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Abstract

We introduce a mechanism called “morphing” for introduc-
ing structure or randomness into a wide variety of problems.
We illustrate the usefulness of morphing by performing sev-
eral different experimental studies. These studies identify the
impact of a “small-world” topology on the cost of coloring
graphs, of asymmetry on the cost of finding the optimal TSP
tour, and of the dimensionality of space on the cost of find-
ing the optimal TSP tour. We predict that morphing will find
many other uses.

Introduction
Structures that occur in the real world problems tend to

be neither completely regular nor completely random. Con-
sider delivering parcels round Manhattan. One-way streets,
traffic, road-works and a host of other factors make the prob-
lem more complex than navigating on a simple grid. To
model the impact of one-way restrictions on such a deliv-
ery problem, we took a two-way grid and slowly introduced
one-way streets into it at random (using a “morphing” pro-
cess described in the next section). We did not introduce
one-way streets completely at random but so that they even-
tually alternate in direction.

The result of this experiment was a little surprising. As
expected, adding one-way streets increased the distance
needed to deliver parcels to a random set of locations. How-
ever, the median cost to find the optimal route dropped. It
appears to be easier to navigate in cities with one-way streets
than cities with no one-way restrictions. The reason may be
that one-way streets often leave few choices as to the optimal
route. Whilst median cost tended to drop, higher percentiles
in search cost were often larger. The reason may be that we
can occasionally make a very bad choice and have to back-
track a long way.

To model structures like a Manhattan grid with a mix-
ture of one-way and two-way streets, this paper introduces
a general purpose mechanism called “morphing”. We show
that morphing has many other applications. It provides a
simple dial with which we can introduce structure or ran-
domness into problems. Morphing operations can be de-
fined on almost any type of structure. For example, in our
Manhattan delivery problem, we morphed directed graphs.
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However, we can also morph distance matrices in traveling
salesperson (TSP) problems, undirected graphs in coloring
problems, clauses in satisfiability (SAT) problems, and re-
lations in constraint satisfaction problems (CSPs). Morph-
ing provides us with a powerful tool to study the impact of
structure and randomness on these and many other types of
problem.

Morphing
Given two structures,S1 andS2, we define either a type A,
type B or type C morph fromS1 to S2. In a type A morph,
we take substructures fromS1 with probability(1 � p) and
from S2 with probabilityp. In a type B morph, we take a
fraction1� p of the substructures fromS1, and a fractionp
of the substructures fromS2. In a type C morph, we assume
the existence of suitable operations for addition and scalar
multiplication, and compute(1 � p):S1 + p:S2. We will
often define the morphing operation so that if both structures
have a substructure in common then this is also found in any
morph. Here are some examples of the three types of morphs
on a variety of different structures.

matrix morph (type A): the substructures are the entries;
to morph between twon �m matrices we consider each
entry in turn, and include the entry from the first matrix
with probability1�p, otherwise we include that from the
second matrix.

graph morph (type B): the substructures are the edges and
gaps (absence of edges) between nodes; to morph be-
tween twon node graphs,G1 andG2, we take all edges
in common, and a fraction1 � p of the remaining edges
from the first graph, andp from the second.1

vector morph (type C): to morph between two vectors,
~v1 = (x1; y1; : : :) and~v2 = (x2; y2; : : :), we construct
the vector(1 � p):~v1 + p:~v2 = ((1� p):x1 + p:x2; (1�
p):y1 + p:y2; : : :).

satisfiability morph (type A): the substructures are clau-
ses; to morph between two SAT problems, we include
clauses from the first instance with probability1� p, and
clauses from the second with probabilityp.

1We assume that the nodes in the two graphs share the same
names.



set morph (type B): the substructures are the elements of
the set; to morph between two sets,S1 andS2, we take all
elements in common,S1 \ S2, and a fraction1� p of the
remaining elements fromS1, andp fromS2.

function morph (type C): to morph between the function
f1(x) and the functionf2(x), we construct the function
(1� p):f1(x) + p:f2(x).

