
On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT

Holger H. Hoos

University of British Columbia
Department of Computer Science

2366 Main Mall, Vancouver, B.C., Canada V6T 1Z4
hoos@cs.ubc.ca

Abstract

Stochastic local search (SLS) algorithms for the propositional
satisfiability problem (SAT) have been successfully applied
to solve suitably encoded search problems from various do-
mains. One drawback of these algorithms is that they are
usually incomplete. We refine the notion of incompleteness
for stochastic decision algorithms by introducing the notion
of “probabilistic asymptotic completeness” (PAC) and prove
for a number of well-known SLS algorithms whether or not
they have this property. We also give evidence for the prac-
tical impact of the PAC property and show how to achieve
the PAC property and significantly improved performance in
practice for some of the most powerful SLS algorithms for
SAT, using a simple and general technique called “random
walk extension”.

Introduction
Stochastic local search (SLS) algorithms for the proposi-

tional satisfiability problem (SAT) have attracted consider-
able attention within the AI community over the past few
years. They belong to the most powerful methods for prac-
tically solving large and hard instances of SAT, and out-
perform the best systematic search methods on a number
of domains. However, one of the problems with these al-
gorithms is the fact they are usuallyincomplete, i.e., they
cannot be used to prove that a given problem instance is
unsatisfiable and — maybe worse — for soluble problem
instances, there is no guarantee that such an algorithm actu-
ally finds a solution. Early local SLS algorithms like GSAT
(Selman, Levesque, & Mitchell 1992) were mainly based on
hill-climbing and got easily trapped in local minima of the
objective function induced by the given problem instance.
These algorithms usedrandom restartafter a fixed number
of steps to avoid premature stagnation of the search. Later,
different strategies were used to effectively escape from lo-
cal minima without using random restart; one of the most
popular of these mechanism israndom walk(Selman, Kautz,
& Cohen 1994), which allows randomised up-hill moves
with a fixed probability. Today, the best-performing SLS al-
gorithms for SAT use various more sophisticated strategies,
combined with random restart, to prevent early stagnation of
the search. However, although these algorithm show a very
impressive performance, there are almost no theoretical re-
sults on their concrete or asymptotic behaviour.

Copyright c
1999, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we refine the notion of completeness for
the class of Las Vegas decision algorithms (a superclass of
SLS algorithms). We introduce the term “probabilistically
approximately complete” (PAC) to formalise the notion of
probabilistic algorithms which are incomplete, but find a so-
lution of soluble instances with a probability approaching
one as the run-time approaches infinity. Next, we present
theoretical results on the PAC property for a number of pop-
ular SLS algorithms for SAT, including the recently intro-
duced Novelty and R-Novelty variants of the WalkSAT ar-
chitecture (McAllester, Selman, & Kautz 1997).

However, in practice asymptotic properties like PAC are
not always relevant. Therefore, we present some empiri-
cal results which indicate that in the cases considered here,
the theoretical results have practical consequences when ap-
plying the respective algorithms to well-known benchmark
problems. Based on these empirical results, we then show
how Novelty and R-Novelty, two of the best-performing
SLS algorithms for SAT known today, can be further im-
proved with respect to both, their theoretical properties and
practical behaviour.

SLS Algorithms for SAT
Stochastic local search approaches for SAT became promi-
nent in 1992, when independently Selman, Levesque, and
Mitchell (Selman, Levesque, & Mitchell 1992) as well as
Gu (Gu 1992) introduced algorithms based on stochas-
tic local hill-climbing which could be shown to outper-
form state-of-the-art systematic SAT algorithms on a vari-
ety of hard subclasses of SAT (Buro & Kleine-B¨uning 1992;
Selman, Kautz, & Cohen 1994). The algorithms considered
here are model finding algorithms for CNF formulae. The
underlying state space is always defined as the set of all truth
assignments for the variables appearing in the given formula.
Local search steps modify at most the value assigned to one
of the propositional variables appearing in the formula; such
a move is called avariable flip. The objective function is
always defined as the number of clauses which are unsat-
isfied under a given variable assignment; thus, the models
of the given formula are always the global minima of this
function. The general idea for finding these is to perform
stochastic hill-climbing on the objective function, starting
from a randomly generated initial assignment.

