
Solving Combinatorial Auctions using Stochastic Local Search

Holger H. Hoos
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4
hoos@cs.ubc.ca

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON M5S 3H5
cebly@cs.toronto.edu

Abstract

Combinatorial auctions (CAs) have emerged as an important
model in economics and show promise as a useful tool for
tackling resource allocation in AI. Unfortunately, winner de-
termination for CAs is NP-hard and recent algorithms have
difficulty with problems involving goods and bids beyond the
hundreds. We apply a new stochastic local search algorithm,
Casanova, to this problem, and demonstrate that it finds high
quality (even optimal) solutions much faster than recently pro-
posed methods (up to several orders of magnitude), particu-
larly for large problems. We also propose a logical language
for naturally expressing combinatorial bids in which a single
logical bid corresponds to a large (often exponential) number
of explicit bids. We show that Casanova performs much better
than systematic methods on such problems.

1 Introduction

Auctions have been the focus of increasing study in AI.
Certainly the emergence of E-commerce has made market
mechanisms an attractive means for conducting business
transactions and sales online. Furthermore, as nontrivial
multiagent systems become more prevalent, researchers are
looking to market protocols such as auctions as the basis for
the coordination of agent activities or for resource allocation
[5, 18].

When multiple items need to be sold, standard “single-
item” auction protocols may be inappropriate, particularly
when items exhibit complementarities. Specifically, when a
bidder attaches a value to a collection of goods, associating a
“value” with the individual elements is problematic. For ex-
ample, if an agent requires two adjacent gates at an airport at
a specific time—such that obtaining one slot is useless with-
out the other—attaching independent values to each is diffi-
cult. Furthermore, bidding for them individually (e.g., in se-
quence [3, 6, 8] or in parallel [2, 15]) exposes the agent to cer-
tain risks (e.g., obtaining one item without the other). Com-
binatorial auctions (CAs) have been proposed as a means of
dealing with such problems [14, 16, 18]. Instead of selling
items individually, the seller allows bids on bundles of items,
allowing bidders to deal with the entities of direct interest
and avoid the risk of obtaining incomplete bundles. Given

Copyright c
�

2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a set of combinatorial bids, the seller then decides how best
to allocate individual goods to those bundles for which bids
were placed, with the aim of maximizing revenue. Because
bundles generally overlap, this is—conceptually—a straight-
forward optimization problem, and is in fact equivalent to
weighted set packing. As a result, optimal winner determi-
nation for CAs is NP-complete [16].

A number of complete algorithms for winner determina-
tion have been proposed, including dynamic programming
models [16], and algorithms for dealing with problems with
special structure. � More recently, two proposals for applying
AI-style search techniques have been used with some suc-
cess for winner determination [7, 17]. In these proposals,
the structure of bids is exploited to restrict the search—if the
number of bids received is relatively sparse compared to the
space of possible bids, these approaches perform much better
than dynamic programming, and despite the computational
complexity of the problem, have been shown to perform rea-
sonably well on problems of moderate size.

When problem instances are large or when solutions are
needed quickly, existing algorithms are likely to prove in-
adequate. In many, if not most, resource-allocation or E-
commerce problems that are most readily modeled as CAs,
it seems apparent that real-time response to very large prob-
lems will be expected. Complete algorithms—those de-
signed to guarantee optimality—necessarily spend consider-
able time “proving” that the solution they produce is opti-
mal at the expense of providing high-quality (though perhaps
suboptimal) solutions quickly. Furthermore, as instances be-
come larger, complete algorithms will, in most cases, become
infeasible. While certain domains may require optimal solu-
tions (e.g., for legal reasons), we expect that typical applica-
tions of CAs will be ideally suited for techniques that pro-
duce high-quality, approximate solutions quickly (or within
a suitable time frame). Drawing an analogy to scheduling
research, for example, large scheduling problems are invari-
ably solved heuristically: even though the smallest improve-
ments in schedule quality can have large economic conse-
quences, the problems are simply to hard to be solved ex-

�
Generally the structures investigated (e.g., restricting the size

or structure of bids) are of interest because they allow one to ob-
tain polynomial time algorithms; the existence of such structure in
practice is often questionable (see Sandholm [17] for an overview
of some special cases).

actly. For the same reasons, heuristic and approximation
techniques for large CAs must be viewed as critical.

For these reasons, in this paper we consider the use of in-
complete methods for winner determination. Specifically, we
develop the CASLS framework for studying the solution of
combinatorial auctions using stochastic local search (SLS)
techniques. SLS has been used in AI and operations research
for many decision and optimization problems with great suc-
cess, and has generally proven more successful than system-
atic methods on a wide range of combinatorial problems. As
we demonstrate in this paper, SLS can be applied with great
success to the winner determination problem, finding high
quality solutions much more quickly than systematic tech-
niques and often finding optimal solutions. We also show that
our techniques can tackle problem instances of considerably
larger size than existing systematic methods. The nature of
SLS does not permit one to offer solution quality or perfor-
mance guarantees. � Instead we adopt the empirical method-
ology proposed by Hoos [9] to evaluate the success of SLS.

