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Abstract. The prediction of a protein’s conformation from its amino-
acid sequence is one of the most prominent problems in computational
biology. Here, we focus on a widely studied abstraction of this problem,
the two dimensional hydrophobic-polar (2D HP) protein folding problem.
We introduce an ant colony optimisation algorithm for this NP-hard com-
binatorial problem and demonstrate its ability to solve standard bench-
mark instances. Furthermore, we empirically study the impact of various
algorithmic features and parameter settings on the performance of our
algorithm. To our best knowledge, this is the first application of ACO to
this highly relevant problem from bioinformatics; yet, the performance
of our ACO algorithm closely approaches that of specialised, state-of-the
methods for 2D HP protein folding.

1 Introduction

Ant Colony Optimisation (ACO) is a population-based approach to solving com-
binatorial optimisation problems that is inspired by the foraging behaviour of
ant colonies. The fundamental approach underlying ACO is an iterative process
in which a population of simple agents (“ants”) repeatedly construct candidate
solutions. This construction process is probabilistically guided by heuristic infor-
mation on the given problem instance as well as by a shared memory containing
experience gathered by the ants in previous iterations (“pheromone trails”).
Following the seminal work by Dorigo et al. [3], ACO algorithms have been suc-
cessfully applied to a broad range of hard combinatorial problems (see, e.g., [4,
5]).

In this paper, we present an ACO algorithm for solving an abstract variant
of one of the most challenging problems in computational biology: the prediction
of a protein’s structure from its amino-acid sequence. Genomic and proteomic
sequence information is now readily available for an increasing number of organ-
isms, and genetic engineering methods for producing proteins are well developed.
The biological function and properties of proteins, however, are crucially deter-
mined by their structure. Hence, the ability to reliably and efficiently predict
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protein structure from sequence information would greatly simplify the tasks of
interpreting the data collected by the Human Genome Project, of understanding
the mechanism of hereditary and infectious diseases, of designing drugs with spe-
cific therapeutic properties, and of growing biological polymers with the specific
material properties.

Currently, protein structures are primarily determined by techniques such as
MRI (magnetic resonance imaging) and X-ray crystallography, which are expen-
sive in terms of equipment, computation and time. Additionally, they require
isolation, purification and crystallisation of the target protein. Computational
approaches to protein structure prediction are therefore very attractive. Many
researchers view the protein structure prediction problem as the “Holy Grail” of
computational biology; while considerable progress has been made in developing
algorithms for this problem, the performance of state-of-the-art techniques is
still regarded as unsatisfactory.

The difficulty in solving protein structure prediction problems stems from two
major sources: (1) finding good measures for the quality of candidate structures
(e.g., energy models), and (2), given such measures, determining optimal or
close-to-optimal structures for a given amino-acid sequence. The first of these
issues needs to be addressed primarily by biochemists who study and model
protein folding processes; the second, however, is a rich source of interesting
and challenging computational problems in local and global optimisation. In
order to separate these two aspects of protein structure prediction problems, the
optimisation problem is often studied for simplified models of protein folding.
In this work, we focus on the 2-dimensional hydrophobic-polar (2D HP) model,
an extremely simple model of protein structure that has been used extensively
to study algorithmic approaches to the protein structure prediction problem.
Even in this simplified model, finding optimal folds is computationally hard
(NP-hard) and heuristic optimisation methods, such as ACO, appear to be the
most promising approach for solving this problem.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce the 2D HP model of protein structure, and give a formal definition of the
2D HP protein folding problem as well as a brief overview of existing approaches
for solving this problem. Our new ACO algorithm for the 2D HP protein folding
problem is described in Section 3. An empirical study of our algorithm’s perfor-
mance and the role of various algorithmic features is presented in Section 4. In
the final Section 5 we draw some conclusions and point out several directions for
future research.

2 The 2D HP Protein Folding Problem

The hydrophobic-polar model (HP model) of protein structure was first proposed
by Dill [9]. It is motivated by a number of well-known facts about the pivotal
role of hydrophobic and polar amino-acids for protein structure [9, 13]:



Fig. 1. A sample protein conformation in the 2D HP model. The underlying protein
sequence (Sequence 1 from Table 1) is HPHPPHHPHPPHPHHPPHPH; black squares
represent hydrophobic amino-acids while white squares symbolise polar amino-acids.
The dotted lines represents the H-H contacts underlying the energy calculation. The
energy of this conformation is -9, which is optimal for the given sequence.

