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Abstract

StochasticLocal Search(SLS) algorithmsare amongst the
mosteffective approaclesfor solving hardandlarge propo
sitional satisfiability (SAT) problems. Prominentand suc-
cessful SLS algorithmsfor SAT, including mary members
of the WalkSAT and GSAT families of algorithms,tend to
shav highly regular behaiour when appliedto hard SAT
instances:The run-time distributions (RTDs) of thesealgo-
rithmsarecloselyapproximatedy exponential distributions.
The deepermreasondor this regular behaiour are, however,
essentiallyunknown. In this study we shawv that thereare
hardprobleminstancese.g., from the phaseransitionregion
of the widely studiedclassof Uniform Random3-SAT in-
stancesfor which the RTDs for well-known SLSalgorithms
suchasGWSAT or WalkSAT/SKC deviate substantiallyfrom
exporential distributions. We investigatetheseirregular in-
stancesand shav thatthe respectie RTDs canbe modelled
using mixturesof exporential distributions. We presentev-
idencethat suchmixture distributions reflect stagnationbe-
haviour in the searchprocescausedy “traps” in theunder
lying searchspaces.This leadsto the formulation of a new
model of SLS behaiour asa simple Markov process.This
modelsubsumegandextendsearliercharacterisationsf SLS
behaiour andprovidesplausibleexplandions for mary em-
pirical obsenations.

I ntroduction and Background

The propositional satisfiability prodem (SAT) is a modé
combinatorial prodem whoseconcepual simplicity facili-
tatesthe designand analysisof algoithms for other hard
combinatorial prodems. For the pastdecadeyarious types
of stochasticlocal search(SLS) method have beenap-
pliedverysuccessfullyo SAT. Thesancludethe GSAT and
WalkSAT familiesof algorithms (Selman Kautz, & Cohen
1994 Gent& Walsh 1993 McAllester, Selman,& Kautz
1997, aswell as several otheralgorithns basedon simi-
lar ideas(Gu 199; Wah & Shang1997; Wu & Wah 200Q
Schuumans& Southy200Q Schuumans,Southy & Holte
200). GSAT and WalkSAT algorithms have beenexten-
sively studiedin theliterature, andincludesomeof the best-
perfaming SAT algoithmsknown to date(Hoos & Stiltzle
200@; Schuumans,Southy & Holte 2001). Comparedo
other state-of-tle-art SAT algorithns, suchas Satz(Li &
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Anbulagan1997), thesemethod are rathersimplistic and
it is notwell understoochow they cansolve mary classe®f

large anddifficult SAT instancessurprisindy efficiently. It

is alsolargelyuncleaundemnhichconditions(i.e., onwhich

types of instancesandfor which paranetersettings)these
SLSalgorithns work well.

The run-time behaiour of GSAT and WalkSAT algo-
rithms when appliedto hard SAT instancesand when us-
ing sufiiciently high noise parametesettings,is typically
chaacterisedby exporential runtime distributions (RTDs)
(Hoos 1998 Hoos& Stiitzle1999. Here,“sufficiently high’
includes the rangein which optimd performane, as re-
flectedin minima meanrun-time, is achieved. TheseRTD
chaacterisatiorcanbe extencedto easierSAT instancedy
using a generdised classof exponential distributions that
supprts modellirg the initial searchphase(asreflectedin
the left tail of a runtime distribution), during which the
succesgprohability increasesfasterthanfor a memoy-less
searchprocesscharactesedby anexponential RTD (Hoos
1998).

As we will shawv in this study for a small but signifi-
cantnumberof hardinstancese.g., from thewidely studied
“phasetransitionregion” of the Uniform Random3-SAT in-
stancdlistribution (CheesemarKanefsky, & Taylor 1991),
SLSalgorithns suchas GWSAT or WalkSAT/SKC shav a
betaviour that canrot be captued by thesemockls. This
irregular behaiour is interestingfor at leasttwo reasons:
Firstly, aswill becone clearlater, it canbe seenasa type
of stagnatiorbehaiour that, if presentappeargo severdy
degradeSLS performarce asthe searchprogresse$eyond
a certainpoint. Clearly, a sufficient understandingof this
phenomeron s likely to bethe key towardseliminatirg the
undesirablebehaiour. Second, the irreguarities provide
abasisfor refiningpreviousmodels of SLSbehaiour; such
mocklsarevaluable for purely scientificaswell asfor prac-
tical reasonsasthey improve our ability to understandto
predct, andto improve the perfamanceand behaiour of
SLSalgorithns for SAT.