We also consider the use of logical languages to specify
schematic bids. The CA problem is traditionally formulated
by supposing that each bid is a bundle of items together with
a bid value. However, there are many circumstances in which
a bidder is indifferent between any of a number of different
items or even different bundles of items. When such sub-
stitutability exists, requiring explicit bids imposes an undue
burden on the bidder. To take one example, suppose a bid-
der wants any five of a collection of twenty items (e.g., five
airport gate slots). The number of concrete bundles the user
must bid on is over 15,000. By formulating the bid using
a logical language such requirements can be expressed very
concisely. We devise two languages for the logical specifica-
tion of bids and examine the performance of SLS on bids so
specified.

2 Combinatorial Auctions
2.1 Basic Model
We suppose a seller has a set of goods �����
	 ������ 	�� ����� to
be auctioned. Potential buyers value different subsets or bun-
dles of goods, ����� , and offer bids of the form ��� ����� where

� is the amount the buyer is willing to pay for bundle � . Given
a collection of bids � � �!�"��# �$� # � � , the seller must find an al-
location of goods to bids that maximizes revenue. We define
an allocation to be any %&�'�!�"��# �$� # � �(�)� such that the
bundles � # making up % are disjoint. The value of an alloca-
tion ��* %,+ is given by -.� � #0/1�"��# ��� # ��2 %3� . An optimal al-
location is any allocation % with maximal value (taken over
the space of allocations). The optimal winner determination
problem is that of finding an optimal allocation given a bid
set � . We call any algorithm that constructs some allocation,
not necessarily optimal, a winner determination algorithm.

Notice that complementarities are naturally taken care of
in this type of auction by allowing bidders to bid on collec-
tions of goods. Substitutability can be dealt with easily as4

Indeed, as shown in [17], optimal winner determination is not
even approximable in polytime.

well by allowing each bidder one dummy good that is in-
serted into each of her bids. If a bidder wants only one of sev-
eral subsets of goods, she can bid on each subset but add the
dummy good so that only one bid can be accepted. Because
of this, winner determination need not rely on the identities
of buyers, but only on the bids themselves.

We can view allocations in a slightly different way. Given
a bid set � , an assignment is any function 56/7�98:� , as-
signing goods to specific bids. An assignment 5 induces an
allocation %<;=�>���"� # ��� # � /�5@?7� * �"� # ��� # � +�AB� # � . Intuitively,
given an assignment 5 , we consider allocated those bids that
are “satisfied” by 5 . Unsatisfied bids (assigned less than their
full complement of goods) are ignored. We can generally
restrict our attention to assignments that only assign goods	 2 � to a bid �"� ����� if we insert a dummy bid of value zero
containing all goods.

The winner determination problem is equivalent to the
weighted set packing problem [16] and as such is NP-
complete. Algorithms for weighted set packing and related
combinatorial problems can be used for winner determina-
tions. Dynamic programming has been proposed for winner
determination [16] but requires that the space of possible bids
be enumerated, and thus is impractical for problems with a
large number of goods (its complexity is independent of the
number of actual bids). Search techniques have recently been
proposed that exploit the fact that one need really only con-
sider combinations of actual bids: if the set of actual bids is
relatively sparse, such methods can work quite well.

The CASS algorithm developed by Fujishima, Leyton-
Brown and Shoham [7] is good example of the effective-
ness of search techniques. CASS uses a depth-first search to
find optimal allocations; but clever structuring of the search
space, preprocessing, heuristic ordering methods and prun-
ing techniques allow the search to find optimal allocations
rather effectively. Not surprisingly, CASS exhibits reason-
able anytime performance as well, providing good alloca-
tions prior to finding optimal allocations. Sandholm [17]
has also explored the use of search, developing an A*-
formulation of the problem with good heuristics and prun-
ing/preprocessing techniques. In both works, suitably struc-
tured search has proven to be quite computationally effective.

A number of approximation algorithms for weighted set
packing have been developed in the literature, some based on
local search. However, the emphasis in much of this work
is on developing search strategies—or, more accurately, lo-
cal improvement strategies for suboptimal solutions—that
have provable quality guarantees rather than good practical
applicability. C See [1, 4] for examples of such results. More
practical stochastic search techniques such as tabu search and
simulated annealing have been applied to related problems,
but apparently not directly to weighted set packing.

D
Specifically, none of the work cited here on approximation al-

gorithms provides any empirical study of the actual approximation
quality obtained in practice, only worst-case quality bounds.