— Hydrophobic interaction is the driving force for protein folding and the hy-
drophobicity of amino acids is the main force for development of a native
conformation of small globular proteins.

— Native structures of many proteins are compact and have well-packed cores
that are highly enriched in hydrophobic residues as well as minimal solvent-
exposed non-polar surface areas.

Each of the twenty commonly found amino-acids that are the building blocks
of all natural proteins can be classified as hydrophobic (H) or polar (P). Based
on this classification, in the HP model, the primary amino-acid sequence of a
protein (which can be represented as a string over a twenty-letter alphabet) is
abstracted to a sequence of hydrophobic (H) and polar (P) residues, i.e., amino-
acid components. The conformations of this sequence, i.e., the structures into
which it can fold, are restricted to self-avoiding paths on a lattice; for the 2D HP
model considered in this and many other papers, a 2-dimensional square lattice
is used. An example for a protein conformation under the 2D HP model is shown
in Figure 1.

One of the most common approaches to protein structure prediction is to
model the free energy of the given amino-acid chain depending on its confor-
mation and then to find energy-minimising conformations. In the HP model,
based on the biological motivation given above, the energy of a conformation is
defined as the number of topological contacts between hydrophobic amino-acids
that are not neighbours in the given sequence. More specifically, a conformation
¢ with exactly n such H-H contacts has free energy E(c) = n - (—1); e.g., the
conformation shown in Figure 1 has energy —9.

The 2D HP protein folding problem can be formally defined as follows: Given
an amino-acid sequence s = $153 ... S, find an energy-minimising conformation
of s, i.e., find ¢* € C(s) such that E(c*) = min{E(c) | ¢ € C}, where C(s) is
the set of all valid conformations for s. It was recently proven that this problem
and several variations of it are NP-hard [8].



Seq. No.|Length| E* |Protein Sequence

1 20 | -9 |hphpphhphpphphhpphph

2 24 | -9 |hhpphpphpphpphpphpphpphh

3 25 | -8 |pphpphhpppphhpppphhpppphh

4 36 |-14|ppphhpphhppppphhhhhhhpphhpppphhpphpp

5 48 |-23 |pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh

6 50 |-21|hhphphphphhhhphppphppphpppphppphppphphhhhphphphphh

7 60 [-36 |pphhhphhhhhhhhppphhhhhhhhhhphppphhhhhhhhhhhhpppphh
hhhhphhph

8 64 |-42 hhhhhhhhhhhhphphpphhpphhpphpphhpphhpphpphhpphhpphp|
hphhhhhhhhhhhh

9 20 |-10|hhhpphphphpphphphpph

Table 1. Benchmark instances for the 2D HP protein folding problem used in
this study with known or approximated optimal energy values E*. (E* values
printed in bold-face are provably optimal.) These instances can also be found at
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html.

Existing 2D HP Protein Folding Algorithms

A number of well-known heuristic optimisation methods have been applied to
the 2D HP protein folding problem, including Simulated Annealing (SA) [15]
and Evolutionary Algorithms (EAs) [8,18,10,17]. The latter have been shown
to be particular robust and effective for finding high-quality solutions to the 2D
HP protein folding problem [8].

An early application of EAs to protein structure prediction was presented
by Unger and Moult [17,18]. They presented a nonstandard EA incorporating
characteristics of Simulated Annealing. Using an algorithm that searches in a
space of conformations represented by absolute directions and considers only
feasible configurations (self-avoiding paths on the lattice), Unger and Moult
were able to find high-quality conformations for a set of protein sequences of
length up to 64 amino-acids (see Table 1; we use the same benchmark instances
for evaluating our ACO algorithm). Unfortunately, it is not clear how long their
algorithm ran to achieve these results.

Krasnogor et al. [7] implemented another EA in which the conformations are
represented using relative folding directions or local structure motifs — the same
representation used by our algorithm. Their algorithm found the best known
conformations for Sequences 1 through 6 and 9 from Table 1. The best value
they achieved for Sequences 7 and 8 were —33 and —39, respectively.