In the following, we investigatethis irreguar SLS be-
haviour in detail,focussingpn GWSAT andWalkSAT/SKC,
two of themostwidely studiedSLSalgorithrrs for SAT, and
theproninentclassof Uniform Random3-SAT “phasetran-
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Figure1: Left: Correlationbetweeninstanceharchess(meanruntime for WalkSAT with apprx. optimd noise measurd
in variable flips over 100 successfutuns/instancehorizontal) andy 2 values(vettical) from testingthe RTDs of individual
instanceversusabest-fitexponentialdistributionfor SATLIB test-setif 100- 430; thehorizantallinesindicatetheacceptace
threshdds for the0.01and0.06 acceptancievelsof the y 2 test. Right: Irregular WalkSAT RTDs for outlierinstancesnotethe
deviation from atypical exponentialdistribution, indicatedby theright-mostcure.

sition” instances. We shaw that the correspading RTDs
canbe charaterisedby simple mixtures of exponentialdis-

tributions, and provide eviderce that this charaterisation
appeas to apgy to all hardprodem instancegor whichir-

reguar SLS behaiour is obsered. Emgrical evidenceis

presentedor an explaration of this pheromenam basedon

searctstagnatiorcausedy “traps” in theuncerlyingsearch
spacesBasedon theinsightsfrom our analysisof irregular

instancesand searchstagnatio, we developpeda conep-

tually simpleMarkov chainmodelwhich shawvs exactly the

samebehaiour asobsevedfor GWSAT andWalkSAT/SKC

ontheirregular SAT instancestudiedhere.Thismodel pro-

videssimple andstraightforward explanationsfor our em-

pirical results.Furthemore,it suggestseveralintuitive and
testableconrectionsbetweenSLS behaiour andthe struc-
tureof SAT instances.

Irregular Instances and Mixture Models

Our investigation starts with the obsenration that when
studyirg the RTDs for WalkSAT (using appro. optimd
noise settings)on sets of critically constrainedUniform
Random3-SAT instancestherearehardinstancegasindi-
catedby a high expectednurnber of searchstepsfor finding
a solution) for which the searchbehaiour appeas to devi-
atesubstantiallyfrom thetypicalmemay-lessbehaiour re-
flectedin exponentialRTDs. Figure1 shavsthe corrdation
betweerinstancehardressfor WalkSAT/SKC andthe devi-
ation of the corresponthg RTD from a best-fitexporential
distribution for test-seuf 100- 430, a setof critically con-
strainedUniform Random3-SAT instancesobtaired from
SATLIB? (Hoos& Stiltzle 200b). This datawas obtaired
using the samemethodas describedin (Hoos & Stiitzle

IAlgorithm outlinesfor GWSAT and WalkSAT/SKC, aswell
asa detaileddescriptionof the Uniform Random-3-SA instances
usedin this studycanbefoundin (Hoos& Stiitzle2000a).

Zwww.satliborg

199). All RTDs repatedin this studyarebasedn at least
100 runs of the algorithm using cutoff parametersettings
high enoudp to guarateethata solutionwasfound in each
run without usingary kind of restartmechaism. As noted
by Hoos& Stiitzle (20Ma), the high x ? valuesconsistently
obsevedfor easyinstancesaredueto effectsof theinitial
searctphase. In the presenh study we largely ignore the ef-
fect of theinitial searchphase which hasbeenpreviously
discusse@ndchagcterisedn theliterature(Hoos& Stiitzle
20Ma).