The main difference between the individual algorithms
lies in the strategy used to select the variable to be flipped
next. In this paper, we focus on the well-known GSAT and

procedureGWSAT(F, maxTries, maxSteps, wp)
for try := 1 to maxTriesdo

a := randomly chosen assignment of the variables in formulaF;
for step:= 1 to maxStepsdo

if a satisfiesF then returna;
with probabilitywp do

c := randomly selected clause which is unsatisfied undera;
v := randomly selected variable appearing inc;

otherwise
v := randomly selected variable the flip of which minimises

the number of unsatisfied clauses;
end with;
a := a with v flipped;

end for;
end for;
return “no solution found”;

endGWSAT;

Figure 1: The GWSAT algorithm.

procedureWalkSAT(F, maxTries, maxSteps, Select)
for try := 1 to maxTriesdo

a := randomly chosen assignment of the variables inF;
for step:= 1 to maxStepsdo

if a satisfiesF then returna;
c := randomly selected clause which is unsatisfied undera;
v := variable froma selected according to a heuristicSelect;
a := a with v flipped;

end for;
end for;
return “no solution found”;

endWalkSAT;

Figure 2: The WalkSAT algorithm.

WalkSAT family of algorithms (Selman, Kautz, & Cohen
1994; Gent & Walsh 1993b; McAllester, Selman, & Kautz
1997), which provided a substantial driving force for the de-
velopment of SLS algorithms for SAT and have been very
successful when applied to a broad range of problems from
different domains.

The GWSAT algorithm is outlined in Figure 1. Starting
from a randomly chosen variable assignment, it repeatedly
flips variables according to the following heuristic: With a
fixed probabilitywp, a currently unsatisfied clause is ran-
domly selected and one of the variables appearing in it (also
randomly selected) is flipped; this is called arandom walk
step. In the remaining cases, one of the variables which,
when flipped, achieve the maximal increase (or least de-
crease) in the total number of satisfied clauses is selected and
flipped. If aftermaxStepssuch flips no solution is found, the
search is started from a new, randomly chosen assignment.
If after maxTriessuch tries still no solution is found, the
algorithm terminates unsuccessfully. GWSAT withwp=0
corresponds to the original GSAT algorithm.

WalkSAT algorithms (cf. Figure 2) also start from a ran-
domly chosen variable assignment and repeatedly select one
of the clauses which are violated by the current assignment.
Then, according to some heuristic a variable occurring in
this clause is flipped using a greedy bias to increase the total

number of satisfied clauses. For the original WalkSAT algo-
rithm, in the following referred to simply as WalkSAT, the
following heuristic is applied. If in the selected clause vari-
ables can be flipped without violating other clauses, one of
these is randomly chosen. Otherwise, with a fixed probabil-
ity p a variable is randomly chosen from the clause and with
probability 1�p a variable is picked which minimises the
number of clauses which are currently satisfied but would
become violated by the variable’s flip (number of breaks).

Other, more recently introduced WalkSAT algorithms
(McAllester, Selman, & Kautz 1997) are given by the fol-
lowing heuristics for selecting the variable to be flipped
within the selected clause:

WalkSAT/TABU Same as WalkSAT, but uses a tabu-list of
lengthtl to ensure that after a variable has been flipped it
cannot be flipped for the nexttl steps. If within the se-
lected clause, all variables are tabu, no variable is flipped
(a so-callednull-flip).

Novelty Considers the variables in the selected clause
sorted according to their score,i.e., the difference in the
total number of satisfied clauses a flip would cause. If the
best variable according to this ordering (i.e., the one with
maximal score) is not the most recently flipped one, it is
flipped, otherwise, it is flipped with a fixed probability1-
p, while in the remaining cases, the second-best variable
is flipped.

R-Novelty Like Novelty, but in the case where the best
variable is the most recently flipped one the decision be-
tween the best and second-best variable probabilistically
depends on their score difference — the details are not
important here and can be found in (McAllester, Selman,
& Kautz 1997). Additionally, every 100 steps, instead of
using this heuristic, the variable to be flipped is randomly
picked from the selected clause.