2.2 A Language for Schematic Bids

In many cases buyers will have complex valuations for bun-
dles of goods, reflecting the fact that certain goods or bun-
dles can be substituted for one another. When combined with
the natural complementarities captured by CAs, the set of ex-
plicit bids a buyer may need to reflect her true utility function
may be very large. For example, should she desire either 	 �
or E � , and 	 � or E � , and 	 C or E C , she must formulate eight
explicit bids (i.e., �F	 ��� 	 �G� 	 C � , etc.). Complex requirements
corresponding to a large number of explicit bids can often be
expressed very compactly using a logical language. These
bids, for example, can be captured using the logical formula

* 	 �IH E � +KJ * 	 �LH E � +7J * 	 CMH E C + .
To capture the logical structure of a set of bids, we intro-

duce two logical languages for combinatorial bid specifica-
tion. Given a set of goods � , a clause over � is any nonempty
subset of � . Clauses over a set of goods are interpreted “dis-
junctively:” when a clause is part of a combinatorial bid, it
expresses the fact that one (or more) of the goods in the clause
is desired. A clause set is any (possibly empty) set of clauses
over � . Clause sets are interpreted conjunctively: as part of
a bid, a clause set is satisfied if each of its clauses is satis-
fied. Thus, a clause set expresses the fact that at least one
good from each of its clauses is desired. N We can think of
a clause set as a logical formula in conjunctive normal form
(CNF) involving only positive literals (viewing each good as
a logical atom). A CNF bid is any clause set 5 (positive CNF
formula) together with an associated valuation � . Intuitively,
such a bid means an agent is willing to pay � for an alloca-
tion of goods that “satisfies” the formula. We call the lan-
guage of CNF bids O cnf

CA. Formally, we say a CNF bid �"P �����
is satisfied by an assignment 5Q/1�R8S� (of goods to bids)
iff 5@?7� * P�#"+UT�WV for each P�# 2 P ; that is, if at least one good	 2 P�# from each clause P�# 2 P has been assigned to �"P ����� .
The value of an assignment, or the allocation induced by an
assignment, given a set of CNF bids is defined as the sum
of the bid values of satisfied bids. Notice that simple bun-
dles bids can be expressed trivially in this language; how-
ever, substitutability is expressible far more naturally using
this logical language, obviating the need for dummy goods.

In many practical settings, a bidder will desire a subset of
a set of “identical” goods offered for auction. For instance, a
bidder may accept any five airport gates from a collection of
twenty offered for lease. Expressing bids of this type in CNF
can be cumbersome; furthermore, the size of the required set
of explicit bids grows factorially with the size of the good col-
lection of interest. For this reason, we consider an extended
language, O k-of

CA , that allows X -of clauses having the form k-
of *ZY + , where X\[^] and YW_ � is such that ` Y `ba^X . An
extended CNF bid is any set of clauses or k-of clauses. Satis-
faction of an extended bid is defined in the obvious way.

c
If obtaining more than one of these goods increases value, then

the bid should be expressed differently. The fact that obtaining mul-
tiple items from a set does not decrease value can be justified by as-
suming free disposal. Our algorithms will not assign more than one
good to a clause in any case, though our approach could be extended
to deal with undesirable items (i.e., “bads” along with goods).

3 Stochastic Local Search Applied to CAs
We now sketch a model for applying stochastic local search
methods to the winner determination problem. There are sev-
eral ways SLS techniques can be applied to CAs. Here we
focus on the CASLS family of algorithms, which searches the
space of feasible allocations (nonoverlapping subsets of bids)
by selecting in each step a bid which is currently unsatisfied
and modifying the current allocation such that this bid be-
comes satisfied. d Searching through feasible allocations has
the advantage that the search steps can be easily scored, obvi-
ating the need to assign scores to partially-satisfied bids based
on their “potential.”

Formally, the neighborhood relation for CASLS algo-
rithms is defined as follows: egf is reachable from e # iff e�f is
determined by adding a new bid � to e!# and assigning the re-
quired goods to � ; this may entail removing the goods from
other bids in e!# . As a consequence, e f is adjacent to e!# iffegf<�he #ji �k�k�@lm�k��n 2 e # /���n�op�qT�hVr� for some �sT2 e # . Thuse f will generally consist of some subset of e!# together with a
new bid � . Note that the adjacency relation is not symmetric
(e.g., to return to e!# from e f may require several steps); but
any valid (nondominated) allocation e can be reached from
any other in no more than ` eK` steps. The neighborhood rela-
tion we use is analogous to that used for set packing in [4].

3.1 Casanova

Casanova is a CASLS algorithm that bears a strong resem-
blance to the Novelty t algorithm for SAT defined by Hoos
[10], one of the best-performing algorithms for solving hard
SAT problems known to date (see also the Novelty algo-
rithm of [13]). It is based on scoring each search state us-
ing the “revenue per good” of the corresponding allocation.
Since each neighbor can be reached by adding a bid (and
adjusting), we write sc * �F+ to denote the increase in revenue
obtained by adding � . The scoring function score * �F+u�
sc * �F+wv length * �F+ normalizes the revenue by the number of
goods the bid “consumes”.x During the search process, we
define the age of each bid to be the number of steps since that
bid was last selected (since initializing the search) to be added
to a candidate solution.