The deviations reflectedby high x 2 valuesfor hardin-
stancessomeof which arehighlightedin Figurel, areof a
differentnature. Closerinspectionreveals that theseirreg-
ular RTDs have an untypically high coeficient of variation
(stdde/mean) all of themcanbewell apraximatedby mix-
turesof exponentialdistributionsof theform

k—1 k—1
Z w; - ed[m;] + (1 - Z wi> ed[my],

whee ed[m](z) = 1 —2~*/™ is thecumuative distribution
of anexponentialdistribution with medianm andthew; are
themixtureweights.It shouldbenotedthatwhile for largek
suchmixturescanapprximateary cumulative distribution
functionarbitrarilywell, all appoximatiors presenteih this
studyusetwo compmentsonly andare hencesignificantly
more restricted Sincetheappraimatedempiical RTDs are
gererally basedon at least1,0M® runs each,good appiox-
imatiors with this restrictedmixture mocel reflecta rather
surgising reguarity of theunderlying SLS betaviour rather
thananoveffitting effect dueto anovety flexible model.
Additional experimentsshaved the sametype of “out-
lier instancesfor SATLIB test-setaif 50- 218 anduf 20-
91; in all casesWalkSAT andGWSAT shaved RTDs that
coud bewell appoximatedby 2-conponer mixturesof ex-
porential distributions. (See,e.g., Figure 2; theseresults
arerepoted in moredetail in the extended versionof this
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Figure2: RTD for WalkSAT(nase=0.55)on hardirregular
instancerom test-seuf 50- 218 andappraimation by 2-
compnentmixture of exponentialdistributions.

papen Overall, using 2-canporent mixtures of the previ-
ously mentiored generalisedexponential distributions, all
obsenred RTDs could be perfectlyapproxmatedto the de-
greesuppoted by the samplesize undetying the empiri-
cal RTD data. (The quality of theseapprximationscanbe
seen,in a slightly different cortext, in Figure5.) Interest-
ingly, the extremetails of all irreguar RTDs are extremely
well appoximatedby a mockl fitted to the whole distribu-
tion. In particular thereis noindicaion for so-called'heavy
tails”, ashave beenrepoted for the RTDs of certainhigh-
perfaming rancmisedcompleteSAT algoiithms (Gomes,
Selmang& Kautz199).

Multiple Competing Solutions?

Perhapshe mostobviousexplanationfor theobsered mix-
tureRTDsis basednthefollowing idea: For instancesvith
multiple solutiors, onecould assumehateachsolution(or
clusterof solutions)hasits own “basin of attractiori, and
thatthe attractvity of thesebasinsmight sometimediffer
widely betweenvarious solutions. If condtional of being
pulledinto onegivenbasin,the RTD of GWSAT or Walk-
SAT were an exponential distribution, then a biasedran-
dom selectionof the respectie basinat the beginning of
the searchprocesswould leadto the obsened exporential
mixture RTDs. Sucha selectioncould be the resultof the
fact that GWSAT and WalkSAT both startthe searchat a
randanly choserassignment.

Therearetwo ways of investigatingthe validity of this
explaration: Thefirst is basedon a modificationof the al-
gorithmssuchthatthe searchprocesss nolongerinitialised
randamly, but at a specificvariable assignmen If the pro-
posedexplaration of the irregular searchbehaiour were
corred, using the fixed initialisation for the irregular in-
stance$rom above shouldresultin reguar RTDswhich, de-
pendng on the fixed initial assignmenthosencorrespond
to the compmentsof the mixture obtaired for randbm ini-
tialisation.A secondalidationexpeimentusesheunmai-
fied algoiithms (with randam initialisation)andstudiestheir
RTDs on single-solutiorinstanceslf theattractvity of dif-

ferert solutionswerethe solecauseof mixture RTDs, these
shoud notbe obsevedon singlesolutioninstances.

For the first apprach, we measuredRTDs for a mod-
fied versionof WalkSAT thatalwaysstartsat a specificas-
signnmentappliedto oneof theirreguar instancegrom test-
setuf 50- 218- 1000. Figure3 (left) showns the RTD for
WalkSAT/SKC with the standardrandamisedinitialisation
aswell as RTDs for a WalkSAT/SKC variantthat always
startsthesearcHrom thesamegiveninitial assignmen The
specificinitial assignmentaisedherewere the following:
oneat HammingdistancelO from oneof the instances 48
solutiors, onesettingall variablesto false,andoneat Ham-
ming distanceb0 to a specificsolution. With the exceptian
of thislastcasetheresultingRTDs aremixturedistributions
rathe thanpure (genealised)exponentials,an obsenration
thatdoesnot suppat the explamation propsedabove. It is
interestingto notethatfor this instancethe maximal Ham-
ming distancebetweenary two solutiors is only 16, while
themeanHammingdistancebetweersolutionsis 7. Hence,
it apparsthatonly whenthe searchs initialised Hammirg
distantfromthelooselyclusteredsolutions WalkSAT shavs
asimpleexponentialRTD. (This resultis furtherconfirmed
by the RTDs for additioral initial startingassignmets, not
shavn here.)