As for GWSAT, if aftermaxStepssuch flips no solution
is found, the search is started from a new, randomly selected
assignment; and if aftermaxTriessuch tries still no solution
is found, the algorithm terminates unsuccessfully.

Asymptotic Behaviour of Algorithms
Las Vegas algorithms1 are stochastic algorithms which, if
they find a solution for the given problem, guarantee the cor-
rectness of this solution. This is captured by the following
definition (adapted from (Hoos & St¨utzle 1998)):

Definition 1 Let� be a problem class. An algorithmA is a
Las Vegas algorithmfor problem class�, if (i) whenever for
a given problem instance� 2 � it returns a solutions, s is
guaranteed to be a valid solution of�, and (ii) on each given
instance�, the run-time ofA is a random variable RTA;�.

Stochastic local search algorithms are special cases of Las
Vegas algorithms. According to this definition, Las Vegas
algorithms are always correct, but they are not necessarily
complete,i.e., even if a given problem instance has a solu-
tion, a Las Vegas algorithm is generally not guaranteed to
find it. However, even an incomplete Las Vegas algorithm
might be asymptotically complete in the sense that by run-
ning it long enough, the probability of missing an existing

1The term was originally coined by Laszlo Babai in 1979 (per-
sonal communication).

solution can be made arbitrarily small. This property, which
is often referred to as “convergence” in the literature on opti-
misation algorithms, is theoretically interesting (cf. (Geman
& Geman 1984)) and is also potentially very relevant for
practical applications. We formalise this notion for Las Ve-
gas algorithms for decision problems in the following way.

Definition 2 Let � be a decision problem andA a Las Ve-
gas Algorithm for�. For a given problem instance� 2 �,
let Ps(RTA;� � t) denote the probability thatA finds a so-
lution for � in time� t and letP � �. Then we callA
probabilistically approximately complete (PAC) forP , if for
all solubleinstances� 2 P , limt!1[Ps(RTA;� � t)] = 1.
Furthermore, we callA essentially incomplete forP , if it is
not PAC forP , i.e., there is a soluble instance� 2 P , for
which limt!1[Ps(RTA;� � t)] < 1. If A is PAC / essen-
tially incomplete for�, we callA probabilistically approxi-
mately complete (PAC)/ essentially incomplete.

These concepts refine the usual distinction between com-
plete and incomplete algorithms. The simplest stochastic
search algorithm which is provably PAC, is “random pick-
ing”: Given a setS of candidate solutions (for SAT: all as-
signments for the variables appearing in the given formula),
iteratively select an arbitrary element ofS such that in each
step, each element ofS is selected with equal probability
p = 1=jSj. Obviously this algorithm is PAC, as the prob-
ability of finding a solution int steps, assuming that there
arek > 0 different solutions inS, is 1 � (1 � kp)t. But
of course, random picking is typically hopelessly inefficient
in practice, in the sense that even for NP-complete problems
like SAT, algorithms like GSAT or WalkSAT are orders of
magnitude faster than it in finding solutions. Nevertheless,
in practice, the PAC property can be important, especially
with respect to the robustness of Las Vegas algorithms, as
it guarantees that that the algorithm will, given sufficient
time, almost certainly find a solution for a soluble problem
instance.

Theoretical Results
In this section we prove a number of results regarding the
PAC property of various well-known SLS algorithms for
SAT. In all cases, we consider the “pure” search strategies
without random restart. The rationale behind this is the fol-
lowing. Random restart can be easily added to any given
search strategy and the resulting algorithm will always be
PAC if, as the run-time increases, an arbitrarily large num-
ber of restarts can occur. However, this trivial result is prac-
tically irrelevant, as the run-times for which this asymp-
totic behaviour can be observed are even considerably higher
than for random picking. On the other hand, as we will
show later, other mechanisms, such as random walk, which
achieve the PAC property are much more effective in prac-
tice.

