
Automatic Generation of Efficient Domain-Optimized

Planners from Generic Parametrized Planners

Mauro Vallati1, Chris Fawcett2, Alfonso E. Gerevini1,
Holger H. Hoos2, and Alessandro Saetti1

1 Dipartimento di Ingegneria dell’Informazione
Università di Brescia, Italy

{mauro.vallati,gerevini,saetti}@ing.unibs.it
2 Computer Science Department

University of British Columbia, Canada
{fawcettc,hoos}@cs.ubc.ca

Abstract. When designing state-of-the-art, domain-independent planning sys-
tems, many decisions have to be made with respect to the domain analysis or
compilation performed during preprocessing, the heuristic functions used during
search, and other features of the search algorithm. These design decisions can
have a large impact on the performance of the resulting planner. By providing
many alternatives for these choices and exposing them as parameters, planning
systems can in principle be configured to work well on different domains. How-
ever, usually planners are used in default configurations that have been chosen be-
cause of their good average performance over a set of benchmark domains, with
limited experimentation of the potentially huge range of possible configurations.
In this work, we propose a general framework for automatically configuring a pa-
rameterized planner, showing that substantial performance gains can be achieved.
We apply the framework to the well-known LPG planner, which has 62 parame-
ters and over 6.5 × 1017 possible configurations. We demonstrate that by using
this highly parameterized planning system in combination with the off-the-shelf,
state-of-the-art automatic algorithm configuration procedure ParamILS, the plan-
ner can be specialized obtaining significantly improved performance.

Introduction

When designing state-of-the-art, domain-independent planning systems, many deci-
sions have to be made with respect to the domain analysis or compilation performed
during preprocessing, the heuristic functions used during search, and several other fea-
tures of the search algorithm. These design decisions can have a large impact on the
performance of the resulting planner. By providing many alternatives for these choices
and exposing them as parameters, highly flexible domain-independent planning sys-
tems are obtained, which then, in principle, can be configured to work well on different
domains, by using parameter settings specifically chosen for solving planning problems

Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms for Solv-
ing Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

111

from each given domain. However, usually such planners are used with default config-
urations that have been chosen because of their good average performance over a set
of benchmark domains, based on limited exploration within a potentially vast space of
possible configurations. The hope is that these default configurations will also perform
well on domains and problems beyond those for which they were tested at design time.

In this work, we advocate a different approach, based on the idea of automatically
configuring a generic, parameterized planner using a set of training planning problems
in order to obtain planners that perform especially well in the domains of these training
problems. Automated configuration of heuristic algorithms has been an area of intense
research focus in recent years, producing tools that have improved algorithm perfor-
mance substantially in many problem domains. To our knowledge, however, these tech-
niques have not yet been applied to the problem of planning.

While our approach could in principle utilize any sufficiently powerful automatic
configuration procedure, we have chosen the FocusedILS variant of the off-the-shelf,
state-of-the-art automatic algorithm configuration procedure ParamILS [8]. At the core
of the ParamILS framework lies Iterated Local Search (ILS), a well-known and versatile
stochastic local search method that iteratively performs phases of a simple local search,
such as iterative improvement, interspersed with so-called perturbation phases that are
used to escape from local optima. The FocusedILS variant of ParamILS uses this ILS
procedure to search for high-performance configurations of a given algorithm by eval-
uating promising configurations, using an increasing number of runs in order to avoid
wasting CPU-time on poorly-performing configurations. ParamILS also avoids wast-
ing CPU-time on low-performance configurations by adaptively limiting the amount of
runtime allocated to each algorithm run using knowledge of the best-performing con-
figuration found so far.

ParamILS has previously been applied to configure state-of-the-art solvers for SAT
[7] and mixed integer programming (MIP) [9]. This resulted in a version of the SAT
solver Spear that won the first prize in one category of the 2007 Satisfiability Modulo
Theories Competition [7]; it further contributed to the SATzilla solvers that won prizes
in 5 categories of the 2009 SAT Competition and led to large improvements in the
performance of CPLEX on several types of MIP problems [9]. Differently from SAT
and MIP, in planning, explicit domain specifications are available through a planning
language, which creates more opportunities for planners to take problem structure into
account in parameterized components (e.g., specific search heuristics). This can lead to
more complex systems, with greater opportunities for automatic parameter configura-
tion, but also greater challenges (bigger, richer design spaces can be expected to give
rise to trickier configuration problems).

