (�� p 2T� 
 9o4
~s2�� � � � � G 
3( � 
 9o4^�

~s2 � � 
 9q4N�J~s2 � G 
 9q4N� (�� p 23no2 � ��4 � no2 � G 4 
 9q4
~s2�� � �h� � G 
3( � 
 9o4^�

~s2 � � 
 9q4N�J~s2 � G 
 9q4N� (�� p 23no2 � � 4^�Eno2 � G 4 
 9q4
~s2�� � � i � G 
3( � 
 9q4>�

vLx'y���~s2 � � 
 9q4 
 ~s2 � G 
 9o4-#I� (�� p 2)no2 � � 4N�Lno2 � G 4 
 9q4



Intuitively, the value of a bid is the value of its components,
together� with the additional price

(
if certain logical condi-

tions are met. � � � � � G 
3( � pays price
(

if the formulae as-
sociated with both

� � and
� G are both satisfied; � � �Z� � G 
)( �

and � � � i � G 
)( � both pay price
(

if either (or both) of
� � or� G are satisfied. The semantics of � and i differ in how sub-

formula value is used. Specifically, the value of a disjunctive
bid given an assignment is the sum of the values of the sub-
formulae: in this sense, both subformulae are of value to the
bidder. In contrast, a valuative XOR bid, or VXOR bid, allows
only the maximum value of its subformulae to be paid: thus
the subformulae are viewed as substitutes (see below).

Note how, under this definition, zero prices can be used to
represent subformulae to which no price is attached (such as
for the conjunctive bids defined in the previous section). Let
‘ � ’ denote semantic equivalence (i.e., two GLBs have exactly
the same value under any assignment of goods). We summa-
rize the intuitive semantics of B GB (examples are provided in
the next section):

c Bids
� � � � G and

� ��� � G are both valued as the sum of com-
ponent values for

� � and
� G (i.e., their utilities are inde-

pendent). Without prices, conjunction and disjunction,
when they appear at the top-level of a GLB, are seman-
tically equivalent. When such formulae are priced (e.g.,� � � � � G 
3( � ), or when they appear as subformulae in a
more complex GLB, however, the meaning is quite dif-
ferent.c Bid � � � � � G 
3( � expresses the complementarity of

� � and� G (with value
(

). However, it allows intrinsic value to
be expressed within the subbids (see below).c Bid � � � � � G 
)( � expresses the partial substitutability of� � 
R� G (with value

(
). However, it allows intrinsic value

to be expressed within the subbids, so satisfying both
may have greater value than satisfying either one alone.
If

� � 
-� G are completely priceless, then disjunction repre-
sents full and perfect substitutability.c Bid 2 � � i � G 4 expresses the complete substitutability of� � 
R� G . Only one of the values of

� � or
� G can be paid.

If the values are distinct then they are imperfect substi-
tutes. Perfect substitutes can be captured using i or �
(see above).c Bid � � � i � G 
)( � is much like 2 � � i � G 4 , but with price

(
paid if either or both

� � 
-� G are satisfied. No “penalty”
is paid if both are satisfied, so there is an implicit as-
sumption of free disposal. A variation we do not pursue
here would pay

(
iff one of the subbids held. In what

follows, we assume i formulae have no prices, since��� F � 
3( �R��i�� FhG 
3( G � 
)( �h��2�� F � 
)( �t� ( ��i�� F>G 
)( G � ( �!4 .
3.3 Properties and Examples

We begin by illustrating the key features of the generalized
language B GB with several examples. We then describe some
of the formal properties of our language.

The ability to associate prices with subformulae gives B GB

the ability to express certain complex preferences much more
concisely and naturally than existing languages in either theB G of B B families. And complex preferences often exhibit

considerable structure, as studied in multiattribute utility the-
ory [Keeney and Raiffa, 1976], that can be exploited by B GB.
To illustrate, consider the bid

��� � 
�V � � � ��
�V � � ��� 
-m � � � X 
 �
� 
 ���
�
Intuitively, this might reflect that � ,

�
, � , and X are comple-

mentary goods with joint value 50, and that the individual
goods have some intrinsic (e.g., salvage) value over and above
that of their role within the group. The use of subformula
prices allows the direct expression of the natural decompo-
sition of the underlying utility function. This bid can be ex-
pressed reasonably concisely in B B (e.g., OR*) and, hence,B G: the disjunction of five atomic bids— � � 
�V � , � ��
�V � , ��� 
Rm � ,� X 
�� � , � � � � X 
-� ��� —would suffice. However, this set of bids
disguises the true structure of the utility function. Moreover,
if the atoms were replaced by disjunctive formulae, the re-
quired size of the B B or B G formulae would blow up, since
we would need to distribute the disjunction across each of the
conjuncts to form suitable atomic bids.