GSAT
We start with proving that the basic GSAT algorithm is
essentially incomplete. Although the fact that GSAT can
get stuck in local minima of the objective function is well-
known, we are not aware of a formal proof. We therefore
give a proof here which also demonstrates the technique we
use later to prove some previously unknown essential in-
completeness results. Note that generally, to show that an

SLS algorithm for SAT is not PAC,i.e., essentially incom-
plete, it is sufficient to find a satisfiable problem instance
and a reachable state of the algorithm from which no solu-
tion can be reached. Since all algorithms considered here
start their search by randomly picking an arbitrary variable
assignment, all assignments are reachable and for proving
essential incompleteness we can assume any current vari-
able assignment.

Theorem 1 Basic GSAT, i.e., GWSAT withwp = 0 (without
restart), is essentially incomplete.

Proof. Let F1 =
V10

i=1 ci be the CNF formula consisting
of the clauses:

c1 � :x1 _ x2 _ :z1
c2 � :x1 _ x2 _ z1
c3 � :x1 _ x2 _ :z2
c4 � :x1 _ x2 _ z2
c5 � x1 _ :x2 _ :z1
c6 � x1 _ :x2 _ z1
c7 � x1 _ :x2 _ :z2
c8 � x1 _ :x2 _ z2
c9 � x1 _ x2 _ :y
c10 � x1 _ x2 _ y

F1 is satisfiable and has 8 models (x1 = x2 = >; y; z1; z2
arbitrary). Consider the 4 possible assignments for which
x1 : ?; x2 : ?; y : ? and call this setA. Analogously,
let B denote the set consisting of the 4 assignments with
x1 : ?; x2 : ?; y : >. Note thatA [B does not contain
any solution. Assume that GSAT’s current assignment is an
element ofA. Each assignment fromA satisfies all clauses
exceptc10 and the variables receive the following scores:
x1; x2 : �1, y; z1; z2 : 0. Since GSAT always flips one of
the variables with the highest score,z1; z2 or y is flipped.
By flipping z1 or z2, another assignment inA is reached. by
flipping y, depending on the values ofz1 andz2 an assign-
ment ofB is reached. Now, all clauses exceptc9 are satisfied
and the variable receive the same scores as before. Again,
only z1; z2 or y can be flipped. While in the former case,
only assignments fromB can reached, by flippingy always
an assignment inA is obtained. Therefore, starting from an
assignment inA orB, GSAT cannot reach a solution which
proves the theorem.2

Adding Random Walk — GWSAT
Next, we show that by adding random walk (Selman, Kautz,
& Cohen 1994), basic GSAT can be made PAC. This re-
sult extends earlier work which established that satisfiable
2-SAT instances are solved by pure random walk inO(n2)
time on average (Papadimitriou 1991). Using similar tech-
niques, we first show that from an arbitrary assignment, the
hamming distance to the nearest solution can always be de-
creased by a random walk step (flipping a variable in a ran-
domly selected, currently unsatisfied clause).

Lemma 1 Let a be the current (non-solution) assignment,
and s the solution with minimal hamming distanceh from
a. For arbitrary a ands there is always a random walk step
which decreasesh by one.

Proof. Assume that no such random walk step exists.
Then none of the variables whose values are different ina
ands can appear in an unsatisfied clause. But sincea is not

a solution, there has to be at least one clausec which is vi-
olated bya; now the variables appearing inc have the same
value ina ands, therefores also violatesc and cannot be a
solution. Thus the initial assumption has to be false, which
proves the lemma.2

Based on this lemma, instead of directly showing that
GWSAT is PAC, we prove a slightly more general result.
Theorem 2 Consider the class of SLS algorithms for SAT
which accept arbitrary CNF formulae as their input and
search the space of assignments of the given formula. Any
such algorithm which, for any current assignment, executes
a random walk step with a probability of at leastp > 0 at
any given time, is PAC.

Proof. Consider an arbitrary algorithmA satisfying the
conditions from the theorem. For a given CNF formula with
n variables andk clauses, we show that there exists ap0 > 0
such that from each non-solution assignment the algorithm
can reach a solution with a probabilityp00 � p0: Let a be the
current (non-solution) assignment, ands the solution with
minimal hamming distanceh from a. Using Lemma 1 in-
ductively, one can construct a sequence ofh random walk
steps froma to s. Next, we derive a lower bound for the
probability with whichA will execute this sequence.