One such planning system is LPG (e.g., [3, 4]). Based on a stochastic local search
procedure, LPG is a well-known efficient and versatile planner with many components
that can be configured very flexibly via 62 exposed configurable parameters, which
jointly give rise to over 6.5×1017 possible configurations. The default settings of these
parameters have been chosen to allow the system to work well on a broad range of
domains. In this work, we used ParamILS to automatically configure LPG on various
propositional domains; LPG’s configuration space is one of the largest considered so
far in applications of ParamILS.

2

112

We tested our approach using ParamILS and LPG on 11 domains of planning prob-
lems used in previous international planning competitions (IPC-3–6). Our results demon-
strate that by using automatically determined, domain-optimized configurations (LPG.sd),
substantial performance gains can be achieved compared to the default configuration
(LPG.d). Using the same automatic configuration approach to optimize the performance
of LPG on a merged set of benchmark instances from different domains also results in
improvements over the default, but these are less pronounced than those obtained by
automated configuration for single domains.

We also investigated to which extent the domain-optimized planners obtained by
configuring the general-purpose LPG planner perform well compared to other state-of-
the-art domain-independent planners. Our results indicate that, for the class of domains
considered in our analysis, LPG.sd is significantly faster than LAMA [10], the top-
performing propositional planner of the last planning competition (IPC-6).3

Moreover, in order to understand how well our approach works compared to state-
of-the-of-art systems in automated planning with learning, we have experimentally
compared LPG.sd with the planners of the learning track of IPC-6, showing that in
terms of speed and usefulness of the learned knowledge our system outperforms the
respective IPC-6 winners PbP.s [5] and ObtuseWedge [11].

While in this work, we focus on the application of the proposed framework to the
LPG planner, we believe that similarly good results can be obtained for highly parame-
terized versions of other existing planning systems. In general, our results suggest that
in the future development of efficient planning systems, it is worth including many
different variants and a wide range of settings for the various components, instead of
committing at design time to particular choices and settings, and to use automated pro-
cedures for finding configurations of the resulting highly parameterized planning sys-
tems that perform well on the problems arising in a specific application domain under
consideration.

In the rest of this paper, we first provide some background and further information
on LPG and its parameters. Next, we describe in detail our experimental analysis and
results, followed by concluding remarks and a discussion of some avenues for future
work.

The Generic Parameterized Planner LPG

In this section, we provide a very brief description of LPG and its parameters. LPG
is a versatile system that can be used for plan generation, plan repair and incremental
planning in PDDL2.2 domains [6]. The planner is based on a stochastic local search pro-
cedure that explores a space of partial plans represented through linear action graphs,
which are variants of the very well-known planning graph [1].

Starting from the initial action graph containing only two special actions repre-
senting the problem initial state and goals, respectively, LPG iteratively modifies the

3 The version of LAMA used in the competition has only four Boolean parameters exposed,
which its authors recommend to leave unchanged; it is therefore not suitable for studying au-
tomatic parameter configuration. A newer, much more flexibly configurable version of LAMA

has become available very recently, as part of the Fast Downward system, which we are study-
ing in ongoing work.

3

113

1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A,σ);
5. Weight the elements of N(A,σ) using a heuristic function E;
6. Choose a graph A� ∈ N(A,σ) according to E and noise n;
7. Set A to A�;
8. Return A.

Fig. 1. High-level description of LPG’s search procedure.

current graph until there is no flaw in it or a certain bound on the number of search
steps is exceeded. Intuitively, a flaw is an action in the graph with a precondition that is
not supported by an effect of another action in the graph. LPG attempts to resolve flaws
by inserting into or removing from the graph a new or existing action, respectively. Fig-
ure 1 gives a high-level description of the general search process performed by LPG.
Each search step selects a flaw σ in the current action graph A, defines the elements
(modified action graphs) of the search neighborhood of A for repairing σ, weights the
neighborhood elements using a heuristic function E, and chooses the best one of them
according to E with some probability n, called the noise parameter, and randomly with
probability 1 − n. Because of this noise parameter, which helps the planner to escape
from possible local minima, LPG is a randomized procedure.