A related bid is �!� � 
�V ���Y� ��
�V ���Y� m�
 �����Y� X 
 �
� 
 ����� . Here the
individual goods are substitutes: they provide a basic func-
tionality of value 50, but perhaps do so with differing quality
(or each has different intrinsic value) reflected in the “bonus”
associated with each good. Once again the use of subformula
prices allows one to express this preference naturally. The
most natural way to express this bid in B or*

B would be as the
disjunction of all 15 combinations of the four goods (in B G this
would require 15 bids instead of 15 disjuncts). In general, this
would require an exponential blowup of the bid. It turns out
one can express this bid more concisely as the disjunction of
the following 8 bids (where � is a dummy good):1 � � � 
 � V � ,� � � 
 � V � , ����� 
 � m � , � X � 
 ���
� , � � 
 V � , � ��
�V � , ��� 
Rm � , � X 
 �
� . The
dummy good is needed to ensure that 50 is not paid more than
once. While the blowup is only linear, any natural structure
in the utility function is buried. Furthermore, this conversion
only applies when the disjuncts are goods; if they are arbitrary
GLBs, then the B B (or B G) expression will blow up.

An important feature of the semantics of B GB is that goods
are assigned to logical bids (as in B G) as opposed to compo-
nent subformulae (as in B B). This means that a good assigned
to a logical bid makes all occurrences of that good “true”. This
allows the natural distinction between “sharable” resources
that complement multiple goods, and “consumable” resources
whose utility can only be “counted” once. Consider a scenario
in which we have a number of goods ��b � 
�� ���-
 bQ�
# whose util-
ities/prices

( ,
are conditionally dependent on the presence of

another good a but are (conditionally) additive independent
of each other. For instance, think of the b , as raw materials,
and of a as a machine used for processing those raw materi-
als. This situation can be captured using a single GLB of the
form:

��a � b � 
)( � �^����a � b G 
3( G �N� ����� �E��a � b�� 
3( �
�
To express the same utility function using any B B language
would require a number of bids exponential in U (essen-
tially requiring the enumeration of all subsets of consumable

1Here and in some of the following examples, in order to
enhance readability, we use the notation �
�3� ���-���3��� instead of� �
�-�3� ���-�-�R�-�3����� for bundles of goods.



goods). For example, with one sharable a and four consum-
ables� b � 
 b G 
 b O 
 b P (worth 1, 2, 3, and 4, respectively), we’d
need the following bid (in B or

B or B or*
B ):

��a{b�� 
�V �N����a{b G 
RW �k����aCbQO 
-m �N����aCbQP 
!� �
�D��aCb'��b G 
-m �N����a{b���bQO 
!� �k����aCb'��bQP 
 �
�$����a{b G b�O 
 ���

�D��aCb G b P 
-� �N����a{b O b P 
R� �N����aCb � b G b O 
-� �N����a{b � b G b P 
R� �
����aCb � b O b P 
R� �N�D��aCb G b O b P 
-� �N����a{b � b G b O b P 
 V �
�

Again we see that B GB allows the natural and concise expres-
sion of certain types of utility functions.

We observe that goods that complement multiple goods in
a nonsharable fashion can be captured either using i or by
using multiple GLBs. For instance, in the example above, if
the machine a is to be treated as consumable, replacing the
disjunction with VXOR:

��a � b � 
3( � �Nil��a � b G 
3( G �Ni ����� il��a � b�� 
3( ���
would ensure that the machine was not shared across the b , (or
at least no value was associated with more than one b , ). Sim-
ilarly, we could break up each disjunct into a separate GLB
(all belonging to the same bidder): since goods are assigned
to only one GLB, this approach too prevents a from being
shared.