For our investigdion of the secondappoach,we gene-
atedsetsof single-soltion Uniform Random3-SAT phase
transitioninstances.This wasdoneby generéing Uniform
Randan-3-SAT instancesn the usual (unbiased)way and
subseqently checling for eachinstancewhetherit hasex-
actly one solution? For the threetest-setsthus obtained
WalkSAT/SKC RTDsweremeasuredusingappox. optimal
noise)andfitted with exponentialdistributions,asdescribe
in the previous section. As canbe seenin Figure 3 (right),
the samekind of outlier instancesasfor the standardJni-
form Random3-SAT test-setxanbe detected. The RTDs
for theseoutlierinstancesrevery similarto thoseshavn in
Fig. 1 andcanbeequallywell appraximatedby mixturesof
exponentialdistributions. Theseresultsindicae thatsingle
solution instancescan exhibit the sameirreguar SLS be-
haviour, characterisedby mixture RTDs, asinstanceswith
multiple solutions. Furthernore, it may be notedthat test-
setsof single-sdution instanceshav avariallity in search
cost betweenthe instancessimilar to the respectie unre-
stricted test-sets. This clearly indicatesthat factos other
thansolutiondensityhave animportait impacton the per
formanceof SLS algorithmslike WalkSAT. (Similar results
were obtaired for test-setof critically constrainedsingle-
solutioninstancesvith 50 and20 variables.)

It maybe notad thatthe obserationsfrom thefirst of the
two experimentsdescribedabove still allow for anexplara-
tion in which the attractionareasof severalor all solutions
(or solutionclusters)overlap at mostor all locatiors in the
given searchspace.While consistentvith the natureof the
rancbmisediterative improvemen searchprocess uncerly-
ing WalkSAT/SKC and GWSAT, this modified hypothesis
would still not explain the occurenceof mixture RTDs on

3This testwas performedusing REL_SAT, version 2.00 (Ba-
yardo& Pehoushie 2000).
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single-soltion instances.

Overall, the evidencefrom the two experimentsdoesnot
suppat ourinitial hypothesisthat mixture RTDs aresimply
causedy the presere of multiple solutiors andrespectie
basinsof attraction.

Trapsand Search Stagnation

An alternateexplandion of theobseredirregularbehaiour
is basedon the assumptiorthat for the respectie problem
instancesthe local searchprocesssomehav getstrappedn
regionsof thesearchspacehatareattractive yetdonotcon-
tain solutions. Intuitively, oncetrappel in sucha region, it
might take quite long befae an SLS algorithm managsto
escapdrom this region andfind a route that finally leads
to a solution In this case,the mixture RTDs obseved for
the previously identified irregular instanceseflect a stag-
nation of the searchprocesscauseddy suchtraps. If this
explarationwerecorrect,we shoud beableto obsene mix-
tureRTDsandhighsearclkcostfor SAT instancegontairing
suchtraps.

To investigatethis hypahesis, we first devised a way
of comhbning two single-solutim instancesinto a new
SAT instancethat contairs one solution and a trap: For
a singlesolutioninstanceF’ over n variables, x4, ..., z,,
let M(F) = (ma,...,m;,) denotethe unigue mocel of
F, i.e, F is true underthe variale assignmenhz; :=
my,...,Tn, = mMmy,. Thenfor given single-sdution in-
stanced, G, we definethe plugged combindion instances
CP1[F,G] andC P2[F,G] asfollows:

! k m k n
CP1[F,G] = /\(ﬁ.i’v \/ pij)/\/\(.i’v \/ q,-j)/\\/ —-m;
=1 j=1 =1 j=1 j=1

where M (F) = (my,.- .-
and

,my) is the unique modelof F;