LPG is a highly parameterized planner with 62 exposed configurable parameters,
which control the possible settings of different components in the system. These pa-
rameters can be grouped into seven distinct categories, each of which corresponds to a
different component of LPG:

P1 Preprocessing information (e.g., mutually exclusive relations between actions).

P2 Search strategy (e.g., the use and length of a “tabu list” for the local search, the
number of search steps before restarting a new search, and the activation of an
alternative systematic best-first search procedure).

P3 Flaw selection strategy (i.e., different heuristics for deciding which flaw should be
repaired first).

P4 Search neighborhood definition (i.e., different ways of defining/restricting the basic
search neighborhood).

P5 Heuristic function E (i.e., a class of possible heuristics for weighting the neighbor-
hood elements, with some variants for each of them).

P6 Reachability information used in the heuristic functions and in neighborhood def-
initions (e.g., the minimum number of actions required to achieve an unsupported
precondition from a given state).

P7 Search randomization (i.e., different ways of statically and dynamically setting the
noise value).

4

114

Domain Configuration P1 P2 P3 P4 P5 P6 P7 Total
Blocksworld 1 1 2 1 5 1 2 13
Depots 2 2 1 1 2 2 2 12
Gold-miner 2 3 0 1 4 2 1 13
Matching-BW 1 2 2 1 3 0 2 11
N-Puzzle 4 5 3 2 14 5 2 35
Rovers 0 1 0 0 0 2 1 4
Satellite 2 7 3 1 11 5 3 32
Sokoban 0 1 1 1 1 1 2 7
Zenotravel 3 5 2 3 11 5 3 32
Merged set 0 1 0 1 5 2 2 11
Number of parameters 6 15 8 6 17 7 3 62

Table 1. Number of parameters of LPG that are changed by ParamILS in the configurations
computed for nine domains independently considered (2nd–10th lines) and jointly considered
(“merged set” line). Each P1–P7 column corresponds to a different parameter category (or planner
component).

The last line of Table 1 shows the number of LPG’s parameters that fall into each of
these seven categories (planner components).

Experimental Analysis

In this section, we present the results of a large experimental study examining the ef-
fectiveness of the automated approach outlined in the introduction. While our analysis
is focused on planning speed, we also report preliminary results on plan quality.

Benchmark domains and instances

In our first set of experiments, we considered problem instances from eight known
benchmark domains used in the last four international planning competitions (IPC-3–
6), Depots, Gold-miner, Matching-BW, N-Puzzle, Rovers, Satellite, Sokoban,
and Zenotravel, plus the well-known domain Blocksworld. These domains were se-
lected because they are not trivially solvable and random instance generators are avail-
able for them, such that large training and testing sets of instances can be obtained.

For each domain, we used the respective random instance generator to derive three
disjoint sets of instances: a training set with 2000 relatively small instances (bench-
mark T), a testing set with 400 middle-size instances (benchmark MS), and a testing set
with 50 large instances (benchmark LS). The size of the instances in training set T was
decided such that the instances may be solved by the default configuration of LPG in
20 to 40 CPU seconds on average. For testing sets MS and LS, the size of the instances
was defined such the instances may on average be solved by the default configuration of
LPG in 50 seconds to 2 minutes and in 3 minutes to 7 minutes, respectively. This does
not mean that all our problem instances can be solved by LPG, since we have just de-
cided the size of the instances according to the performance of the default configuration,
and then we have used random generators for deriving the actual instances.

5

115

For the experiments comparing automatically determined configurations of LPG

against the planners that entered the learning track of IPC-6, we employed the same
instance sets as those used in the competition.