Two types of morph have already been studied in some de-
tail.

random graphs: type A and B morphs between complete
graphs and empty graphs give, respectively, theGnp and
Gnm problem classes2 (Bollobás 1985);

2+p-SAT problems: type B morphs between 2-SAT and 3-
SAT problems give the2 + p-SAT problem class (Monas-
sonet al. 1996), used to study changes in phase transition
behavior as we move from P to NP.

In the rest of this paper, we look at four new applications:
distance matrix morphs (to identify the impact of asymme-
try on TSP problems); coordinate vector morphs (to study
the impact of increasing the dimensionality of a TSP prob-
lem); ring lattice morphs (to model a recently identified
topological structure called “small-worldiness”); and quasi-
group morphs (to study in more detail the relationship be-
tween such small-worldiness and search cost).

Morphing and Small Worlds
Morphing provides us with a powerful tool to study topo-
logical structures like “small worldiness” that occur in many
real-world graphs (Watts & Strogatz 1998). A small world
graph has nodes that are highly clustered yet path lengths
between them that are small. By comparison, random
graphs with a similar number of nodes and edges have
short path lengths but little clustering, whilst regular graphs
like lattices tend to have high clustering but large path
lengths. (Walsh 1998) shows that graphs associated with
many search problems (e.g. exam timetabling, register al-
location, quasigroup problems, . . . ) often have this topol-
ogy. One reason for the occurrence of a small world topol-
ogy is that it only takes a few short cuts between neigh-
borhood cliques to turn a large world (in which the aver-
age path length between nodes is large) to a small world (in
which the average path length is small). Walsh argues that a
small world topology can make search problems very diffi-
cult since local decisions quickly propagate globally.

Testing for a Small World
To formalize the notion of a small world, Watts and Strogatz
define the clustering coefficient and the characteristic path
length. The path length is the number of edges in the short-
est path between two nodes. The characteristic path length,
L is the path length averaged over all pairs of nodes. The
clustering coefficient is a measure of the cliqueness of the
local neighborhoods. For a node withk neighbors, then at
mostk(k � 1)=2 edges can exist between them (this occurs

2We are very grateful to Joe Culberson for making this obser-
vation to us in a private communication.

if they form a k-clique). The clustering of a node is the
fraction of these allowable edges that occur. The clustering
coefficient,C is the average clustering over all the nodes in
the graph. Watts and Strogatz define a small world graph as
one in whichL & Lrand andC � Crand whereLrand and
Crand are the characteristic path length and clustering coef-
ficient of a random graph with the same number of nodesn
and edgese. Walsh refines this definition, by proposing the
proximity ratio�, C=L normalized byCrand=Lrand. Small
world graphs are those in which�� 1.

Morphing v. Rewiring
To model small world graphs, (Watts & Strogatz 1998) and
(Walsh 1998) use a rather complex method for randomly
rewiring a ring lattice that circles the lattice a number of
times, rewiring edges that are an increasing distance apart.
This method gives graphs with a mixture of both struc-
ture and randomness. Morphing provides a much simpler
and more general mechanism for constructing small world
graphs. We simply morph between a clustered graph with
large path lengths (e.g. a ring lattice) and a random graph
(which has short path lengths but little clustering). The sim-
plicity of the morphing process brings a variety of benefits.
For example, the theoretical analysis of morphs is likely to
be much easier than that of rewired graphs.

In Figure 1, we compare randomly rewiring a ring lattice
with morphing between a ring lattice and a random graph.
A ring lattice is a ring ofn nodes, each connected to the
k nearest neighbours. In this, and subsequent experiments,
we use type B morphs. However, we observe very similar
results with type A morphs. The characteristic path length,
the clustering coefficient and proximity ratio all vary in a
very similar manner, although there is a slight decrease in
the maximum value of the proximity ratio,� with morphing.
At small p, we also see granularity effects. In type B graph
morphs,p is the fraction of edges to include from one of the
graphs. We therefore round to the nearest whole number. By
comparison,p in random rewiring is a probability and so is
not rounded. We also ran an experiment morphing between
a ring lattice and a random graph using type A morphs. As
this gave very similar results, we omit these graphs.