Note first that for any assignmenta0, the number of un-
satisfied clauses is always� k, and the number of literals
occurring in unsatisfied clauses is� k � l, wherel is the
maximal number of literals per clause for the given instance.
Therefore, ifA executes a random walk step, the probability
to select a variable which decreasesh is at least1=(k � l).
Thus, the overall probability of executing a random walk
step which decreases the hamming distance to the nearest
solution is at leastp=(k � l). Since we have a lower bound
p for the probability of executing a random walk step inde-
pendently from the current assignment, a lower bound for
the probability of executing the correcth step sequence to
reach the solution can be estimated as[p=(k � l)]h.

Finally, note that alwaysh � n, and therefore the proba-
bility of reaching a solution from any given assignmenta is
at leastp0 = [p=(k � l)]n. Consequently, the following lower
bound for the probability thatA finds a solution withint
steps can be easily obtained:2

1� (1� p0)bt=nc

For t ! 1, this bound obviously converges to 1, which
provesA’s approximate completeness.2

Since GWSAT satisfies the conditions of Theorem 2 for
arbitrary walk probabilitieswp > 0 (let p = wp), we imme-
diately get the following
Corollary 1 GWSAT is approximately complete for all
wp > 0.

Note that the proof of Theorem 2 relies critically on the
fact that the algorithm can decrease the hamming distance
to the nearest solution in each step. Our proof shows that
this is guaranteed if arbitrarily long sequences of random
walk steps can be performed with a probabilityp00 � p0 > 0
which is independent of the number of steps that have been
performed in the past.

2This estimate is based on the observation that when partition-
ing a run oft steps into segments ofn steps, the success probabili-
ties for each of these can be independently bounded byp

0.

WalkSAT Algorithms
The algorithms of the WalkSAT family, however, gener-
ally do not allow arbitrarily long sequences of random walk
steps. In particular, for WalkSAT the variable selection strat-
egy does not allow a random walk step if the selected clause
contains a variable which can be flipped without breaking
any currently satisfied clauses. Therefore, the PAC property
cannot be proven using the scheme given above. Actually,
although our empirical results suggest that WalkSAT could
be PAC, a proof seems to be difficult to find. For the other
members of the WalkSAT family, we can prove their essen-
tial incompleteness using a very simple example instance.
The proofs for WalkSAT/TABU, Novelty, and R-Novelty are
very similar; therefore we give only the proof for Novelty
here and then discuss the corresponding results for the other
algorithms.

Theorem 3 Novelty (without restart) is essentially incom-
plete for arbitrary noise parameter settingsp.

Proof. Let F2 =
V6

i=1 ci be the CNF formula consisting
of the clauses:

c1 � :x1 _ x2
c2 � :x2 _ x1
c3 � :x1 _ :x2 _ :y
c4 � x1 _ x2
c5 � :z1 _ y
c6 � :z2 _ y

F2 is satisfiable and has exactly one model(x1 = x2 =
>; y = z1 = z2 = ?). Now assume that the algorithm’s
current assignment isa1 � (x1 = x2 = y = z1 = z2 = >).
In this situation, all clauses exceptc3 are satisfied. Applying
Novelty, c3 will be selected and the variables receive the
following scores:x1 : 0; x2 : 0; y : �1. Since regardless of
the noise parameter, Novelty always flips the best or second-
best variable, eitherx1 or x2 will be flipped.

Because both cases are symmetric, we assume without
loss of generality thatx1 is flipped. This leads to the assign-
menta2 � (x1 = ?; x2 = y = z1 = z2 = >) which
satisfies all clauses exceptc2. The scores forx1 andx2
are both0, and sincex1 is the most recently flipped vari-
able,x2 will be picked now. The current assignment at this
point isa3 � (x1 = x2 = ?; y = z1 = z2 = >) which
satisfies all clauses exceptc4. Again, x1 andx2 have the
same score of0, but nowx2 is the most recently flipped
variable, sox1 will be flipped. Now, the current assignment
is a4 � (x1 = >; x2 = ?; y = z1 = z2 = >), which leaves
only c1 unsatisfied. As before,x1 andx2 both receive a
score of0, andx2 will be flipped. But this leads back to
the assignmenta1 � (x1 = x2 = y = z1 = z2 = >);
therefore, Novelty got stuck in a loop.