Casanova starts with an empty allocation, where all goods
assigned to a dummy bid and all real bids are unsatisfied.
Then at each step, with probability wp (walk probability), a
random unsatisfied bid is selected; with probability y{z wp
we select a bid “greedily” by ranking all bids according to
their score. Then either the highest ranked bid � � or the
second-highest � � is inserted into the solution as follows: if
age * � � +�a age * � � + , insert � � ; otherwise insert � � with prob-
ability np (novelty probability) and � � with probability y{z|

Note how this search scheme is analogous to the WalkSAT al-
gorithm family for propositional satisfiability [13], where a cur-
rently satisfied clause is selected and satisfied in each search step;
however, for CA there is no secondary selection involved in choos-
ing how to satisfy a bid (there is only one way), unlike literal selec-
tion within the clause in WalkSAT.}

Revenue per good is commonly used to measure the quality of
a bid in search approaches to CAs.

np. The search proceeds for maxSteps steps and is restarted
with the empty allocation for a total of maxTries indepen-
dent searches, with the best allocation found at any step of
any search reported as the solution. Optionally, we also use
a soft restart strategy, which reinitializes the search if at least~
�

search steps have occurred since the last initialization, but
no improvement in revenue has been achieved within the last~
� v!� steps.

3.2 Explicit Bids: Empirical Evaluation
We tested Casanova on several random problem distribu-
tions, and compared its performance to CASS, the system-
atic search technique described in [7]. CASS is a complete
algorithm which, given enough time, will find an optimal so-
lution and prove its optimality. Casanova, like most SLS al-
gorithms, is incomplete. In practice, given enough time, it
may find optimal solutions, but it cannot be used to prove the
optimality of any solution it finds. Both algorithms have use-
ful anytime properties, as they generate and report intermedi-
ate solutions. But while CASS is deterministic, Casanova is
a highly stochastic algorithm. Therefore, for Casanova, the
time to achieve a given solution quality as well as the solu-
tion quality obtained after a fixed cutoff time are random vari-
ables. Both aspects have to be taken into consideration when
comparing these two algorithms.

Generally, we performed two types of experiments: For
large problem instances—those where CASS could not prove
optimality of the best solution it found within 60 CPU
seconds � —we measured the best solution obtained by CASS
within the given cutoff time for each problem instance, while
for Casanova, we measured a solution quality distribution
over 10 runs of the algorithm. The cutoff times were chosen
such that the experimental analysis could be conducted on
a sufficient number of instances and in a reasonable amount
of time; for bigger problems, we had to allow higher cut-
off times to make sure that CASS would at least report the
revenue for one candidate solution. For small problem in-
stances, where CASS could prove the optimality of the so-
lutions it found, we measured for each problem instance
CASS’s time to find the optimal solution. In order to ensure
a fair comparison, we did not measure the total running time
of CASS, which includes the time needed to “prove” the so-
lution is optimal: we ran CASS to completion to ensure an
optimal solution was found, and then determined the time at
which the solution was first enumerated. For Casanova, we
measured the distribution of the run time required to find the
optimal solution. These run-time distributions (RTDs) were
estimated from 100 runs of the algorithm for each given prob-
lem instance.

The CASS implementation we used is highly optimized
and relies heavily on caching and pruning techniques. Like-
wise, Sandholm’s bidtree algorithm [17], another systematic
algorithm for winner determination, makes use of various
preprocessing techniques. Casanova, on the other hand, has
not been optimized for speed or memory, and did not have�

All experiments were performed on a Pentium II 400Mhz with
512KB CPU cache and 128MB RAM, running Linux 2.2.15.

its parameters fine-tuned. Furthermore, we did not apply any
pruning, preprocessing, or caching techniques.

Our test sets were generated according to several prob-
lem instance distributions known from the literature [17, 7].
These distributions are: UNI-� - 	 - � , Sandholm’s uniform dis-
tribution where each instance comprises 	 goods, � bids, and
each bid consists of � goods; DEC-� - 	 - � , Sandholm’s decay
distribution; EXP-� - 	 - � , the exponential distribution intro-
duced in [7]; and BIN-� - 	 - � , the binomial distribution from
[7]. Each of our test sets contains either 10 or 100 problem
instances drawn from the same distribution, using identical
parameter values.

The results for our first series of experiments, large prob-
lem instances with a fixed cutoff time, are reported in Ta-
ble 1. For Casanova, we estimated the mean revenue from
the distributions measured for each instance, while CASS
gives a unique revenue for each instance. We report the me-
dian, the 90% percentile, and the 90%/10% percentile ratio
as a measure of variation between instances. The variation
in revenue over different runs of Casanova on the same in-
stance was generally found to be very small (variation coef-
ficient �&]]�y). Our results indicate clearly that Casanova
gives superior solution quality for most of the test sets (the
differences are up to 5.7% in median solution quality and
up to 4.8% in the 90% percentile). The only exception is
test set EXP-5-100-1000, where CASS gives a median so-
lution quality which is 1.7% better than the mean revenue
achieved by Casanova. However, the data suggests as the
number of goods increase, Casanova’s improvement relative
to CASS also increases (see, e.g., the results for UNI-3-100-
1000 and UNI-3-200-2000); in particular, for the larger EXP-
5-500-5000 instances, Casanova outperforms CASS. Finally,
it should be noted that the variation of solution quality over
the individual test sets is generally smaller for Casanova than
for CASS; this indicates that Casanova finds good solutions
more consistently.