Among the best known algorithms for the 2D HP protein folding problem
are various Monte Carlo methods, including the Pruned Enriched Rosenbluth
Method of Bastolla et al. [1]. Using this method, the best known solution of
Sequence 7 (E* = —36) could be found; however, even it failed to obtain the
best known conformation for Sequence 8. Other state-of-the-art methods for this
problem include the dynamic Monte Carlo algorithm by Ramakrishnan et al.
[12] and the evolutionary Monte Carlo algorithm by Liang et al. [11]. The Core-
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Fig. 2. The local structure motifs which form the solution components underlying the
construction and local search phases of our ACO algorithm.

directed Chain Growth method by Beutler et al. was able to find ground states
for all benchmark sequences used here, except for Sequence 7 [2]. Currently, none
of these algorithm seems to dominate the others.

3 Applying ACO to the 2D HP Protein Folding Problem

The ants in our ACO algorithm construct candidate conformations for a given
HP protein sequence and apply local search to achieve further improvements. As
in [7], candidate conformations are represented using local structure motifs (or
relative folding directions) straight (S), left (L), and right (R) which for each
amino-acid indicate its position on the 2D lattice relative to its direct prede-
cessors in the given sequence (see Figure 2). Since conformations are invariant
w.r.t. rotations, the position of the first two amino-acids can be fixed without
loss of generality. Hence, we represent candidate conformations for a protein se-
quence of length n by a sequence of local structure motifs of length n — 2. For
example, the conformation of Sequence 1 shown in Figure 1 corresponds to the
motif sequence LSLLRRLRLLSLRRLLSL.

Construction Phase, Pheromone and Heuristic Values

In the construction phase of our ACO algorithm, each ant first randomly de-
termines a starting point within the given protein sequence. This is done by
choosing a sequence position between 1 and n — 1 according to a uniform ran-
dom distribution and by assigning the corresponding amino-acid (H or P) and
its direct successor in the sequence arbitrarily to neighbouring positions on a
2D lattice. From this starting point, the given protein sequence is folded in both
directions, adding one amino-acid symbol at a time. The relative directions in
which the conformation is extended in each construction step are determined
probabilistically using a heuristic function as well pheromone values (also called
trail intensities); these relative directions correspond to local structure motifs be-
tween triples of consecutive sequence positions s;_1;8;+1 that form the solution
components used by our ACO algorithm; conceptually, these play the same role
as the edges between cities in the classical application of ACO to the Travelling
Salesperson Problem.

When extending a conformation from sequence position ¢ to the right by
placing amino-acid s;11 on the lattice, our algorithm uses pheromone values



Ti,a and heuristic values ;4 where d € {S,L, R} is a relative direction. Like-
wise, pheromone values 7; ; and heuristic values n; ; are used when extending a
conformation from position ¢ to the left. In our algorithm, we use 7'{7 L = Ti,R»
T{’ R = Ti,L,and Til, s = Ti,s- This reflects a fundamental symmetry underlying the
folding process: Extending the fold from sequence position ¢ to ¢ + 1 by placing
s;+1 right of s; (as seen from s;_1) or extending it from position ¢ to i — 1 by
placing s;_1 left of s; (as seen from s;11) leads to the same local conformation
of 8;—15iSi+1-

The heuristic values 7; 4 should guide the construction process towards high-
quality candidate solutions, i.e., towards conformations with a maximal number
of H-H interactions. In our algorithm, this is achieved by defining 7; 4 based on
hit1,4, the number of new H-H contacts achieved by placing s;;1 in direction
d relative to s; and s;—; when folding forwards (backwards folding is handled
analogously and will not be described in detail here). Note that if s;41 = P, this
amino-acid cannot contribute any new H-H contacts and hence h; s = h; 1 =
hi,r = 0. Furthermore, for 1 <i¢ <n—1, h; g <2 and h,_1,4 < 3; the actual h; 4
values can be easily determined by checking the seven neighbours of the possible
positions of s;; on the 2D lattice (obviously, the position of s; is occupied and
hence not included in these checks). The heuristic values are then defined as
Mi,a = hiq + 1; this ensures that n; 4 > 0 for all < and d which is important in
order not to exclude a priori any placement of s;;; in the construction process.