Therefore, we found a soluble problem instanceF2 and
an initial assignmenta1 for which Novelty can never reach
a solution which proves the theorem.2

Using the same formulaF2 and analogous arguments, it
is now easy to prove:

Theorem 4 WalkSAT/TABU and R-Novelty (without re-
start) are essentially incomplete for arbitrary tabu-list
lengths and noise parameter settings, resp.

Note that for R-Novelty, even the built-in deterministic
loop breaking strategy (randomly picking a variable from
the selected clause every 100th step) does not prevent the
algorithm from getting stuck in loops, since these can be
timed such that the loop breaker will never be activated when
c3 is violated — which would be the only way of flippingy
and reaching a solution. In the case of WalkSAT/TABU,
the same loop will be observed for any tabu list lengthtl >
0. For tl � 2, the reason for this is the fact that when all
variables in a clause are tabu, WalkSAT/TABU will not flip
any variable at all; fortl = 1, as for Novelty,y can never be
flipped whenc3 is selected.

Practical Relevance
While the results from the last section are theoretically in-
teresting in a similar sense as,e.g., the well-known con-
vergence result for Simulated Annealing (Geman & Geman
1984), it is not clear that they are also practically relevant.
We therefore investigated the following two questions:

1. For PAC algorithms, is the convergence of the success
probability fast enough to be observable when applying
these algorithms to hard problem instances?

2. For essentially incomplete algorithms, is the characteris-
tic stagnation behaviour observable for any of the usual
benchmarks for SAT algorithms?

For answering these questions, we empirically anal-
ysed the behaviour of GWSAT, WalkSAT, WalkSAT/TABU,
Novelty, and R-Novelty when applied to a number of bench-
mark problems for SAT algorithms, including hard Random-
3-SAT instances like,e.g., used in (Selman, Levesque, &
Mitchell 1992; Parkes & Walser 1996; McAllester, Sel-
man, & Kautz 1997), SAT-encoded graph colouring in-
stances similar to the ones described in (Selman, Levesque,
& Mitchell 1992), and SAT-encoded blocks world planning
problems taken from (Kautz & Selman 1996). For our ex-
periments, we applied each algorithm multiply to the same
problem instance and measured the number of solutions
found as well as the number of steps required for finding
each solution. In order to observe a close-to-asymptotic run-
time behaviour of the pure strategies, we used extremely
high values of themaxStepsparameter and no random
restart (maxTries = 1); we also made sure that between
the length of the longest successful run and the cutoff (given
by maxSteps) there was at least an additional factor of ten.
Furthermore, we optimised the noise parameter settings for
each benchmark problem and for each problem size such
that the expected number of steps required to find a solution
was minimised.

This study shows that the answers to the questions raised
above are positive in both cases: PAC behaviour as well as
essential incompleteness can be observed on the benchmark
problems considered here. This is exemplified by the fol-
lowing results.3 When applied to a set of 1,000 satisfiable,
hard 3-colouring problems in random graphs (50 nodes, 239
edges), GWSAT and WalkSAT solve all instances in all runs
with a mean number of less than 10,000 steps per run. When

3A complete description of the empirical study and its results
can be found in (Hoos 1998) and will be presented in more detail
in an extended version of this paper.

performing the same experiment for WalkSAT/TABU, Nov-
elty, and R-Novelty, however, while still all instances were
solved, 27, 9, and 6 of them, resp., were not solved in
some of the runs, even when using a huge cutoff value of
maxSteps = 107. Similar results could be obtained for
Novelty applied to hard Random-3-SAT problems (100 vari-
ables, 430 clauses) and for large blocks world planning in-
stances (likebw large.c from (Kautz & Selman 1996)).
In our experiments, we never observed stagnation behaviour
for GWSAT or WalkSAT, while for the WalkSAT variants
shown to be essentially incomplete, the typical stagnation
behaviour often occurred.