While Table 1 summarizes our results, the underlying anal-
yses we performed are much more detailed. Figure 1 shows
a typical scatter plot of the correlation between the (mean)
revenue obtained by running CASS vs. Casanova on each in-
stance across a test set (here we illustrate the results for UNI-
3-200-10000). The data shows clearly that for almost all in-
stances Casanova finds better solutions than CASS. Further-
more, the variation in solution quality is significantly smaller
for Casanova than for CASS. Finally, there is no apparent
correlation between the solution quality achieved by the two
algorithms, suggesting that there are no differences in the in-
trinsic hardness of the instances of the test set. We also ana-
lyzed the dependence of these results on the cutoff time cho-
sen. Figure 2 shows the revenue for Casanova vs. CASS
for a typical instance of test set UNI-3-200-2000. Clearly,
Casanova gives consistently better solution quality in this
(typical) case, even when basing the comparison on the worst
performance observed for Casanova over 10 runs. It should
also be noted that for Casanova, the solution quality increases
steadily over time, while for CASS, short series of rapid im-
provements are typically followed by long quiescent phases.

test set # inst cutoff CASS Casanova np wp ���
median ����� � � ���g����� median ����� � � ���������

UNI-3-100-1000 100 10s 130396 133838 1.05 134216 136203 1.03 0.5 0.15 –
UNI-3-200-2000 100 10s 252084 257643 1.04 264814 267573 1.02 0.5 0.15 –
UNI-3-100-5000 100 30s 142947 144015 1.02 143886 144666 1.01 0.5 0.02 –
UNI-3-200-10000 100 60s 281413 284033 1.02 286164 287632 1.01 0.5 0.02 –
BIN-0.01-500-5000 10 60s 583279 594931 1.04 616708 623624 1.04 0.1 0.01 1000
DEC-0.75-500-5000 10 60s 668458 678830 1.04 675198 279919 1.01 0.5 0.02 1000
EXP-5-100-1000 10 30s 135027 135658 1.03 132705 134412 1.03 0.05 0.02 1000
EXP-5-500-5000 10 60s 647629 650302 1.02 655329 659238 1.02 0.05 0.02 1000

Table 1: Regular bids: Comparison of solution quality (revenue) achieved by CASS and Casanova when using the same fixed
cutoff time. We report statistics of the distributionacross the test set, the �{� are the �1� percentiles. For Casanova, our analysis
is based on the mean solution quality measured over 10 runs for each instance.

276000

278000

280000

282000

284000

286000

288000

290000

276000 278000 280000 282000 284000 286000 288000 290000

m
ea

n
re

ve
nu

e
fo

r
C

as
an

ov
a

�

revenue for CASS

Figure 1: Regular bids, test set UNI-3-200-10000: Corre-
lation of (mean) revenue obtained by CASS and Casanova
within a fixed cutoff time of 60 CPU sec. The two lines show
ratios of 1 and 1.025 when comparing the revenue obtained
by Casanova to that of CASS.

Finally, it can be seen that for Casanova, the variability of the
solution quality over multiple runs decreases over time. To-
gether with the fact that the maximal revenue remains con-
stant, this suggests that the best solution found by Casanova
(revenue=270075) might be the optimal solution to the prob-
lem. Overall, these observations illustrate the superior any-
time behavior of the Casanova algorithm.

In our second series of experiments, we compared the time
required by Casanova vs. CASS to find optimal solutions.
The results are reported in Table 2. For each instance, we
measured the time required by CASS to find an optimal so-
lution, and estimated the time to obtain the same revenue
with Casanova from an RTD constructed from 100 runs. The
results indicate clearly that for certain types of problems
(particularly UNI � , but also DEC �), Casanova is dramati-
cally faster than CASS in finding optimal solutions, while
for others (EXP � and BIN �) CASS is clearly superior for the
small instances tested here. However, it is remarkable that
Casanova, although incomplete, finds optimal solutions for
all instances tested.

250000

255000

260000

265000

270000

275000

1 10 100

re
ve

nu
e�

run-time [CPU sec on Pentium II, 400MHz]

Casanova
CASS

Figure 2: Regular bids, typical instance from test set UNI-
3-200-2000: revenue over run time for CASS vs. Casanova.
For Casanova, the solid line represents mean revenue and the
error bars indicate �sy stddev. The data points above and be-
low the error bars show the min and max revenue found over
10 runs. CASS does not report any revenue before reaching
1.73 CPU seconds.

It should be noted that for systematic search algorithms,
like CASS and Sandholm’s bidtree procedure, the UNI � in-
stances are extremely hard [17]. For these, Casanova finds
optimal solutions between one and three orders of magnitude
faster than CASS. � Furthermore, our results clearly indicate
that Casanova’s search time increases with problem size at a
significantly lower rate than CASS’s.