Automated configuration using ParamILS

For all configuration experiments we used the FocusedILS variant of ParamILS version
2.3.5 with default parameter settings. Using the default configuration of LPG as the
starting point for the automated configuration process, we concurrently performed 10
independent runs of FocusedILS per domain, using random orderings of the training
set instances.4 Each run of FocusedILS had a total CPU-time cutoff of 48 hours, and a
cutoff time of 60 CPU seconds was used for each run of LPG performed during the con-
figuration process. The objective function used by ParamILS for evaluating the quality
of configurations was mean runtime, with timeouts and crashes assigned a penalized
runtime of ten times the per-run cutoff. Out of the 10 configurations produced by these
runs, we selected the configuration with the best training set performance (as measured
by FocusedILS) as the final configuration of LPG for the respective domain.

Additionally, we used FocusedILS for optimizing the configuration of LPG across
all of the selected domains together. As with our approach for individual domains, we
performed 10 independent runs of FocusedILS starting from the default configuration;
again, the single configuration with the best performance on the merged training set as
measured by FocusedILS was selected as the final result of the configuration process.

The final configurations thus obtained were then evaluated on the two testing sets
of instances (benchmarks MS and LS) for each domain. We used a timeout of 600 CPU
seconds for benchmark MS, and 900 CPU seconds for benchmark LS.

For convenience, we define the following abbreviations corresponding to configu-
rations of LPG:

– Default (LPG.d): The default configuration of LPG.
– Random (LPG.r): Configurations selected independently at random from all possi-

ble configurations of LPG.
– Specific (LPG.sd): The specific configuration of LPG found by ParamILS for each

domain.
– Merged (LPG.md): The configuration of LPG obtained by running ParamILS on

the merged training set.

Table 1 shows, for each parameter category of LPG, the number of parameters that
are changed from their defaults by ParamILS in the derived domain-optimized config-
urations and in the configuration obtained for the merged training set.

Empirical result 1 Domain-optimized configurations of LPG differ substantially from
the default configuration.

Moreover, we noticed that usually the changed configurations are considerably different
from each other.

4 Multiple independent runs of FocusedILS were used, because this approach can help amelio-
rate stagnation of the configuration process occasionally encountered otherwise.

6

116

Domain LPG.d LPG.r
Score % solved Score % solved

Blocksworld 99.00 99 0.00 16
Depots 86.00 86 0.00 18
Gold-miner 91.00 91 0.00 19
Matching-BW 14.00 14 0.15 9
N-Puzzle 59.10 89 34.75 86
Rovers 85.81 100 31.21 53
Satellite 96.02 100 18.99 37
Sokoban 73.20 74 2.06 28
Zenotravel 98.70 100 2.47 24
Total 702.8 83.7 89.6 32.2

Table 2. Speed scores and percentage of problems solved by LPG.d and LPG.r for 100 problems
in each of 9 domains of benchmark MS.

Results on specific domains

The performance of each configuration was evaluated using the performance score func-
tions adopted in IPC-6 [2]. The speed score of a configuration C is defined as the sum
of the speed scores assigned to C over all test problems. The speed score assigned to C
for a planning problem p is 0 if p is unsolved and T ∗

p /T (C)p otherwise, where T ∗
p is the

lowest measured CPU time to solve problem p among those of the compared solvers,
and T (C)p denotes the CPU time required by C to solve problem p. Higher values for
the speed score indicate better performance.

Table 2 shows the results of the comparison between LPG.d and LPG.r, which we
conducted to assess the performance of the default configuration on our benchmarks.

Empirical result 2 LPG.d is considerably faster and solves many more problems than
LPG.r.

Specifically, LPG.r solves very few problems in 6 of the 9 domains we considered, while
LPG.d solves most of the considered problems in all but one domain. This observation
also suggests that the default configuration is a much better starting point for deriving
configurations using ParamILS than a random configuration. In order to confirm this
intuition, we performed an additional set of experiments using the random configuration
as starting point. As expected, the resulting configurations of LPG perform much worse
than LPG.sd, and even sometimes perform worse than LPG.d.

Figure 2 provides results in the form of a scatterplot, showing the performance of
LPG.sd and LPG.d on the individual benchmark instances. We consider all instances
solved by at least one of these planners. Each cross symbol indicates the CPU time
used by LPG.d and LPG.sd to solve a particular problem instance of benchmarks MS and
LS. When a cross appears under (above) the main diagonal, LPG.sd is faster (slower)
than LPG.d; the distance of the cross from the main diagonal indicates the performance
gap (the greater the distance, the greater the gap). The results in Figure 2 indicate that
LPG.sd performs almost always better than LPG.d, often by 1–2 orders of magnitude.