When extending a partial conformation sy ... s; to s;41 during the construc-
tion phase of our ACO algorithm, the relative direction d of s;11 w.r.t. $;—18;
is determined based on the heuristic and pheromone values according to the
following probabilities:

i = [7i,4]* [1i,a])°
Y Yeern.r sy lmiel i’

Analogously, when extending partial conformation s; . . . s, to s;—1, the prob-
ability of placing s;_; in relative direction d w.r.t. s;;15; is defined as:

P = [Tz'l,d]a[nz",d]ﬁ
vl ZeE{L,R,S}[Ti’,e]a[nzl',e

From its randomly determined starting point [, each ant will first construct
the partial conformation s;...s; and then the partial conformation s;...s,.
We also implemented variants of our algorithm in which all ants start their con-
struction process at the same point (left end, middle, or right end of the protein
sequence). Performance results for these alternative mechanisms are reported in
Section 4.

Especially for longer protein sequences, infeasible conformations are fre-
quently encountered during the construction process. This happens if an incom-
plete conformation cannot be extended beyond a given lattice position because
all neighbouring lattice positions are already occupied by other amino-acids. Our
algorithm uses two mechanisms to address this problem: Firstly, using a simple
look-ahead mechanism we never allow an “internal” amino-acid s; (1 < i < n)

(1)
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to be placed such that all its neighbouring positions on the grid are occupied.’
Secondly, if during a construction step all placements of s; are ruled out by the
look-ahead mechanism, we backtrack half the distance already folded and restart
the construction process from the respective sequence position.?

Local Search

Similar to other ACO algorithms known from the literature, our new algorithm
for the 2D HP protein folding problem incorporates a local search phase. After
the construction phase, each ant applies a hybrid iterative improvement local
search to its respective candidate conformation. We use two types of neighbour-
hoods for this local search process:

— the so-called “macro-mutation neighbourhood” described in Krasnogor et al.
[8], in which neighbouring conformations differ in a variable number of up
to n — 2 consecutive local structure motifs;

— a l-exchange “point mutation” neighbourhood, in which two conformations
are neighbours if they differ by exactly one local structure motif.

Our local search algorithm alternates between these two phases. In each itera-
tion, first a macro-mutation step is applied to the current conformation. This
involves randomly changing all local structure motifs between two randomly de-
termined sequence positions. All changes are performed in such a way that the
resulting conformation is guaranteed to be feasible, i.e., remains a self-avoiding
walk on the 2D lattice. If the macro-mutation step results in an improvement in
energy, the local search continues from the respective conformation; otherwise,
the macro-mutation step has no effect. Next, a sequence of up to n — 2 restricted
1-exchange steps are performed. This is done by visiting all sequence positions in
random order; for each position, all 1-exchange neighbours that can be reached
by modifying the corresponding local structure motif are considered.

Whenever any of these yields an improvement in energy, the corresponding
mutation is applied to the current conformation. These local search iterations
are repeated until no improvements in solution quality have been achieved for
a given number nolmpr of search steps. (Of the various hybrid local search
methods we implemented and studied, the one described here seemed to work
best.)

Update of the Pheromone Values

After each construction and local search phase, selected ants update the pheromone
values in a standard way:

Tid & (1= p)Tia + Aiac (3)

! This is extremely cheap computationally, since it can be checked easily during the
computation of the heuristic values.

% Various modifications of this backtracking mechanism were tested; the one presented
here proved to be reasonably fast and effective.



where 0 < p < 1 is the pheromone persistence (a parameter that determines how
fast the information gathered in previous iterations is “forgotten”) and A; 4. is
the relative solution quality of the given ant’s candidate conformation ¢, if that
conformation contains a local structure motif d at sequence position ¢ and zero
otherwise. We use the relative solution quality, E(c)/E*, where E* is the known
minimal energy for the given protein sequence (or an approximation based on
the number of H residues in the sequence) in order to prevent premature search
stagnation for sequences with large energy values.

As a further mechanism for preventing search stagnation, we use an addi-
tional “renormalisation” of the pheromone values that is conceptually similar to
the method used in MAX-MIN Ant System [16]. For a given sequence position
1, whenever the ratio between the maximal and minimal 7; 4 values, 7]"** and
7" falls below a threshold 6, the minimal 7; 4 value is set to 7% -6 while the
maximal 7; 4 value is decreased by 7;*** - 6. This guarantees that the probability
of selecting an arbitrary local structure motif for the corresponding sequence
position does not become arbitrarily small.