As we did with the larger instances when using fixed cutoff
times, we studied the correlation between the performance of
CASS and Casanova. Figure 3 shows a typical result; each
point corresponds to the data obtained for one instance from
the UNI-3-100-100 test set. Clearly, the mean run time re-
quired by Casanova to find an optimal solution is generally
much lower than for CASS, typically by about a factor of

�
Comparing the results reported here for CASS with those for

bidtree from [17] strongly suggests that for the instance distributions
tested here, CASS is up to one order of magnitude faster in finding
optimal solutions.

test set # inst CASS Casanova np wp ���
median ����� � � �F�g����� median ����� � � ���g�����

UNI-3-50-50 100 0.058 0.125 9.09 0.0092 0.029 7.61 0.5 0.15 –
UNI-3-75-75 100 2.211 6.222 10.91 0.030 0.197 24.99 0.5 0.15 –
UNI-3-100-100 100 96.41 446.50 27.17 0.136 0.964 36.24 0.5 0.15 –
UNI-3-50-100 100 0.487 1.40 15.20 0.091 0.543 21.29 0.5 0.15 –
UNI-3-75-150 100 125.76 409.95 17.24 1.078 3.974 25.59 0.5 0.15 –
UNI-3-20-2000 100 33.99 140.55 462.86 1.725 5.160 6.911 0.5 0.15 –
UNI-10-200-200 100 147.99 308.92 15.72 1.677 6.051 10.54 0.5 0.15 –
BIN-0.2-20-500 100 0.051 0.066 1.48 7.980 31.447 11.08 0.2 0.02 –
DEC-0.75-200-200 10 252.82 1061.04 44.62 6.236 632.35 800.747 0.5 0.02 –
EXP-5-20-500 100 0.0282 0.0315 1.21 0.852 8.689 749.01 0.5 0.05 –

Table 2: Regular bids: Comparison of time (in CPU seconds) required by CASS and Casanova for finding optimal solutions.
We report statistics of the distributionacross the test set, the � � are the �1� percentiles. For Casanova, the performance measure
is the mean time for finding an optimal solution.

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

lo
g(

cp
u-

tim
e

ca
sa

no
va

)

�

log(cpu-time cass)

Figure 3: Regular bids, test set UNI-3-100-100: Correla-
tion of CPU time (in CPU seconds) required by CASS and
Casanova for finding optimal solutions. The two lines show
factors of 1 and 1000 between the solution time for CASS and
Casanova.

1000; in fact, Casanova’s mean solution time is better than
CASS’s in all instances in this test set. Again, there is no ev-
idence of significant correlation between the performance of
the two algorithms, suggesting that the features which render
instances of this test set difficult for either of these algorithms
are different and independent.

For Casanova, we are interested not only in the distribu-
tion of mean search cost within each test set, but also in the
variation between multiple runs on a single instance. We
therefore measured RTDs for all individual instances of each
test set and characterized these by fitting functional models
to the empirical data, using the methodology developed by
Hoos and Stützle [9]. Figure 4 shows a rather typical exam-
ple of the RTDs for Casanova and CASS (the latter of which
is a step function due to the deterministic nature of the algo-
rithm) for an instance from test set UNI-3-100-100. Clearly,
Casanova is not only superior to CASS when comparing the
mean solution time, but also when comparing higher per-
centiles of the RTDs. Surprisingly, we found that for all in-

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

P
(f

in
d

op
tim

al
 s

ol
ut

io
n)

�

run-time [CPU sec on Pentium II, 400MHz]

Casanova
CASS

Figure 4: Regular bids, typical instance from test set UNI-
3-100-100: Empirical RTDs for finding the optimal solution
using Casanova vs. CASS, based on 100 runs for Casanova,
one deterministic run for CASS.

stances we checked (except for some extremely easy ones,
where the data is too discrete due to the limited precision of
CPU timing) the RTDs for Casanova could be successfully
approximated with exponential distributions. � Based on this
characterization we can conclude that with a probability of
about] �!� Casanova’s actual search cost will be smaller than
the mean solution time reported here.

3.3 Schematic Bids: Empirical Evaluation
To compare CASS and Casanova on schematic bids, we
generated schematic bids randomly and then converted the
schematic bids into a set of explicit bids on which the algo-
rithms were run. Thus, a CNF bid � with P clauses and �� These approximations were obtained by fitting the empirical
RTD-data with the cdf of an exponential distribution and validated
using the � 4 -test, a standard statistical test.

disjuncts per clause, for example, would generate �!� explicit
bids, corresponding to the selection of one good from each
clause. Each explicit bid generated from a CNF bid � also
includes a dummy good 	�� that prevents more than one ex-
plicit bid from being satisfied. Thus each explicit bid will
have P���y goods. Note that the number of explicit bids is ex-
ponential in the size of the CNF bid (and has a factorial com-
ponent for k-of bids). This restricts the number of schematic
bids we can handle. For CNF bids, we use two problem dis-
tributions. The CUNI- P - � - � - 	 problem distribution involves	 goods and � bids, each bid consisting of P clauses with �
disjuncts each. The CPOIS- - ¡ - � -	 distribution generates
bids where the number of clauses, and number of disjuncts in
each clause, are generated using a Poisson distribution (with
means and ¡ , respectively). �£¢ Thus the bids are variable
length; but unlike the EXP-distribution, we do not have a
mode at 1 (we expect the Poisson to be a more realistic model
of bidding behavior). For k-of bids, we conducted prelimi-
nary experiments on a version of the CUNI � bids, where each
CNF clause was turned into a k-of clause. These problem dis-
tributions are denoted KUNI- P - � - X - � -	 .