Local Search Procedures
To study the impact of small-worldiness on local search be-
havior, we encoded the problem of coloring small world
graphs into SAT instances and solved these using WalkSAT,
one of the most popular and efficient stochastic local search
algorithms for SAT. As in the last section, we generated
graphs by morphing between a ring lattice and a random
graph with the same number of nodes and edges. To en-
sure that problems were of a manageable size for our algo-
rithms, we used graphs withn = 100 andk = 8. Because
of the regular ring lattice structure, the minimal chromatic
number,c of these graphs is 5. However, some graphs with
higher chromatic numbers do occur. Initial experiments in-
dicated that the cost to color graphs withc > 5 is at least
one order of magnitude lower than graphs withc = 5. To
give a more homogeneous test set, we therefore filtered out
the instances withc 6= 5 using a complete graph coloring
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(a) morphing graphs (b) random rewiring

Figure 1. Characteristic path length, clustering coefficient (left axis, normalized by the values for a regular lattice) and prox-
imity ratio (right axis) for graphs generated (a) by morphing between a ring lattice and a random graph and (b) by random
rewiring of a ring lattice. As in (Watts & Strogatz 1998), we usen = 1000 andk = 10. We varylog

2
(p) from -15 to 0 in

steps of 1, and generate 100 graphs at each value ofp. A logarithmic horizontal scale helps to identify the interval in which the
characteristic path length drops rapidly, the clustering coefficient remains almost constant, and the proximity ratio,� peaks. To
aid comparison, the samex andy scales are used in both figures.
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(a) WalkSAT local search procedure (b) the “satz” procedure

Figure 2. Search cost to color small world graphs;(a) percentiles of expected number of flips required by the local search
procedure, WalkSAT;(b) percentiles of nodes visited by the complete search procedure, satz. The small world graphs are
generated by morphing between a ring lattice and a random graph withn = 100, k = 8, andp varyinglog2(p) from�8 to�2
in steps of 1. The proximity ratio,� peaks aroundlog2(p) � �4 similar to Figure 1. 100 5-colourable graphs were used at
each value ofp.

algorithm provided by Joe Culberson. We then encoded the
remaining problems into SAT, with each propositional vari-
able representing a particular color being assigned to a node.
We solved each instance with WalkSAT, measuring the ex-
pected number of flips to find a solution over 100 runs of
the algorithms. We set the cutoff parameter large enough
that a solution was found in each run, and optimised the
noise parameter for each value ofp to give approximately
minimal local search cost. Interestingly, the optimal noise
setting appears to be positively correlated withp, i.e., the
more random structure in graphs, the less greediness needed
in WalkSAT to obtain optimal performance.

Figure 2 (a) shows the higher percentiles in the local
search cost for varyingp. All the percentiles peak at
log2(p) = �7 (including the lower percentiles not shown
in the graph). Near to this point, the variability in search

cost across the test set is also maximal and the variation co-
efficient (standard deviation/mean) = 3.05. Whilst the distri-
bution of the expected search costs across the test set around
this region, is heavy-tailed, search costs on individual in-
stances appear to best fit an exponential distribution. This
suggests that the restart mechanism does not improve perfor-
mance on these problems. Note also that when decreasing
log2(p) from�7 to �8 all percentiles drop sharply, for the
higher percentiles by more than an order of magnitude. This
indicates that for regularly structured graphs, slightly per-
turbing the structure drastically increases the expected local
search cost (the expected number of flips for solving the reg-
ular ring lattice graph, i.e.,p = 0, is 19043:38). However,
as we introduce more randomness into problems, the perfor-
mance of local search procedures improves.



problem n l density C Crand L Lrand �

hanoi4 718 3934 1.9% 0.462 0.0187 6.713 2.796 10.278
ssa0432-003 435 1027 1.0% 0.445 0.0779 4.273 5.536 4.406
bf0432-135 424 1031 1.0% 0.442 0.0833 5.552 4.296 4.108
par16-1-c 317 1264 1.8% 0.364 0.0407 3.984 3.521 7.899

aim-100-1-6-yes1-1 100 160 7.2% 0.302 0.0747 2.740 2.534 3.745

Table 1. Characteristic path lengths, clustering coefficients and proximity ratios for satisfiability problems withn variables and
l clauses from the DIMACS benchmark library. Edge density is the fraction of possible edges in the constraint graph. Problems
are both satisfiable and unsatisfiable.hanoi4 is a encoding of the Towers of Hanoi planning problem.ssa0432-003 is
an encoding of a circuit analysis problem with a “single–stuck–at” fault.bf0432-135 is an encoding of a circuit analysis
problem with a “bridge–fault”.par16-1-c is an encoding of a problem in learning the 16 bit parity function.aim-100-1-
6-yes1-1 is an artificially generated problem with a single satisfying assignment.

