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Introduction. The WalkSAT algorithm framework is a family of highly suc-
cessful stochastic local search (SLS) algorithms for the Satisfiability problem
[6, 5]. WalkSAT/SKC, the first and most popular WalkSAT algorithm, has
been shown to work well on SAT instances from a broad range of domains, in-
cluding random 3-SAT formulae, and has been extensively studied, for example
in [1]. Like many stochastic local search algorithms, WalkSAT /SKC is incom-
plete in the sense that it cannot be used to prove that a given problem instance
is unsatisfiable and — maybe worse — for satisfiable instances, there is no guar-
antee that it actually finds a solution. However, for some incomplete stochastic
search algorithms, such as Simulated Annealing, it can be shown that under cer-
tain conditions the probability of not solving any given soluble problem (failure

probability) converges to zero as the run-time approaches infinity. In [1], this is
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called the PAC property (probabilistic approximate completeness); incomplete
algorithms which are not PAC are called essentially incomplete. PAC algorithms
will almost certainly find a solution (if one exists) if left to run indefinitely. This
property, directly only of theoretical interest, might have considerable practical
importance, especially if combined with results on the failure probability’s rate
of convergence [2].

While for other members of the WalkSAT family, it could be shown that
(when not using random restart) they are either PAC or essentially incom-
plete, the question whether WalkSAT /SKC (without random restart) is PAC
remained open. In this article, we prove that a family of SAT algorithms in-
cluding WalkSAT /SKC is PAC for 2-SAT. Unfortunately, the case for 3-SAT or
general SAT seems much harder, and remains open. However, we have strong
empirical evidence suggesting that even if WalkSAT/SKC is essentially incom-
plete for 3-SAT and general SAT, this does not have a significant affect on its

behavior in practice.

Preliminaries. Let S = (V,C) be an instance of SAT containing a set of
variables V' and a set of clauses C. Each clause contains a number of literals.
An unnegated literal v is satisfied by v = true while a negated literal ¥ is satisfied
by v = false. A clause is satisfied if at least one literal in it is satisfied. Let
T : V — {true, false} be a truth assignment. The assignment T partitions C
into unsatisfied and satisfied clauses, C, and C;. S is satisfiable if there exists
a satisfying assignment T for which C, = @. In 2-SAT, all clauses in C contain
exactly two different literals.

We use the notation Tv to indicate the the truth assignment obtained from
T by flipping the value of variable v, i.e., complementing its truth value under
T. A variable v € V is said to be free under an assignment T if v or U occurs
in a clause C € C, and for all D € C, under T, D € C, under T' = T%.

PAC Property of WalkSAT/SKC for 2-SAT. Let us now consider the
algorithm family WS as specified in Figure 1 and make the following assump-

tion:

Assumption 1 The selections in step 1 and 2.1 are random (according to a



Assign T at random
While C,, # @
1. Randomly select C € C,,
2. If there is a free variable v € C
2.1 Randomly select a free variable v
Else
2.2 Select any v € C according to a heuristic H
3. T+ Tv
End while

Figure 1: The WS family of stochastic local search algorithms for SAT.

uniform distribution), the selection in step 2.2 is according to a heuristic H
such that there is a fized lower bound > 0 for the probability of selecting any

giwen element of C.

It is easy to see that this algorithm family contains WalkSAT/SKC with
maxTries= 1 (i.e., random restart is not used), maxSteps= oo (i.e., the algorithm
is run until a solution is found), and arbitrary settings of the noise parameter.!
To prove the PAC property of WalkSAT/SKC for 2-SAT, we use the following

lemma

Lemma 1 Any member of algorithm family WS is PAC if for every satisfiable
problem instance and for every initial assignment T there exists a sequence of

selections which leads to a solution.

Proof: If such a sequence s exists, there is a lower bound > 0 of the probability
that the algorithm will make the selections according to s. Thus, over all truth
assignments, there is a minimal probability > 0 to find a solution within a finite
number of variable flips. As the number of variable flips approaches infinity, the
probability of not executing any of these sequences for any of the assignments

along the search trajectory converges to zero, i.e., the algorithm is PAC. QED

Notice that the only restriction on the algorithm’s choices occurs when it

selects an unsatisfied clause with a free variable. Without this restriction, it is

11t is easy to see that when random restart and a fixed cutoff parameter maxSteps is used,
any WalkSAT algorithm is PAC. As explained in [1], this result is of very limited interest,

since thus parameterized, typically the algorithms show poor performance in practice.



easy to see that the algorithm is PAC, since it can always set a variable to its
final value until all clauses are satisfied.?

For a given satisfiable instance S, we define a trap as an assignment T
for which there is no selection sequence leading to a solution. To prove the
precondition of Lemma 1 (which implies the PAC property of WalkSAT /SKC),
we show that for satisfiable 2-SAT instances, traps cannot exist.