We performed two experimental series analogous to those
for explicit bids described above. The results are reported in
Tables 3 and 4. For the CUNI � test sets, Casanova achieved
between 15% and 35% more revenue than CASS for an iden-
tical cutoff time, with a clear trend for this difference in per-
formance to increase with problem size. Casanova’s perfor-
mance for the CPOIS � test sets is equally impressive. For
the second series of experiments, the problem size was re-
stricted by the time required by CASS to find optimal so-
lutions and prove optimality. ��� Our results show that the
CUNI � instances—which are solved by Casanova in less
than one CPU second—are extremely hard for CASS, which
requires a median time of more than 10 CPU minutes. For
the CPOIS � as well as for the KUNI � instances we observe
a similar advantage of Casanova over CASS. Generally, the
variation of search cost across the test sets is significantly
lower for Casanova than for CASS, indicating a more robust
performance.

3.4 Interpretation
Casanova outperforms CASS on large problem instances
with fixed cutoff times (over various distributions); and on
smaller instances, though incomplete, Casanova generally
finds optimal solutions. On uniform problems, Casanova
finds optimal solutions much faster than CASS. For other
problem types, such as the one based on exponential bid-
length distributions introduced in [7], the improvement
shown by Casanova is less significant, and for smaller prob-
lem instances, CASS clearly has an advantage. These perfor-
mance differences seem to be explained by the distribution
of bid lengths and prices. While the UNI � instances have no� � Specifically, the number of clauses ¤L¥Q¦¨§ Pois ©«ªs¬ to ensure
a positive ¤ ; similarly for the number of goods per clause.���

Again, we emphasize that we compare to the time required by
CASS to find the optimal solution, not to run to completion and
prove optimality.

variation in bid length and relatively low variation of prices,
the EXP � instances are characterised by an extreme varia-
tion in both bid length and prices. We found that the varia-
tion coefficient of bid prices from all distributions is corre-
lated with the performance difference: increased efficiency
of Casanova is observed for lower values of the variation co-
efficient. This observation is confirmed by the results we ob-
tained for the CNF instances, which are characterised by a
low variation in bid prices and clusters of bids with identical
price—here Casanova outperforms CASS significantly. This
fact is likely to be of great practical import: large allocation
problems will often be characterized by large numbers of bids
with identical prices (corresponding to large-scale substitu-
tion effects) and many prices with reasonably low variability.

The experimental results presented here also indicate that
Casanova’s performance improves relative to CASS’s with
growing problem size. This suggests that the preprocess-
ing and pruning techniques which are crucial for the ef-
ficiency of the systematic search algorithms are more ad-
versely affected by growing problem size than the stochas-
tic local search heuristics used by Casanova. Overall, our
results suggest that for solving large problem instances with
several hundred goods and thousands of bids, SLS algorithms
like Casanova offers considerable advantages over current
systematic search procedures. Finally, SLS algorithms like
Casanova offer another important advantage over determin-
istic systematic search methods in that they can be paral-
lelized easily with significant speedup (given the approxi-
mately exponentially-distributed running time).

4 Concluding Remarks
We have developed the CASLS framework for applying
stochastic local search to combinatorial auction winner de-
termination and have demonstrated the effectiveness of
Casanova, a specific instantiation of this model. While the
initial results presented here are very encouraging, we be-
lieve that CASLS offers hope for much better performance—
through both the solution of larger problem instances and
the provision of better anytime behavior—than demonstrated
here. We have investigated only one, relatively straightfor-
ward SLS method in this paper, and have done very little pa-
rameter tuning. Our future investigations will include the ex-
amination of better scoring functions, different problem dis-
tributions and the use of more sophisticated SLS techniques.
In particular, Iterated Local Search algorithms [12] appears
to hold significant promise.

We also intend to explore techniques for solving problems
involving schematic bids without explicit conversion to ex-
plicit form. To do this we will exploit the strong analogy be-
tween CAs with schematic bids and propositional satisfiabil-
ity problems. This holds promise for significantly extending
the scope and scale of problems that can be effectively dealt
with. We are also currently investigating new classes of bid-
ding languages which offer natural ways of expressing com-
mon utility functions, at the same time offering structure that
can be exploited computationally.