Complete Methods
Comparison of our results with results reported in (Walsh
1998) for coloring randomly rewired graphs using a com-
plete graph coloring algorithm, suggests that the perfor-
mance of local and complete search methods may differ sig-
nificantly on small world problems. Local and systematic
search methods may therefore complement each other. With
a small amount of randomness in problems, complete meth-
ods may have fewer difficulties than local search, while with
more randomness, the situation seems to reverse. To test
this hypothesis, we ran a second series of experiments us-
ing “satz” (Li & Anbulagan 1997), one of the best complete
search algorithms for SAT.

Figure 2 (b) shows the higher percentiles of the search
cost for satz. The performance of satz is clearly affected by
the small-worldiness differently to WalkSAT. Median search
cost increases monotonically withp up tolog

2
(p) = �1 and

then drops slightly. By comparison, there is a very distinc-
tive peak in the 99% percentile aroundp = 0:1, in the region
where the graphs have maximal small-worldiness. Around
this peak, the difference between the 95% and 99% per-
centiles is huge (up to 4 orders of magnitude), and the dis-
tribution of search costs across the test set, as well as on
individual instances, displays a heavy-tail. This suggests
that a randomization and restart strategy will be effective
on these problems (Gomes, Selman, & Crato 1997). Simi-
lar extremely hard instances were observed in (Walsh 1998),
where a small fraction of randomly rewired graphs with high
proximity ratios,� were found to be extremely difficult for
a complete graph coloring algorithm.

These results support the hypothesis that local search pro-
cedures tend to have difficulties with relatively regular in-
stances which are easy for complete methods, while com-
plete methods tend to have difficulties with more random
instances which are easy for local search procedures. This
suggests that it might pay to solve these problem by apply-
ing both algorithms simultaneously and terminating when
either one finds a solution. Such “portfolios” of algorithms
have been proposed in (Huberman, Lukose, & Hogg 1997;
Gomes, Selman, & Kautz 1998). With such an approach, the
overall performance and, perhaps even more importantly, the
robustness of problem solving can be improved. The opti-
mal mix of the algorithms in such a portfolio depends on the
exact performance of each individual algorithm. The me-

dian run time (as well as the higher percentiles) for WalkSAT
and satz cross over approximately where the peak in small-
worldiness is located. This suggests that small-worldiness
may be a structural property which tends to giveminimal
leverage for portfolio combinations of WalkSAT and satz.

Encoding Small Worlds
In recent years, there has been considerable success encod-
ing many different search problems into SAT and using ei-
ther a fast local search method like WalkSAT or an efficient
complete procedure like satz. Does encoding into SAT pre-
serve or destroy the topological structure? To measure the
topology of a satisfiability problem, we construct the con-
straint graph, in which nodes are the propositional variables,
and edges connect any variables that occur together in a
clause.

We ran a test on the DIMACS satisfiability benchmark.
Many of the encodings of problems in this library have a
small world topology. Table 1 gives a representative sample
of results. Path lengths are usually comparable to that of
a random graph. However, nodes are often more clustered
than in random graphs of a similar density. Other types of
encoding can disguise the topological structure inherent in a
problem. For example, if we encode numbers into SAT using
a logarithmic representation on the binary bits (an encoding
that has been used for factorization and Hamiltonian circuit
problems) then the topological structures may be lost within
the complexity of the encoding. However, we conjecture
that encodings that are good for search will tend to preserve
topological structure. Indeed, they may even emphasize it.