7

117

 0.1

 1

 10

 100

 U

 0.1 1 10 100 U
CPU seconds of LPG.d

CPU seconds of LPG.sd

 0.1

 1

 10

 100

 U

 0.1 1 10 100 U
CPU seconds of LPG.d

CPU seconds of LPG.sd

Fig. 2. CPU time (log. scale) of LPG.sd with respect to LPG.d for problems of benchmarks MS
(upper plot) and LS (bottom plot). U corresponds to runs that timed out with the given runtime
cutoff.

Table 3 shows the performance of LPG.d, LPG.md, and LPG.sd for each domain
of benchmarks MS and LS in terms of speed score, percentage of solved problems and
average CPU time (computed over the problems solved by all the considered configu-
rations). These results indicate that LPG.sd solves many more problems, is on average
much faster than LPG.d and LPG.md, and that for some benchmark sets LPG.sd always
performs better than or equal to the other configurations, as the IPC score of LPG.sd is
sometimes the maximum score (i.e., 400 points for benchmark MS, and 50 for bench-
mark LS).5

Empirical result 3 LPG.sd performs much better than both LPG.d and LPG.md.

Interestingly, the results in Figure 2 and Table 3 also indicate that, for larger test
problems, the performance gap between LPG.sd and LPG.d tends to increase: For ex-

5 Additional results (not detailed here for lack of space) using 2000 test problems for each of the
nine considered domains of the same size as those used for the training indicate a performance
behavior very similar to the one observed for the MS and LS instances considered in Table 3.

8

118

Domain MS problems
Speed score (% solved) Average CPU time

LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd
Blocksworld 21.3 (98.8) 74.8 (100) 400 (100) 105.3 28.17 4.29
Depots 124 (90.3) 164 (99) 345 (98.5) 78.1 42.4 5.7
Gold-miner 18.5 (90.5) 232 (100) 374 (100) 94.4 7.4 1.6
Matching-BW 9.74 (15.8) 72.5 (55.3) 375 (97.8) 93.8 42.3 5.6
N-Puzzle 20.1 (85) 27.0 (86.3) 347 (86.8) 321.0 247 31.20
Rovers 131 (100) 162 (100) 400 (100) 72.2 52.9 21.2
Satellite 104 (100) 111 (100) 400 (100) 64.0 59.2 1.3
Sokoban 26.7 (75.8) 191 (94.8) 335 (96.5) 24.6 6.15 1.19
Zenotravel 49.1 (100) 97.2 (99.8) 397 (100) 103.7 57.6 11.1
All above 280.3 (83.3) 304.3 (91.5) – 115.4 38.8 –

Domain LS problems
Speed score (% solved) Average CPU time

LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd
Blocksworld 5.12 (100) 11.1 (100) 50 (100) 320.9 144.8 30.8
Depots 3.91 (100) 17.4 (100) 44.1 (98) 326.6 181.1 25.7
Gold-miner 1.54 (100) 32.6 (100) 35.9 (100) 327 21.0 21.2
Matching-BW 1.51 (86) 15.2 (94) 47.4 (100) 225 72.3 1.90
N-Puzzle 0.66 (100) 1.41 (100) 50 (100) 344 158 4.44
Rovers 9.61 (100) 48.5 (100) 45.6 (100) 248 48.3 52.7
Satellite 9.43 (100) 28.8 (100) 50 (100) 263 85.4 48.9
Sokoban 4.55 (62) 24.0 (82) 38.7 (94) 70.8 7.00 4.23
Zenotravel 0.52 (100) 4.26 (100) 50 (100) 294 42.9 2.90
All above 12.6 (96) 49.7 (100) – 309.7 81.3 –

Table 3. Speed score, percentage of solved problems, and average CPU time of LPG.d, LPG.md

and LPG.sd for 400 MS and 50 LS instances in each of 9 domains, independently considered, and
in all domains (last line).

ample, on the middle-size instances of Matching-BW, LPG.sd is on average about one
order of magnitude faster than LPG.d, while on the largest instances it has an average
performance advantage of more than two orders of magnitude.