Improving SLS Performance
However, consistent with (McAllester, Selman, & Kautz
1997), we generally observed significantly improved per-
formance of WalkSAT/TABU, Novelty, and R-Novelty over
WalkSAT or GWSAT in the cases where stagnation be-
haviour did not occur. Therefore, these algorithms seem to
be superior to WalkSAT and GWSAT except for the stag-
nation behaviour caused by their essential incompleteness.
In theory this problem can be easily solved. As mentioned
before, adding random restart would make these algorithms
PAC. However, in practice this approach critically relies on
the use of goodmaxStepssettings. Unfortunately, in general
these are extremely difficult to finda priori and today, to our
best knowledge, there exist no theoretical results on how to
determine good settings. The only empirical results we are
aware of, are for GSAT when applied to hard Random-3-
SAT problem distributions (Gent & Walsh 1993a); but these
results are limited to Random-3-SAT and rely on properties
of the respective problem distributions rather than the indi-
vidual instances. On the other hand, while using inappro-
priately chosenmaxStepssettings generally still eliminates
essential incompleteness, in practice, it leads to extremely
poor performance.

Another way of making these algorithms PAC is to extend
them with random walk in such a way, that for each local
search step, with a fixed probability a random walk step is
performed. Random walk apparently has an advantage over
random restart, since at least in GWSAT, it is more robust
w.r.t. the additionally introduced parameterwp than random
restart is w.r.t.maxSteps(cf. (Parkes & Walser 1996)). One
reason for this empirically observed phenomenon is related
to the inherent randomness of the random walk sequences;
random restarts occur after a fixed cutoff time, whereas ran-
dom walk sequences are probabilistically variable in their
length and frequency of occurrence. Furthermore, when us-
ing random restart, the search process is re-initialised; con-
sequently, a new try cannot benefit from the search effort
spent in previous tries (unless information is carried from
one run to the next, which is not the case for the algorithms
considered here). The amount of perturbation introduced by
a random walk sequence, however, probabilistically depends
on the length of the sequence such that small perturbations
are much more likely to occur.

Based on these considerations, we extend Novelty and R-
Novelty with random walk such that in each search step,
with probabilitywp, the variable to be flipped is randomly
picked from the selected clause, while in the remaining
cases, the variable is selected according to the heuristic for
Novelty or R-Novelty, resp. For R-Novelty, we further-

more omit the deterministic loop breaking strategy which
randomly flips a variable from the selected clause every 100
steps. The two algorithms thus obtained, Novelty+ and R-
Novelty+, are obviously PAC, as they satisfy the conditions
of Theorem 2; but it is not clear whether this is sufficient to
overcome the stagnation behaviour observed in practice. We
therefore empirically compared their behaviour to the orig-
inal algorithms, using the same benchmark instances as de-
scribed above. Different from the original algorithms, when
using identical noise andmaxStepssettings and a proba-
bility of wp = 0:01 for executing random walk steps, the
modified algorithms solved all problem instances from the
Random-3-SAT and graph colouring test-set in all runs. For
the blocks world planning instancebw large.c , where R-
Novelty found only 28 solutions in 1,000 runs ´a 108 steps,
R-Novelty+ found 1,000 solutions with an expected local
search cost of8:09�106 steps per solution. We also compared
the performance of the original and the modified algorithms
when applied to instances for which no stagnation behaviour
occurs. Here, no significant performance differences could
be observed. This indicates that the essentially incomplete
behaviour which causes the high means and standard devia-
tions of these hardness distributions is efficiently eliminated
by the random walk extension, while for instances which do
not suffer from essentially incomplete behaviour, the perfor-
mance remains mainly unaffected.