Morphing Quasigroups
A quasigroup is a Latin square, am bym multiplication ta-
ble in which each entry appears just once in each row or col-
umn. Quasigroups model a variety of practical problems like
tournament scheduling and designing drug tests, and have
been proposed as the basis of a benchmark for constraint
satisfaction algorithms (Gomes & Selman 1997). The con-
straint graph for such problems consist of2m cliques, one
for each row and column, with each clique being of sizem.
(Walsh 1998) shows that, for largem, the constraint graph
of quasigroup problems have a small world topology, with a
proximity ratio� � m=4.
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Figure 3. Morphs generated between an order 10 quasigroup and a random graph:(a) characteristic path length, clustering
coefficient (scaled by their values for a random graph with the same number of nodes and edges) and proximity ratio,�; (b)
percentiles in the search cost to color these morphs.

Morphing quasigroups tends to reduce their small-
worldiness as we break up the neighborhood clustering. De-
spite this decrease in small-worldiness, the cost to color such
graphs often increases. In Figure 3, we plot the clustering
coefficients, characteristic path lengths, proximity ratios and
coloring cost for morphs between an order 10 quasigroup
and a random graph with the same number of nodes and
edges. We used a graph coloring algorithm which is based
upon Brelaz’s DSATUR algorithm and imposed a search cut-
off at 107 nodes. Asp increases, we break up the neighbor-
hood structure of the quasigroup and the clustering coeffi-
cient drops. The characteristic path length is short and stays
relatively constant. As a consequence, the proximity ratio,
� drops along with the clustering coefficient.

Coloring costs for these morphs are often very large.
This result suggests that other factors in addition to small-
worldiness contribute to the hardness of these coloring prob-
lems. Detailed analysis of the search costs shows that the
heaviest-tailed distributions occur either with random graphs
with a small amount of structure (e.g.log2(p) = �2) or
quasigroups graphs with a small amount of randomness (e.g.
log2(p) = �10 and�8). Inbetween (e.g.log2(p) = �4 and
�6), we see less of a heavy-tail. We conjecture that the addi-
tion of a little randomness to structure, or a little structure to
randomness can confuse search heuristics and make graphs
hard to color.

Morphing TSPs
Symmetry v. Asymmetry
What impact does symmetry have on the TSP problem?
In the Manhattan delivery example from the introduction,
adding one-way streets introduces a certain amount of asym-
metry into the distance matrix and usually made problems
easier. Is it generally true that asymmetry will tend to make
TSP problems easier? To test this, we ran an experiment
morphing directly between a symmetric and an asymmetric
distance matrix.

To reduce variance in inter-city distances, we took a sym-
metric distance matrix and made it asymmetric by permut-
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Figure 4. Median cost to find optimal tour for morphs be-
tween symmetric and asymmetric TSPs. Other percentiles
and mean cost are similar. Inter-city distances are normally
distributed with a mean of103 and a standard deviation of
102. Each data point is the average of 100 problems.

ing the lower lefthand triangle. We then found the optimal
tour for type B morphs between the original symmetric prob-
lem and this asymmetric problem. We generated symmetric
distance matrices with between 12 and 30 cities, normally
distributed with a mean inter-city distance of103 and a stan-
dard deviation of102. To find the optimal tour, we used
a branch and bound algorithm with the Hungarian heuristic
for branching.

In Figure 4, we plot the search cost to find the optimal
tour. Whilst the optimal tour length decreases by just a few
percent as we introduce asymmetry into the problems, the
cost to find the optimal tour drops dramatically. We conjec-
ture that asymmetry reduces search by reducing the amount
of non-determinism in the problem. If the distance fromA
to B is significantly shorter than that fromB to A, then an
optimal tour that includes a leg betweenA andB will al-
most certainly visitA first. Unlike the symmetric case, we
probably need not consider tours that visitB first.
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Figure 5. Percentiles in (a) optimal tour length and (b) cost to find optimal tour for 20 city TSP problems constructed by
morphing between two and three dimensions. In the 3-d case, cities are distributed uniformly and at random within a cube
of side 1000. In the 2-d case, we project the 3-d problems down onto thex-y plane. Each data point is the average of 1000
problems.