Empirical result 4 LPG.sd is faster than LPG.d also for instances considerably larger
than those used for deriving the planner configurations.

This observation indicates that the approach used for deriving configurations scales well
with increasing problem instance size.

As can be seen from the last line of Table 3, LPG.md performs usually better than
LPG.d on the individual domain test sets. Moreover, it performs better than LPG.d
on the sets obtained by merging the test sets for all individual domains, which indicates
that by using a merged training set, we successfully produced a configuration with good
performance on average across all selected domains.

9

119

Domain LPG.sd vs. LAMA LPG.sd vs. PbP.s
∆-speed ∆-solved ∆-speed ∆-solved

Blocksworld +377.4 +52 +361.7 ±0
Depots +393.9 +381 +211.1 +54
Gold-miner +400 +400 +395.6 +319
Matching-BW +227.8 +118 +40.7 +330
N-Puzzle +255.7 +4 +279.8 −20
Rovers +392.9 +14 +313.4 +9
Satellite +388.1 +157 +253.6 +9
Sokoban +340.1 +278 −41.6 +5
Zenotravel +368.3 ±0 −282.1 +8
Total +3144 +1404 +1532 +714

Table 4. Performance gap between LPG.sd and LAMA (2nd-3rd columns) and LPG.sd and
PbP.s (4-5th columns) for 400 MS problems in each of 9 domains in terms of speed score and
number of solved problems.

Empirical result 5 LPG.md performs better than LPG.d.

Next, we compared our LPG configurations with state-of-the-art planning systems,
namely, the winner of the IPC-6 classical track LAMA (configured to stop when the
first solution is computed), and the winner of the IPC-6 learning track, PbP. The per-
formance gap between LPG.sd and these planners for MS problems are shown in Table 4,
where we report the speed score and the number of solved problems (positive numbers
mean that LPG.sd performs better). These experimental results indicate clearly that
our configurations of LPG are significantly faster and solve many more problems than
LAMA.

Empirical result 6 LPG.sd performs significantly better than LAMA on well-known
non-trivial domains.

Moreover, LPG.sd outperforms PbP.s in most of the selected domains: only for
Sokoban and Zenotravel PbP.s obtains a better speed score (but performs slightly
worse in terms of solved problems), and only for N-Puzzle it solves more problems (but
it is generally slower). Interestingly, for these domains the multiplanner of PbP.s runs a
single planner with an associated set of macro-actions; these macro-actions clearly help
to significantly speed up the search phase of this planner.

Empirical result 7 For the considered well-known benchmark domains, LPG.sd per-
forms significantly better than PbP.s.

Results on learning track of IPC-6

To evaluate the effectiveness of our approach against recent learning-based planners,
we compared our LPG.sd configurations with planners that entered the learning track

10

120

Planner # unsolved Speed score ∆-score
LPG.sd 38 93.23 +59.7

ObtuseWedge 63 63.83 +33.58
PbP.s 7 69.16 −3.54
RFA1 85 11.44 –
Wizard+FF 102 29.5 +10.66
Wizard+SGPlan 88 38.24 +7.73

Table 5. Performance of the top 5 planners that took part in the learning track of IPC-6 plus
LPG.sd, in terms of the number of unsolved problems, speed score and score gap with and with-
out using the learned knowledge for the problems of the learning track of IPC-6.

of IPC-6, based on the same performance criteria as used in the competition. Table 5
shows performance in terms of the number of unsolved problems, speed score, and per-
formance gap with and without using the learned knowledge (positive numbers mean
that the planner performs better using the knowledge); the results in this table indicate
that LPG.sd performs better than every solver that participated in the IPC-6 learning
track, including the version of PbP.s which won the IPC-6 learning track. Although
LPG.sd solves fewer problems than PbP (obtaining zero score for each unsolved prob-
lem), it achieves the best score as it is the fastest planner on 3 domains (Gold-miner,
N-Puzzle and Sokoban), and it performs close to PbP.s on one additional domain
(Matching-BW). Furthermore, the results in Table 5 indicate that the performance gap
between LPG.sd and LPG.d is significant, and is greater than the gap achieved by
ObtuseWedge, the planner recognised as best learner of the IPC-6 competition.