We implemented various methods for selecting the ants that are allowed to
update the pheromone values, including elitist strategies known from the litera-
ture. Performance results obtained for these variants are reported in Section 4.

4 Empirical Results

To assess its performance, we applied our ACO algorithm to the nine standard
benchmark instances for the 2D HP protein folding problem shown in Table 1;
these are the same instances used by Unger and Moult [17,18]. Experiments
were conducted by performing a variable number of runs for each problem in-
stance; each run was terminated when no improvement in solution quality had
been observed over 10,000 cycles of our ACO algorithm. We used 10 ants for
small sequences (n < 25) and 10-15 ants for larger sequences. Unless explicitly
indicated otherwise, we used the following parameter settings for all experiments:
a=1,=2,p=0.6,and § = 0.05. The local search procedure was terminated
if no solution improvement had been obtained within 100-300 search steps. We
used an elitist pheromone update in which only the best 20% of the conforma-
tions obtained after the local search phase were used for updating the pheromone
values. Additionally, the globally best conformation was used for updating the
pheromone values whenever no improvement in solution quality had been seen
within 20-50 cycles. Run-time was measured in terms of CPU time and all ex-
periments were performed on PCs with 1GHz Pentium IIT CPUs, 256KB cache
and 1GB RAM.

As can be seen from the results reported in Table 2, our ACO algorithm found
optimal solutions for all but the two longest benchmark protein sequences. For
Sequence 7, we achieved the same sub-optimal solution quality as Unger and
Moult’s evolutionary algorithm. For sequences of length 25 and below, our al-
gorithm found optimal solutions in each of multiple attempts, while for longer
protein sequences often many solution attempts were required. Following the



Instances ACO + Local Search Local Search Only
Seq. No.|Length| E*| sq|nopt/nruns|% suc. tavg| $q|Mopt/Mruns|% suc. tavg
1 20 -9| -9| 711/711 100.0/ 23.90| -9| 100/258 38.7| 111.43
2 20 -9| -9| 596/596 100.0| 26.44| -9| 8/113 7.0 162.15
3 25 -8| -8| 120/120 100.0| 35.32| -8| 44/129 34.1| 125.42
4 36 |-14|-14| 21/128 16.4|4746.12(-14 5/72 6.9| 136.10
5 48 |-23|-23| 1/151 0.6{1920.93| -21 1/20 5.0{1780.74
6 50 [-21{-21| 18/43 41.9|3000.28( -20 3/18 16.7(1855.96
7 60 |-36|-34| 1/119 0.8|4898.77(-33 2/20 10.0(1623.21
8 64 |-42(-32 1/22 4.5|4736.98| -33 2/9 22.2|11441.88
9 24 |-10|-10| 247/247 100.0) 43.48/-10| 5/202 25.0| 134.57

Table 2. Comparison of the local search and the ACO, where sq is the best solution
quality over all runs, nep: is the number of runs the algorithm finds sq, nryns is the
total number of runs, % suc. is the percentage of runs in which solution quality sq was
achieved, and tq.4 is the average CPU time [sec] required by the algorithm to find sq.
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Fig. 3. Run-time distributions of our ACO algorithm applied to several benchmark
instances; note stagnation behaviour for large instances.

methodology of Hoos and Stiitzle [6], we measured run-time distributions (RTD)
of our ACO algorithm; for all sequences in which our algorithm found the best
known conformation more than once, the respective RTDs are shown in Fig-
ure 3. Evidence of search stagnation behavior can be clearly observed for large
sequences; in these cases, using a better construction heuristic and/or more ag-
gressive local search may help to improve performance.

To better understand the role of ACO as compared to the local search method
in the optimisation process, we also performed experiments in which only the
local search method was applied to the same benchmark instances. As seen
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Fig. 4. RTDs for ACO with elitist, all+elitist, and non-elitist pheromone update ap-
plied to benchmark instance 2.

in Table 2, local search typically takes longer and in many cases fails to find
solutions of the same quality as our ACO algorithm. In experiments not reported
here, we also found that ACO without a local search takes substantially more
time (cycles) to reach high-quality solutions than ACO with local search.