Conclusions
In this paper, we have shown a series of new theoretical re-
sults on the asymptotic behaviour of a number of state-of-
the-art stochastic local search algorithms for SAT. As we
have shown, these results are not only of theoretical inter-
est, but their impact can also be observed when applying
them to solve well-known benchmark problems. While the-
oretically, the standard random restart technique which is
generally used with these algorithms is sufficient to make
them PAC, the practical performance thus obtained is usu-
ally relatively poor, unless the cutoff parametermaxStepsis
carefully tuned. Using a different approach, which is anal-
ogous to the random walk extension of GSAT introduced
in (Selman, Kautz, & Cohen 1994), these difficulties can
be avoided. By extending Novelty and R-Novelty with ran-
dom walk, these essentially incomplete algorithms could be
made PAC; at the same time, their empirically observed per-
formance could be considerably improved without any addi-
tional parameter tuning.

Our results suggest that the PAC property is an important
concept for the theoretical analysis as well as for the practi-
cal performance of modern SLS algorithms for SAT. Some
of the best-performing algorithms, like WalkSAT/TABU,
Novelty, and R-Novelty, are essentially incomplete and the
corresponding stagnation behaviour can be observed when
applying them to standard benchmark problems. This in-
dicates that these algorithms, as observed for the pure
R-Novelty strategy (without restart and loop-breaking) in
(McAllester, Selman, & Kautz 1997), are on the verge of
being too deterministic. Empirical evidence indicates that at
least for the cases studied here, using a simple and gener-
ally applicable technique, the random walk extension, this
problem can be overcome, resulting in hybrid algorithms
which show superior performance as well as considerably
increased robustness. However, although our empirical re-

sults so far are very suggestive, they are of a somewhat pre-
liminary nature. Therefore, we feel that a considerably ex-
tended analysis should be undertaken to further investigate
the practical impact of the PAC property in general, and the
random walk extension in particular.

Acknowledgements
I wish to thank Joe Culberson, Ian Gent, Bart Selman, David
McAllester, and Henry Kautz for their input during various discus-
sions. Furthermore I gratefully acknowledge the comments of the
anonymous referees and David Poole which helped to improve this
paper. This research was partially supported IRIS Phase-III Project
BOU, “Preference Elicitation and Interactive Optimization.”

References
Buro, M., and Kleine-B¨uning, H. 1992. Report on a SAT
Competition. Technical Report 110, Dept. of Mathematics
and Informatics, University of Paderborn, Germany.
Geman, S., and Geman, D. 1984. Stochastic Relaxation,
Gibbs Distribution, and the Bayesian Restoration of Im-
ages.IEEE Transactions on Pattern Analysis and Machine
Intelligence6:721–741.
Gent, I. P., and Walsh, T. 1993a. An Empirical Analy-
sis of Search in GSAT.(Electronic) Journal of Artificial
Intelligence Research1:47–59.
Gent, I. P., and Walsh, T. 1993b. Towards an Understanding
of Hill–Climbing Procedures for SAT. InProceedings of
AAAI’93, 28–33. MIT press.
Gu, J. 1992. Efficient Local Search for Very Large-Scale
Satisfiability Problems.ACM SIGART Bulletin3(1):8–12.
Hoos, H. H., and St¨utzle, T. 1998. Evaluating Las Vegas
Algorithms — Pitfalls and Remedies. InProceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI-98), 238–245. Morgan Kaufmann Publishers,
San Francisco, CA.
Hoos, H. H. 1998.Stochastic Local Search — Methods,
Models, Applications. Ph.D. Dissertation, Fachbereich In-
formatik, Technische Universit¨at Darmstadt.
Kautz, H., and Selman, B. 1996. Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search. In
Proceedings of AAAI’96, volume 2, 1194–1201. MIT
Press.
McAllester, D.; Selman, B.; and Kautz, H. 1997. Evidence
for Invariants in Local Search. InProceedings of AAAI’97,
321–326.
Papadimitriou, C. 1991. On Selecting a Satisfying Truth
Assignment. InProc. 32nd IEEE Symposium on the Foun-
dations of Computer Science, 163–169.
Parkes, A. J., and Walser, J. P. 1996. Tuning Local Search
for Satisfiability Testing. InProceedings of AAAI’96, vol-
ume 1, 356–362. MIT Press.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise
Strategies for Improving Local Search. InProceedings of
AAAI’94, 337–343. MIT Press.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A New
Method for Solving Hard Satisfiability Problems. InPro-
ceedings of AAAI’92, 440–446. MIT Press.