Since a bidder can offer multiple GLBs, it is important
to note the distinction between the appearance of a good �
in multiple bids and its appearance it multiple subformulae
within a single bid. In the former case, � is treated as non-
sharable, since it can be assigned to only one bid. In the lat-
ter case, each occurrence of � is satisfied by the assignment of� to that bid, hence � can be viewed as being shared by each
of the component subformulae containing it. This distinction
arises precisely because our notion of satisfaction is defined
with respect to the assignment of goods to bids rather than
bidders. We note that other purely logical means for distin-
guishing sharable and nonsharable resources may be possible,
rather than relying on whether a multiple good occurrences
lie “above the bid level” or below it. For instance, resource-
oriented logics (e.g., linear logic [Girard, 1987]) are designed
primarily to deal with the issue of resource consumption and
sharing. The connections to this work seem worthy of deeper
exploration.2

When a bidder offers multiple GLBs, we must enforce sub-
stitutability constraints by using dummy goods. This is not
necessary when the bid is contained within a single GLB:
VXOR can be used to ensure that only a single good from
some set of (perfect or imperfect) substitutable goods is val-
ued (assuming free disposal).

It is not hard to show that the connectives in B GB are com-
mutative and (in a certain sense) associative.

Proposition 1 Let
� � 
-� G 
-� O 7EB GB. Then

(a) � � G � � � 
)( �>��� � � � � G 
3( � (similarly for � , i ).

(b) �-2 � � � � G 4 � � O 
)( �@��� � � � 2 � G � � O 4 
3( � ; note
that the inner conjunctions have no price associated
with them (similarly for � , i ).

2We note that existing resource-oriented logics do not seem to
able to handle complementarities.

This justifies the informal use of conjunction (etc.) of a set
of GLBs, with a price paid for the conjunction. Certain distri-
bution laws can be derived as well for price-free subformulae,
and for priced subformulae if we allow manipulation (e.g., ad-
dition and subtraction) of prices. We conjecture that several
useful normal forms for B GB exist.

While there are preferences for which B GB offers much
more concise expression than either B G or B B, the converse
is not true. Any bid expressed in B or

B , B or*
B , B xor

B , or B G can be
expressed equally concisely in B GB. B G bids are simply spe-
cial cases of GLBs. Similarly, B GB can represent each disjunct
in an B or

B or B or*
B bid as a separate GLB for the specified bid-

der, resulting in a collection of smaller bids whose total size,
structure, and meaning is the same. As a corollary to the re-
sults of Sandholm and Nisan, that show that B xor

B and B or*
B are

both fully expressive, we have:

Proposition 2 B GB can represent any utility function over a
set of goods � .

4 Stochastic Search for GLBs
As we have seen logical languages for bid expression have
been considered by several authors. However, the logical
structure of bids formulated in these languages has not been
directly exploited computationally in winner determination.
For instance, in the the computational study of B G languages
for winner determination undertaken in [Hoos and Boutilier,
2000], compact logical bids were converted into a (large) set
of explicit bids and the behavior of winner determination was
examined. Despite the conversion, the stochastic local search
algorithm, Casanova, proposed in that study proved to work
extremely well. In this section, we formulate a stochastic
search procedure for the winner determination problem for
GLBs that works directly with logical bids, sidestepping the
problem of converting a logical bid into a (potentially expo-
nentially) large number of explicit bids. Though we have yet
to study its computational properties, we expect this approach
to offer a significant advance over existing algorithms.

Given a set * of GLBs, our aim is to find an assignment9 6 ��:�* of goods to bids that maximizes revenue; that
is, whose value ��2d9q4	��5l -¡�¢C~s2 ��
 9&? � 2 � 4!4 is maximal. In
the spirit of the Casanova algorithm for standard combinato-
rial auctions, and motivated by the success of stochastic local
search (SLS) techniques for a broad range of hard combina-
torial problems, we devise an SLS procedure that operates di-
rectly on the space £ of assignments and uses the objective
function ��2�9o4 to guide the search. In this search space, in-
tuitively, we want to consider two assignments 9 
 9 [ 7¤£
to be neighbors if we can construct 9 from 9 [

by shifting
certain goods from some bids to others. For example, one
could imagine defining the neighborhood relation as follows:
a neighbor of 9 is reached by moving exactly one good from
its assigned bid