Finally, we hope to extend our approach to deal with more

test set # inst cutoff CASS Casanova np wp �g�
median ����� � � �F������� median ����� � � �g�������

CUNI-3-50-50 100 10s 55015 58479 1.15 63360 65745 1.09 0.5 0.15 –
CUNI-3-100-100 100 60s 104868 108687 1.10 127011 130440 1.06 0.5 0.15 –
CUNI-3-50-250 100 60s 52245 56943 1.20 70158 70551 1.02 0.5 0.15 –
CPOIS-2-50-50 100 10s 53204 56397 1.15 60398 63115 1.10 0.5 0.15 –
CPOIS-2-100-100 100 60s 99238 105275 1.13 117889 122673 1.0691 0.5 0.15 –
CPOIS-2-50-250 100 60s 53066 56094 1.13 69608 70755 1.03 0.5 0.15 –
CPOIS-2-100-500 100 60s 101568 105941 1.10 135973 138266 1.03 0.5 0.15 –
KUNI-2-4-2-100-100 10 60s 48812 50608 1.20 59938 63194 1.09 0.5 0.15 –

Table 3: CNF and k-of bids: Comparison of solution quality (revenue) achieved by CASS and Casanova when using the same
fixed cutoff time.

test set # inst CASS Casanova np wp � �
median � ��� � � � �g� ��� median � ��� � � � �g� ���

CUNI-3-20-20 100 791.11 2904.89 180.58 0.050 0.138 5.24 0.5 0.15 –
CPOIS-2-20-20 100 1.855 9.355 41.15 0.240 1.048 17.74 0.5 0.15 –
KUNI-2-4-2-20-20 100 24.364 48.690 72.40 0.474 4.678 24.40 0.5 0.15 –

Table 4: CNF and k-of bids: Comparison of time (in CPU seconds) required by CASS and Casanova for finding optimal solu-
tions.

sophisticated domains, for example, those involving a tem-
poral component such as scheduling tasks [18], and multi-
item combinatorial auctions of the type explored in [11].

Acknowledgements
Thanks are due to Kevin Leyton-Brown, Tuomas Sandholm,
Yoav Shoham, and Moshe Tennenholtz for their comments
and general discussion of these issues. We are especially in-
debted to Kevin for his CASS software and for his very gen-
erous and helpful support in adapting the code to our needs.
This research was supported by IRIS Phase-III Grant “Pref-
erence Elicitation and Interactive Optimization.”

References
[1] E. Arkin and R. Hassin. On local search for weighted k-set

packing. ESA-97, pp.13–22, Graz, 1997.

[2] S. Bikhchandani and J. Mamer. Competitive equilibria in and
exchange economy with indivisibilities. J. Econ. Th., 74:385–
413, 1997.

[3] C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential
auctions for allocation of resources with complementarities.
IJCAI-99, pp.527–534, Stockholm, 1999.

[4] B. Chandra and M. Halldórsson. Greedy local improvement
and weighted set packing approximation. SODA-99, pp.169–
176, Baltimore, 1999.

[5] S. Clearwater, ed. Market-based Control: A Paradigm for
Distributed Resource Allocation. World Scientific, 1995.

[6] R. Engelbrecht-Wiggans and R. Weber. A sequential auction
involving assymetrically informed bidders. Int. J. Game Th.,
12:123–127, 1983.

[7] Y. Fujisima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions. IJCAI-
99, pp.548–553, Stockholm, 1999.

[8] D. Hausch. Multi-object auctions: Sequential vs. simultane-
ous sales. Mgt. Sci., 32(12):1599–1610, 1986.

[9] H. Hoos and T. Stützle. Evaluating Las Vegas Algorithms–
Pitfalls and Remedies. UAI-98, pp.238–245, Madison, 1998.

[10] H. Hoos. On the Run-time Behaviour of Stochastic Local
Search Algorithms for SAT. AAAI-99, pp.661–666, Orlando,
FL, 1999.

[11] K. Leyton-Brown and Y. Shoham and M. Tennenholtz. An
algorithm for multi-unit combinatorial auctions. to appear,
AAAI-2000, Austin, TX, 2000.

[12] O. Martin, S. Otto, E. Felten. Large-step Markov chains for the
traveling salesman problem. Compl. Sys., 5:299–326, 1991.

[13] D. McAllester, H. Kautz, B. Selman. Evidence for invariants
in local search. AAAI-97, 321–326, Providence, RI, 1997.

[14] S. Rassenti, V. Smith, and R. Bulfin. A combinatorial auc-
tion mechanism for airport time slot allocation. Bell J. Econ.,
13:402–417, 1982.

[15] M. Rothkopf. Bidding in simultaneous auctions with a con-
straint on exposure. Op. Res., 25:620–629, 1977.

[16] M. Rothkopf, A. Pekeč, and R. Harstad. Computationally
manageable combinatorial auctions. Mgt. Sci., 44(8):1131–
1147, 1998.

[17] T. Sandholm. An algorithm for optimal winner determination
in combinatorial auctions. IJCAI-99, pp.542–547, Stockholm,
1999. Extended , Washington Univ. Report WUCS-99-01.

[18] M. Wellman, W. Walsh, P. Wurman, and J. MacKie-Mason.
Auction protocols for decentralized scheduling. Games and
Econ. Behavior, 1999. To appear.