CP2[F,G] = CP1|G, F].
Thisconstrictionusesadiscriminate vaiiablez to “switch”
betweenthe two compmentinstances. Furthermore,the
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Figure 4: RTDs for GWSAT (noise=0.55)n easyinstances
from test-setuf 100- 430- 1000- s1 andplugged comhb-
natiors and appraimation with 2-conponen mixtures of
exponentialdistributions. (The RTD for CP2( #815, #74)
canbeequdly well appoximatedwith a 2-canporentmix-
ture of exponentials.)

solution correspndirg to one of the compnentinstances
is plugged by addng a single clauseof lengthn. Note

that addirg this clausedoesnot affect the objective func-

tion value (number of unsatisfiedclauses)of ary assign-
mert otherthanthe pluggel solution; this implies that the

differencebetweenC[F, G] andCP1[F,G] is only visible

to GWSAT or WalkSAT whentherespectie searchprocess
hasreachedheimmediateneighlourhoodof M (F).

We now assumehatsingle-sdution instanceghatareex-
tremely easyfor a given SLS algoithm are madeeasyby
thefactthattheir singlesolutionis very attractve for theal-
gorithm. Basedon this assumptia, plugged combnations
of easysingle-soltion instanceswould containa very at-
tractive trap, which shouldrende them substantiallymore
difficult to solve thantherespectre compmentinstances.
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in Figure4. Thefit is equallygod in bothtails of theem-
pirical distribution.

This conjectue was confirmal experimentally Figure4
shaws a typical result,illustrating the hardressof plugged
combhbnations of easysingle-soltion instancesas well as
theirregular RTDs obtaired by solvingthesenstanceswith
GWSAT, which can be very well appoximatedby two-
compmnent mixtures of exponential distributions. When
using mixtures of genealised exponentialdistributions* to
modé the initial searchphase we obtain perfectapproi-
mations(seeFigure 5). Analogous resultswere obtaired
in numeroussimilar expetimentsusingothercompaentin-
stancesandtest-sets.Overall, this confirmsour hypothesis
thattraps,i.e., attractve areasof the searchspacethat do
not containsolutions,canleadto searchstagnatiorandthe
sametypeof irreguar behaiour aspreviously obseredfor
“outlier” Random3-SAT instances.

Basedon this explaration, we now presenta simpeab-
stractmocel for the obsered SLS belaviour. Note thatthe
behaiour of an SLS algorithm for SAT, suchas GWSAT
or WalkSAT, appliedto a given SAT instancecanbe mod-
elled as a Markov chain. Intuitively, the statesof this
chainrepresenareasof the searchspacej.e., setsof vari-
ableassignmets thatareconsideredquivalentin a certain
sense. Simple examges for suchsetsof equvalentstates
areall assignmets at a certainHammingdistancefrom the

“This classof distribution is characterisedy the cumulatve
distribution function

2_(m/m)1+(‘7/m)6 .

)

ged[m777 5](3:) =1-

in most cases,empirical RTDs can be excellently approximated
with a specialcaseof this distribution for whichd = 1.

%It shouldbe notedthat WalkSAT’s behaiour on the plugged
combinationinstanceds slightly differentfrom GWSAT's. This
differenceis dueto the variableselectionmechanisnin WalkSAT
andthe occurrerte of the discriminatorvariablein all clausesf a
pluggedcombinationinstance;a detaileddiscussiorcan be found
in the extendedversionof this paper

neaestsolution,all assignmets that satisfya certainnum
ber of clausespr all assignmentshat belongto a specific
certain plateauregion (Frark, Cheeseman& Stutz 1997;
Yokoo 1997 Hoos199B). Thetransitiors betweerthestates
thus definedcorrespondto the corditional probalilities of
reacling a specificstatefrom a given curren state. Note
thatthesetransitionprokabilities degndon the problemin-
stanceaswell onthe SLS algorithm appliedto it.

Here, we will considera simplified version of sucha
mocel of SLS behaiour. Our mocel consistsof a Markov
chainwith k statessy, . . ., sx (seeFigure 6a).Letp; ; bethe
prabability for a transitionfrom states to statej. We make
thefollowing assumptios:

pra=1 (1)

Prg—-1 =1 2)
Vi;1<i<k:pi1=p >0 ()
Vi;l<i<k:pii—i=p >0 (4)
p =1-p" (5)

The first assumptiorreflectsthe fact that states; is anab-
sorhing staterepesentinghe solution(s)of the given prob
lem instance;SLS algoithms for SAT typically terminate
assoonasa solutionis found. Assumption(2) statesthat
sy, is areflectingboundary; it captuestheintuition thatany
measue of distanceto a solutionmodelledby this Markov
chainwill have a finite upper bound The primay purpse
of assumptioa(3), (4), and(5) is to keepthe modelassim-
ple aspossiblewhile allowing it to representifferencesn
prablemsize(reflectedby k) andtheattractvity of solutions
(reflecta by pt andp™).