�
in 9 to a new bid

�-[
. While this would render

each 9¥70£ reachable from any other assignment, selecting
good moves based on the objective function �¦2d9q4 would be
difficult, as many single-good moves are unlikely to cause a
change in ��2d9q4 , leading to large plateaus in the searchscape.
Alternatively, one could follow the CASLS approach [Hoos
and Boutilier, 2000], and consider assignments 9 and 9 [

to



be neighbors if 9 [
can be reached by selecting an unsatisfied

bid
�

in 9 and shifting goods from some other bid to
�

so that
it becomes (maximally) satisfied. We feel, however, that this
approach would not adequately reflect the fact that GLBs have
degrees of satisfaction (i.e., values). Furthermore, revenue
maximizing assignments need not necessarily maximally sat-
isfy any bid; thus this neighborhood relation would not nec-
essarily allow one to reach optimal solutions from arbitrary
points in search space.

The neighborhood relation we propose can be seen as a
compromise between these two extremes; it is based on the
observation that the existence of priced subformulae in GLBs
provides the means to improve the value of a bid in natural in-
crements by moving goods from bid to bid in price-improving
bundles. The value of a GLB under an assignment 9 is deter-
mined precisely by the priced subformulae that are satisfied
by 9 . We then define assignment 9 [

to be a neighbor of 9 ,
if it can be reached from 9 by selecting an unsatisfied priced
subformula in some bid

�
and by moving just enough goods

to that bid to satisfy this subformula.
To complete the definition of an SLS procedure, we need

to specify methods for selecting an initial assignment and
for choosing a neighboring assignment at each search step.
Analogous to the CASLS scheme, we propose to start the
search at an empty assignment where all goods are unassigned
and all the bids are fully unsatisfied (i.e., their value is zero).

To formally define the method for selecting neighbors, we
use the notion of a logical bid tree: Each GLB

�
can be repre-

sented as a logical bid tree whose subtrees correspond to the
priced subformulae of

�
; this tree is simply the parse tree forno2 � 4 with prices attached to each node. A subformula with-

out a (top-level) price attached is semantically equivalent to
the same subformula with price zero; we call such subformu-
lae and the corresponding nodes priceless, while all other sub-
formulae (and nodes) are called priced. Since each subtree
of a logical bid tree is itself a GLB, notions of value under a
given assignment and maximal value under any assignment
are well-defined for subtrees; the (maximal) value of a node
is the (maximal) value of the subtree rooted at that node.

Our method for selecting a neighbor of the current assign-
ment in each search step proceeds in two stages: First, choose
from some partially unsatisfied bid

�
an unsatisfied price node§ whose ancestors do not have maximal value.3 Then, select

a set � [
of goods that, when assigned to bid

�
, will satisfy

node § . Together, these two choices determine a neighbor-
ing assignment, which is reached by reassigning all goods in� [

to bid
�
. More precisely, we restrict this second selection

to minimal satisfying sets � [
, (i.e., to sets that contain only

goods that are necessary to satisfy § ). Finding such a minimal
set satisfying § is rather straightforward using the procedure
Satisfy 2 § 4 , recursively computed as follows:

(a) Let § be a leaf node labeled with good � . Then re-
turn � .

3To implement the search procedure efficiently, for each bid, we
compute the maximum value ¨o© ª.«)¬�­ for each node ¬ in the logical
bid tree (or for each subformula) prior to commencing the search.
This computation is simple and requires just a single bottom-up
sweep of each logical bid tree.

(b) Let § � � 2 § � 
 § G 
 �����R
 § �
4 , and w.l.o.g. assume
that § � 
 ��� �-
 §�® (

V<¯ °±¯ U ) are unsatisfied,
and § ® f �


�� ���!
 § � are satisfied. Since § is not satis-
fied, at least one subnode must be unsatisfied. (Sat-
isfaction information is recorded for each node.)
Then return ² ,)³ ® Satisfy 2 § , 4 , calling the Satisfy 2 § , 4
in random order.

(c) Let § �´�82 § � 
 § G 
�� ���-
 § �
4 . (Note that since §
is not satisfied, each subnode must be unsatisfied.)
Randomly choose one § , , µ ¯ U . Then return
Satisfy 2 § , 4 .

(d) Let § ��is2 § � 
 §NG 
 ��� ��
 § � 4 . (Note that the satisfac-
tion of such a subformula is defined exactly as in the
case of � . Hence, since § is not satisfied, each subn-
ode must be unsatisfied.) Randomly choose one § , ,µ ¯ U . Then return Satisfy 2 § , 4 .