2-d v. 3-d
What impact does the dimensionality of a TSP problem
have on optimal tour length and cost to find it? To ex-
plore this question, we ran an experiment morphing between
2-dimensional and 3-dimensional TSP problems. We took
points randomly distributed in a 3-d cube and flattened them
onto thex-y plane. We then constructed type C morphs be-
tween the coordinate vectors for the original 3-d problem
and those for the flattened 2-d problem. As we increase the
morphing ratiop, the points gradually rise off thex-y plane
and thez dimension starts to contribute to the problem.

In Figure 5, we plot the optimal tour length and search
cost for 20 city problems, with cities distributed uniformly
and at random within a cube of side 1000. We again used
a branch and bound algorithm with the Hungarian heuristic
for branching. As we introduce a third dimension into the
problem, cities become further apart and the optimal tour
length increases. However, the cost to find the optimal tour
tends to drop. For the 95% and lower percentiles, there ap-
pears to be a slight rise in cost for smallp, but aside from
this, search cost drops uniformly. We conjecture that a third
dimension increases the variance in inter-city distances, and
this makes the optimal tour more obvious.

To conclude, symmetric and 2-dimensional TSP prob-
lems appear to be harder than asymmetric and 3-dimensional
problems. This is a valuable result as many TSP prob-
lems met in practice are likely to be both symmetric and
2-dimensional.

Related Work
Monassonet al. introduce the 2+p-SAT model to study the
change from a “second order” phase transition for random 2-
SAT to a “first order” transition for random 3-SAT (Monas-
sonet al. 1996). In the 2+p-SAT model, problems are ran-
domly generated withpl clauses of length 3, and(1 � p)l
clauses of length 2. Such problems can also be generated by
morphing between random 2-SAT problems and random 3-
SAT problems. They predict that forp < 0:413 : : :, a phase

transition in satisfiability will occur around a ratio of clauses
to variables of1=(1� p). Achlioptaset al. prove this result
for p � 0:4, and provide upper and lower bounds on the lo-
cation of the phase transition forp > 0:4 (Achlioptaset al.
1997). This is a rather surprising result since it means that,
for p < 0:4, the non-binary clauses are “irrelevant” and the
binary clauses alone are enough to make problems unsatisfi-
able.

Gomes and Selman have proposed random quasigroup
completion problems as a benchmark that combines together
some of the best features of randomly generated instances
and highly structured problems (Gomes & Selman 1997).
Quasigroup completion is the problem of coloring a par-
tial colored quasigroup. The preassignment of colors per-
turbs the problem by adding unary constraints. However,
the perturbation of the binary constraints performed in mor-
phing quasigroups appears to give more demanding prob-
lems. For example, an algorithm that maintains generalized
arc-consistency can solve almost all quasigroup completion
problems up to order 25 with just a few branches of search
(Shaw, Stergiou, & Walsh 1998). By comparison, even with
such powerful propagation techniques, quasigroup morphs
of order 25 are often very hard to color.

Conclusions
We have proposed a very general mechanism called “morph-
ing” for introducing structure or randomness into a wide va-
riety of problems. Many different types of structures can be
morphed including graphs, matrices, vectors, relations, and
clauses. To illustrate the usefulness of morphing, we per-
formed several different experimental studies. These studies
identify the impact of a “small-world” topology on the cost
of coloring graphs, and the benefits of a portfolio of algo-
rithms for solving such problems; of symmetry in the cost
matrix on the cost of finding the optimal TSP tour; and of
the dimensionality of space on the cost of finding the opti-
mal TSP tour.

What general lessons can be learnt from this study? First,
many problems met in practice may be neither completely



structured nor completely random but something inbetween.
Morphing provides us with a general purpose mechanism
for modelling such problems. Second, a mixture of struc-
ture and randomness can make problems very hard to solve.
A little structure added to a random problem, or a little ran-
domness added to a structured problem may be enough to
mislead our search heuristics. And third, morphing provides
many of the advantages of random and structured problem
classes without some of the disadvantages. As in random
problem classes, we can generate large, and statistically sig-
nificant samples with ease. However, unlike random prob-
lems, the problems generated can contain the sort of struc-
tures met in practice.
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