Interestingly this simpleMarkov chainmodelshows pre-
cisely the sametype of behaviour asGWSAT or WalkSAT
appied to typical SAT instancedor sufficiently high noise
paranetersettings. This canbe seenempiiically by com-
parirg the respectie RTDs, wherean RTD for the model
is definedas the distribution of the numkber of transitions
neeadto reachthesolutionstates; for thefirst time, start-
ing from s, (seeFigure6). It is worth noting thatthe same
family of generalisedexporential distributions introduced
in (Ho0s1998 Hoosé& Stitzle 200() for accuately mod
elling the full RTDs of GWSAT andvarious WalkSAT vari-
antscanalsobeusedto perfectlyapprximatethe RTDs for
the Markov chainmodelpresentedere Unfortunately so
far it codd not be formally proven that the RTDs for the
mockl are always appoximalle by this family of distribu-
tions.

This Markov chainmockel canbe easilyextencedto cases
wheie the probleminstancescontainthe kind of trap de-
scribedin the previous section. In particdar, the plugged
combinationsinstancesiefinedabove canbe mockelledin a
straigh-forwardway: We just combinethetwo mocels cor-
respadingtothecomponentinstancesnto abrarchedchain
mockl, asillustratedin Figure6, whereoneof the two so-
lution stateds transfomedinto a reflectingboundaryof the
mockl (this statecorresppndsto the plugged solution) while
the otherbeconesthe single solutionstateof the brarched
mockl.
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The RTDs for thesebrancted Markov chainmocels are
remarlably similar to thoseobseved for the irreguar SAT
instancesand for the plugged combiration instancesstud-
ied befae. Dependig onthelengthof thetrapandsolution
branhiesandtheir respectre transitionprababilitiesp; and
p, , we getthe sametype of mixture distribution as previ-
ouslyobsevedfor GWSAT andWalkSAT/SKC. Consistent
with theintuition behird the mocel andprevious resultsfor
pluggedcombinationinstancesthetwo exponentialcompo-
nentsof the mixture RTD for the brarchedMarkov chain
modd are more prominentfor longerand more attractve
trapbrarches(seeFigure?).

In the light of this mockl, the mixture distributions that
arecharacteristidor theirreguar instancesepated earlier
in this studyarelik ely causedy promnenttrapsin theun-
derlying searchspaces.This hypothesisis consistenwith
the fact that mary of the irreguar instancesare relatvely
hard,while nore weredetectecamorgstthe easiesti0-15%
of the instanceswithin eachof the respectre test-sets.The
modé is also consistentwith our obserationson the be-

haviour of WalkSAT when using fixed initialisation from

valious points in the searchspace. Whenmocelling anir-

regular instanceby a brarchedMarkov chainwith a trap,
it is clearthatdepenihg on the stateat which the Markov

processis initialised, we will obsere the samequalitative
differencesn theresultingRTDs asobseved for WalkSAT

with fixedinitialisation. In particdar, wheninitialising at or

nearthe trap state,the resultingRTD will shaw little or no
irregular behaiour, but anincreasedearchcostfor all but

theright tail of thedistribution. Notethathaving thesearch
spaceregions corresponghg to the trap andsolution states
at high Hammingdistancewill maximse the areain which

the attractionof eitherone doninatesthe behaiour of the
searchprocessandwill thusleadto morepromnentirregu-

lar SLSbehaiour. Henceijt is reasonale to assumehatfor

a prominently irregular instancejnitialising Hammirg dis-

tant from the solutionsshouldbe equialentto initialising

closeto a prominenttrap.