To obtain minimal assignments, we update the assignment
of goods incrementally as we work recursively through the
tree. This way, once a good is assigned in one part of the tree
this fact will be reflected in the other parts of the tree. Due
to the stochastic choice of subformula to satisfy within ORs
and VXORs, and the random order in which subformulae be-
neath AND nodes are visited, Satisfy 2 § 4 can find any minimal
assignment of goods to bid

�
that will satisfy node § .

The schematic stochastic local search algorithm we pro-
pose initializes the search at an empty assignment and then
iteratively moves from the current assignment to a neighbor-
ing assignment by transferring a set of goods between bids
as described above. After each such search step, the satis-
faction information for all bids (and all subformulae within
bids) is updated based on the new assignment. In practice, to
deal with premature stagnation, this SLS technique will be ex-
tended with standard restart mechanisms such that the search
is reinitialized from an empty assignment after a fixed num-
ber of steps have been performed since the last initialization
(fixed cutoff restart) or whenever no improvement in revenue
has been achieved for a given number of steps (soft restart).

Concrete instantiations of this algorithmic framework are
obtained by specifying mechanisms for the various selections
in each search step: the choice of a subformula to be satis-
fied, and the choice of a minimal assignment (as implemented
by Satisfy 2 § 4 , possibly extended by an additional selection
from a number of minimal assignments that satisfy § ). There
is a broad range of possibly suitable and effective mecha-
nisms for these selections; which of many strategies will work
best will have to be determined based on empirical analyses.
However, it seems clear that the choices should be made in
a biased randomized fashion such that alternatives that lead
to higher direct increases in �¦2d9q4 are selected with higher
probability, while any possible alternative can be chosen with
some small, lower-bounded probability. The former criterion
is based on analogous results for standard combinatorial auc-
tions [Hoos and Boutilier, 2000] and other well-known com-
binatorial problems such as propositional satisfiability, while
the latter is a sufficient condition to ensure that for arbitrar-
ily long runs, the SLS procedure will find an optimal solution
with probability approaching one (i.e., it ensures probabilistic
approximate completeness, see [Hoos, 1999] for details).



The general approach we propose here can also be used to
obtain� a systematic search algorithm capable of finding opti-
mal solutions and proving their optimality. The overall search
method could be very similar, starting with an empty assign-
ment and selecting subformulae that are satisfied by assign-
ing a set of goods in each step. To guarantee completeness
of the algorithm, all choices would have to be done in a sys-
tematic fashion such that when using a backtracking mecha-
nism, the full search space of a given problem instance will
be explored after a finitely bounded amount of time. Notice
that this is possible even for randomized choices. The practi-
cal efficiency of such an algorithm would depend on suitable
heuristics for ordering the alternatives to be explored at each
choice point, and on sufficiently powerful pruning or bound-
ing techniques. This approach could be very useful for solving
relatively small problem instances provably optimally. How-
ever, considering the NP-hardness of the given problem and
well-known results for other hard combinatorial optimization
problems, such as MAX-SAT, TSP, or standard combinatorial
auctions, we believe that SLS techniques like the one outlined
above will most likely show better absolute performance and
anytime behavior on large and complex problem instances.

5 Concluding Remarks
We have proposed a new logical bidding language for CAs
that exploits structure in utility functions, thereby facilitating
the natural and concise expression of bids. By associating
prices with subformulae and adequately dealing with sharable
resources, B GB can express certain bids exponentially more
compactly than existing languages. We have also sketched
a search procedure for solving CAs that does not require the
conversion of logical bids to atomic bids. Though this proce-
dure has not been tested empirically, we are confident that it
will work well. We are currently developing an implementa-
tion suitable for extensive experimentation.

Apart from empirical work, we are also exploring exten-
sions of B GB to deal with k-of expressions and multiunit CAs.
The distinction between sharable and consumable goods also
deserves further exploration. Clearly an important concept
for CAs, B GB’s ability to make this distinction implicitly is
very desirable for the natural, concise expression of prefer-
ences. Finally, we are currently pursuing the connection to
work in resource-oriented logics (e.g., linear logic [Girard,
1987]), though existing logics do not seem to able to handle
complementarities.
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