In order to evaluate the benefit from using a population of ants instead of
just a single ant, we studied the impact of varying the number of ants on the
performance of our algorithm. While using a single ant only, we still obtained
good performance for small problems (n < 25), the best known solution to
Problem 4 (n = 36) could not been found within 2 CPU hours.

It has been shown for other applications of ACO that elitist pheromone up-
date strategies can lead to performance improvements. The same appears to be
the case here: We tested three different pheromone update strategies: non-elitist
— all ants update pheromone values; all+elitist — same, but the best 20% con-
formations are additionally reinforced; and elitist only — only the best 20% of
the conformations are used for updating the pheromone values in each cycle.
As can be seen in Figure 4, elitist update results in considerably better perfor-
mance than non-elitist update. For larger sequences (n > 36), the best known
solution qualities could not been obtained within 2 CPU hours when using non-
elitist update. This suggests that the search intensification provided by elitist
pheromone update is required for achieving good performance of our ACO al-
gorithm. At the same time, additional experiments (not reported here) indicate
that our pheromone renormalisation mechanism is crucial for solving large prob-
lem instances, which underlines the importance of search diversification.

In the next experiment, we investigated the influence of pheromone values
compared to heuristic information on performance. As illustrated in Figure 5,
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Fig. 5. RTDs for our ACO applied to Sequence 1, using various values of « and .

the results show that both, pheromone values and heuristic information are
important for achieving good performance. Both extreme cases, a = 0, i.e.,
pheromone values are ignored, and f = 0, i.e., heuristic values are ignored,
lead to performance decreases even for small problem instances. Interestingly,
using pheromone information only is less detrimental than solely using heuristic
information. This phenomenon becomes more pronounced on larger problem in-
stances; e.g., when ignoring pheromone information (a = 0), our ACO algorithm
was not able to find the best known solution to Sequence 4 within 3 CPU hours.

Finally, we studied the effect of the starting point for the construction of con-
formations on the performance of our ACQ. It has been shown that real proteins
fold by hierarchical condensation starting from folding nuclei; the use of complex
and diverse folding pathways helps to avoid the need to extensively search large
regions of the conformation space [14]. This suggests that the starting point for
the folding process can be an important factor in searching for optimal con-
formations. We tested four strategies for determining the starting point for the
folding process performed in the construction phase of our algorithm: all ants
fold forwards, starting at sequence position 1; all ants fold backwards, starting
at sequence position n; all ants fold forwards and backwards, starting in the
middle of the given sequence; and all ants fold forwards and backwards, starting
at randomly determined sequence positions (in which case all ants can fold from
different starting points). As can be seen from Figure 6, the best performance is
obtained by letting all ants start the folding process from individually selected,
random sequence positions. This result is even more prominent for longer se-
quences and suggests that the added search diversification afforded by multiple
and diverse starting points is important for achieving good performance.
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Fig. 6. RTDs for our ACO for Sequence 1, using various strategies for choosing the
starting point for constructing candidate conformations.

5 Conclusions and Future Work

In this paper we introduced an ACO algorithm for the 2D HP protein folding
problem, an extremely simplified but widely studied and computationally hard
protein structure prediction problem, to which to our best knowledge, ACO has
not been previously applied. An empirical study of our algorithm demonstrated
the effectiveness of the ACO approach for solving this problem and highlighted
the impact of various features of our algorithm, including elitist pheromone up-
date and randomly chosen starting points for the folding process.

In this study we presented first evidence that ACO algorithms can be success-
fully applied to protein folding problems. There are many directions for future
research. Clearly, there is substantial room for improvement in the local search
procedure. In preliminary experiments with a conceptually simpler local search
procedure designed to minimise the occurrence of infeasible configurations we
have already observed significant improvements over the results presented here.
Furthermore, different heuristic functions should be considered; in this context,
techniques that allow the approximation of the size of a protein’s hydrophobic
core are promising. It might also be fruitful to consider ACO approaches based
on more complex solution components than the simple local structure motifs
used here. Finally, we intend to develop and study ACO algorithms for other
types of protein folding problems, such as the 3-dimensional HP model in the
near future [17]. Overall, we strongly believe that ACO algorithms offer consid-
erable potential for solving protein structure prediction problems robustly and
efficiently and that further work in this area should be undertaken.
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