Conclusions and Future Work

Our study has shavn that the runtime behaiour of two
well-known SLS algorithms, GWSAT and WalkSAT/SKC,
can be empirically charaterisedby mixtures of exponen-
tial distributions with a small nurmber of mixture compo
ners. This extendsprevious empiricalresultsto instances
on which deviations from the typical, memay-less be-
haviour characteésed by exponential distributions are ob-
sened; these'irregular” instancesarenotunconmonin the
phaetransitionregionof Uniform-Ranam-3-SAT andtend
to behardwhencomparedto otherinstancegrom thesame
problemdistribution.

As we have seen,the occurece of mixture RTDs can
be explainedbasedon a trap-tasedmodelof searchstagna-
tion. Somevhat surprisindy, we foundthatthe empirically
obseved behaiour of the searchprocesscangeneally be
mocklledby averysimpleabstractnocel basednbrarched
Markov chains.Themodé is basedn theintuition thatthe
searctprocessmplemenedby procediressuchasGWSAT
or WalkSAT/SKC progesseghrough discretestagesgach
of which hasa charactedstic “distancé to the nearat so-



lution. It is not entirely clear if and how thesestages
are explicitly manifestedn the form of easily identifiable
searctspacdeaturespur currentuncerstandingf SLS be-
haviour suggestshatthe searchstagesmight correspondo
extensve plateauregions (Frank,Cheesemar& Stutz1997,
Yokoo 1997; Ho0s199). Furthernore, it is likely that at
leastonetype of trap correspads to the “failed clusters”
obsenredby Parkes(1997). We currently investigae this hy-
pothesisusingadwarcedsearclspaceanalysigechnigiesas
well asthe RTD charactdsationsandabstracsearchmodé
developedin this study Furthernore,it appeas to beinter-
estingto explore potential connectimsbetweenrapsandthe
factorsuncerlyingthehardressof Random3-SAT instances
studiedby Singeretal. (20), in particularbackbme ro-
bustness.

Obviously, the simple Markov mockl is only an ap-
proximation of the behaiour of SLS algorithms suchas
GWSAT or WalkSAT in the multi-dimensional,compex
searchspacescorrespading to the SAT instancesstudied
here. This apprximation however, seemsto capturethe
essentiafeatues for the obseved behaiour; therebre, it
appeas that by establishingthe relation betweenit and
identifiable featues of the respectie instances,consider
ableprogresscanbe madetowardsa charcterisatiorof the
factorsundelying the hardressof prablem instancesw.r.t.
SLS algaithms. (It is worth noting that a slightly modi-
fied Markov chainmodel,wherethe probabilities of staying
within thesamestatearenotzerqi.e., p~ + pT < 1, shavs
exactly the sametype of RTDs asthesimplermocel studied
here.)

Thereis some preliminary experimental eviderce sug-
gesting that the RTD chagacterisationsand the abstract
Markov mockl preseted heremight be ratherbroadly ap-
plicable. Apparenly, the stagnatiorbehaiour typically ob-
sened for GWSAT andWalkSAT whenusing lower-than-
optimalsettingsof the noiseparanetercanbe chaacterised
andmoddled analogusto thebehaiour obsevedonirreg-
ularinstanceslt appearsisolik ely thatourcharaterisation
genealisesto otherSLSalgorithmsfor SAT (suchasWalk-
SAT/TABU, Noveltyt, and R-Noveltyt), to randanised
systematisearctalgoithmsfor SAT (suchasSatzRAND),
andto SLS algoiithms for otherhard combiratorial prab-
lems(suchaslterated_ocal SearcHor MaxSAT ortheTrav-
elling SalespersoiProblem) Theseobsenrationsand hy-
pothesisarecurrenly underfurtherinvestigation.

Anothe directionfor future researchis of a moretheo-
retical nature:It appeas thatrelatively simpleprobailistic
modés suchasthe branhedMarkov chainmodelfor SLS
behaiour preseted here shouldbeamembleto theoretich
analysis,suchthat the full RTDs for thesemodelscanbe
charactesedanalyticallyratherthanexpeimentally, aswas
donein this study Unfortunately for the mocel proposed
here,so far we have not beenableto find in the literature
or to derive analyticcharacterisatianof the corresponéhg
RTDs. Furtherquestios of theoreticalinterest,suchasun-
derwhich corditionsthe RTDs of a Markov processcanbe
charactasedby mixturesof exporentials,appeato bealso
currerily unanswere.
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