To make the presentation more succinct we restrict ourselves to satisfiable
instances with a model T}, such that Vv € V : T,,(v) = true. Note that
for any instance containing a trap we can obtain an equivalent instance with
this property by complementing the appropriate literals throughout. In the
following, we assume without loss of generality that an arbitrary 2-SAT instance
with this property is given. For any assignment T, we define the Hamming
distance h = h(T,T,,) to be the number of variables whose assignments differ
under T and T,,; thus, A is just the number of incorrect variables.

Furthermore, we use the following notation for the literals evaluated under

the current truth assignment T:

<

% incorrect & unsatisfied

v:  correct & satisfied
vY  correct & unsatisfied
U5 incorrect & satisfied

where the superscript indicates whether the literal is satisfied (s) or unsatisfied
(u) by T and the subscript ¢ indicates that the variable has the correct value
assigned in the model T,, while subscript £ means it does not. Because we
assume that the correct value for all variables is true, there is redundancy in

nu

the notation: for example the form v¥ is impossible because a negated and

unsatisfied literal with is necessarily correct.

Lemma 2 For all C € C, for all T, there is some variable v such that either

vl € C orv} € C. In particular, the latter case must hold for all C' € C,.

Proof: T,, must make every clause true. QFED

2This argument is similar to the one used in [4] to show that satisfiable 2-SAT instances

are solved by pure random walk in O(n?) time on average.



We notice that if a trap exists, then every T reachable from it is also a trap.
Furthermore, it a trap exists then there must be some minimum value b’ of h,
where A’ > 0, among all traps. We designate one such minimal trap state by
T,.

Lemma 3 For each C € C,, at T, there exists one V% € C such that v is free

and the other w} € C' with w not free.

Proof: Since flipping the assignment of a variable changes h and we start with
h' being the minimum over all states, every flip we are allowed to make must
increase h. Each such flip must involve a correct variable, and since C € C,,
the corresponding literal must be unsatisfied. By Lemma 2 the other literal
must be w¥. If w were free, or v was not free, then we could choose to flip w
reducing h < b, a contradiction to the minimality of h'. QED

Notice that by definition, flipping a free variable always decreases the number
of unsatisfied clauses. Thus, Lemma 3 says that in the hypothesized minimal
trap state T, we must flip a free variable, thus increasing h but decreasing the
number of unsatisfied clauses. The next lemma proves that after at most one
such flip, a move becomes available which decreases h and thus leads to another

minimal state.

Lemma 4 In a minimal trap state T, there exist C1,Cs € C,, with free vari-

ables a* € Cy and E’C‘ € Cs, C1,C5 € Cy, such that flipping a makes b not free.

Proof: Let F' = {v € V|3C € C,, 0¥ € C}, the set of free variables at T,.
If we were to flip all v € F and they all remained continually free, then we
would satisfy all clauses that were in C, at T,, yielding a solution. Thus,
since T, is a trap state, each sequence of flips of variables in F' must at some
point create another unsatisfied clause. By definition, this is only possible if at
some point one of the free variables becomes not free. Let state T be the first
assignment reached in this sequence of flips such that flipping a free variable
a € F makes another variable b € F' change from free to not free. Notice
that neither a nor b can possibly have been flipped earlier in the sequence,

because both were free and after flipping a free variable it does not appear in



any unsatisfied clauses; furthermore, flipping free variables never creates new
unsatisfied clauses. Therefore, both a and b are also free in T, and consequently.
Note that there must be a clause (a V b%) in T, since we are in 2-SAT and
flipping a makes b not free. Since our algorithm can flip any free variable at
a given state, it can flip a directly in T,, making b not free. Furthermore,
a,b € F implies that at Ty, there exist clauses C1,Cy € C,, such that a¥ € Cy
and b € Cy. QED

We are now in a position to complete the proof of:

Theorem 1 Any member of the WS algorithm family for which Assumption 1
holds, is PAC for arbitrary 2-SAT instances.

Proof: We assume that a trap, and therefore a minimal trap state T, exists.
Using Lemma 4, at this state there are clauses C1,C> € C, with free variables
a¥ € (Cy and EZ € Cy, C1,Cy € C,, such that choosing to flip a makes b
not free. According to Lemma 3, there are non-free variables d,e such that
Cy = @¥vdd) and Cy = <Eg \% eg>. Note that a and e cannot be identical
since they have complementary settings at T,, the same holds for b and d.
Now our algorithm can first select C; and flip @ making b not free. (Note that
according to Assumption 1, any unsatisfied clause can be chosen without loss
of generality.) Then, Cs is selected. Since b is not free any longer, e can be
flipped, leading into a new minimal trap state T' with h = h'.

Since e was not free at T, there must be a clause C3 in which variable e
appears. We must have g% € (3 by Lemma 2 and the fact that only the literal
on e made the clause true (else e would be free). Furthermore, the status of e in
C3 at T, must be €2, since flipping e decreases h. Note that g must be different
from a, since their truth values differ at T. After flipping e at T, the status of
Cs at T' is (e* V g¥) € C,, with e not free. (The variable most recently flipped
cannot be free since flipping is only possible if it occurred in a false clause.)
But this means, selecting C3, g can now be flipped to its correct value, getting
a new state with h = ' — 1, a contradiction to the assumed minimality of A'.
Thus, minimal trap states,and hence, traps cannot exist under the assumptions
stated in the theorem. QED

Since WalkSAT/SKC without restart and infinite cutoff parameter satis-
fies the precondition of the theorem, its PAC property for 2-SAT is a simple



corollary. Unfortunately, this proof fails for 3-SAT, essentially because at a hy-
pothetical minimal trap state T, we can have three unsatisfied clauses with free
variables, and one other clause containing all three free variables complemented.
Thus, Lemma 4 does not hold, and it seems that the algorithm can be forced
to make at least two upward steps in h before another downward step becomes
possible. This considerably complicates any attempt to prove the existence of
a sequence of flips which can escape from such a trap by reducing h beneath
h' = h(Tqa, Ts,). At the same time it appears to be very hard to construct a trap
for the 3-SAT case, since it seems to be very difficult to restrict the structure of
the trap enough that it becomes feasible to show that all possible escape routes
lead into another trap state in which all clauses contain correctly assigned, free
variables. Faced with these difficulties, so far we have not succeeded in proving

or disproving the PAC property for this cases.

Empirical Evidence. For other algorithms of the WalkSAT family, in partic-
ular the more recent Novelty and R-Novelty algorithms [5], instances containing
traps could be relatively easily constructed, after the essential incompleteness of
these algorithms became apparent when analysing their empirical performance
applied to various sets of benchmark problems [1]. Although in general, experi-
mental results can neither prove nor disprove the PAC property of an algorithm,
they can give highly suggestive evidence. Such evidence is collected by applying
the algorithm in question to a large set of satisfiable problem instances and
checking whether for a large number of runs on each instance, solutions can be
found in each individual run, when the restart mechanism is disabled. A huge
amount of such experiments were performed on the problem instances available
through SATLIB,? a public resource for SAT benchmark instances and solvers.
We evaluated WalkSAT /SKC on a total of 3,700 hard Random-3-SAT instances
and several thousand SAT-encoded problem instances from other domains, in-
cluding graph coloring, planning, and circuit fault analysis. In every instance,
WalkSAT /SKC was able to find a model in each of at least 100 runs (see also [2]).
Other WalkSAT variants, which are provably essentially incomplete, however,

failed to find models in some of the runs, especially for SAT-encoded problems

3available on the WWW at www.informatik.tu-darmstadt.de/AI/SATLIB



from other domains. As argued in [1], this indicates that the PAC property is
not only of theoretical interest, but has also (at least in cases where it does not
hold) significant impact on the performance of state-of-the-art stochastic SLS
algorithms for SAT. Our empirical evidence summarized above suggests that if
WalkSAT/SKC is essentially incomplete, the practical impact of this property
is much smaller than for other high-performing WalkSAT variants which are

essentially incomplete.

A Generalized Family of Algorithms. We can view WS as an example
of a broader family of algorithms. Within this class, we show that WS is
the only one in which the proof of PAC property or essential incompleteness
is difficult. To do so, we vary the definition of a free variable such that it
covers variables which, when flipped, cause at most § currently satisfied clauses
to become unsatisfied. Based on this new definition, we obtain a generalized
algorithm family WS’ from the family WS considered before. Only for § = 0,
i.e. the existing class WS, is there any difficulty.

For § = —1, WS’ algorithms have a free choice of the variable to flip in the
selected clause at each step, since free variables do not exist. As argued before,
this allows in each step a variable to be set to its correct value until all clauses are
satisfied. Consequently, these algorithms are all PAC. This includes as a special
case the well-known GWSAT algorithm [6]. The WS’ algorithms for § = 0 form
the family WS considered before. We have shown that these algorithms are
PAC for the 2-SAT case, but for more general cases, it is not known whether
the PAC property holds. For 6 = 1, the following simple example shows that

the corresponding WS’ algorithms are essentially incomplete for 2-SAT:

C={{avel),@vel), (@ vds),@ve).

T

Here, c is incorrectly set to false and not free. But since a is free, and remains
free at § = 1 when flipped, ¢ can never be changed to its correct truth value.
This example can be easily generalized to longer clauses and for § > 1, which

shows that WS’ algorithms for § > 1 are essentially incomplete in general.

Conclusions. We have shown that WalkSAT/SKC, one of the most promi-
nent and successful SLS algorithms for SAT, is probabilistically approximately



complete for 2-SAT. That is, applied to any satisfiable 2-SAT instance, it will
find a model almost certainly when given enough time. This result comple-
ments a series of related results for other prominent SLS algorithms for SAT [1]
and might be regarded as a first step in proving (or refuting) the PAC prop-
erty of WalkSAT/SKC in the NP-complete cases of 3-SAT and general clausal
SAT. There is substantial empirical evidence that the PAC property can have
a significant impact on the performance of SLS algorithms for SAT, such as
WalkSAT /SKC and related algorithms, in practice.
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