Empirical result 8 According to the evaluation criteria of IPC-6, LPG.sd performs
better than the winners of the learning track for speed and best-learning.

Further preliminary results on plan quality

Although the experimental analysis in this paper focuses on planning speed, we give
some preliminary results indicating that automatic algorithm configuration is also promis-
ing for optimizing plan quality. Additional experiments to confirm this observation are
in progress. Figure 3 shows results on two benchmark domains (100 problems each
from the MS set) in terms of relative solution quality of LPG.sd and LPG.d over CPU
time spent by the planner, where, in this context, LPG.sd refers to LPG configured for
optimizing plan quality. Training was conducted based on LPG runs with cut-off of 2
CPU minutes, with the objective to minimise the best plan cost (number of actions)
within that time limit (LPG is an incremental planner computing a sequence of plans
with increasing quality). The quality score of a configuration is defined analogously to
the runtime score previously described, but using plan cost instead of CPU time.

Overall, these results indicate that, at least for the domains considered here, LPG.sd
always finds considerably better plans than LPG.d, unless small CPU-time limits are
used, in which case they perform similarly.

11

121

 0

 20

 40

 60

 80

 100

 1 10 100 900

Quality score

LPG.d (Depots)
LPG.sd (Depots)
LPG.d (Gold-miner)
LPG.sd (Gold-miner)

Fig. 3. Quality score of LPG.d and LPG using domain-optimized configurations for computing
high-quality plans w.r.t. an increasing CPU-time limit (x-axis: ranging from 1 to 900 seconds) for
domains Depots and Gold-miner.

Conclusions and Future Work

We have investigated the application of computer-assisted algorithm design to auto-
mated planning and proposed a framework for automatically configuring a generic plan-
ner with several parameterized components to obtain specialized planners that work ef-
ficiently on given domains. In a large-scale empirical analysis, we have demonstrated
that our approach, when applied to the state-of-the-art, highly parameterized LPG plan-
ning system, effectively generates substantially improved domain-optimized planners.

Our work and results also suggest a potential method for testing new heuristics and
algorithm components, based on measuring the performance improvements obtained by
adding them to an existing highly-parameterized planner followed by automatic con-
figuration for specific domains. The results may not only reveal to which extent new
design elements are useful, but also under which circumstances they are most effective
– something that would be very difficult to determine manually.

We see several avenues for future work. Concerning the automatic configuration
of LPG, we are conducting an experimental analysis about the usefulness of the pro-
posed framework for identifying configurations improving the planner performance in
terms of plan quality, of which in this paper we have given preliminary results. More-
over, we plan to apply the framework to metric-temporal planning domains. Finally,
we believe that our approach can yield good results for other planners that have been
rendered highly configurable by exposing many parameters. In particular, preliminary
results from ongoing work indicate that substantial performance gains can be obtained
when applying our approach to a very recent, highly parameterized version of the IPC-4
winner Fast Downward.

References

1. Blum, A., and Furst, M., L. 1997. Fast planning through planning graph analysis. Artificial
Intelligence 90:pp. 281–300.

12

122

2. Fern, A.; Khardon, R.; and Tadepalli, P. 2008. Learning track of the 6th international planning
competition. In http://eecs.oregonstate.edu/ipc-learn/.

3. Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research 20:239–290.

4. Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to efficient planning with numerical
fluents and multi-criteria plan quality. Artificial Intelligence 172(8-9):899–944.

5. Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An automatically configurable portfolio-based
planner with macro-actions: PbP. In Proc. of ICAPS-09.

6. Hoffmann, J., and Edelkamp, S. 2005. The deterministic part of IPC-4: An overview. Journal
of Artificial Intelligence Research 24:519–579.

7. Hutter, F.; Babić, D.; Hoos, H. H.; and Hu, A. J. 2007. Boosting verification by automatic
tuning of decision procedures. In Formal Methods in Computer-Aided Design, 27–34. IEEE
CS Press.

8. Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T. 2009. ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36:267–306.

9. Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2010. Automated configuration of mixed
integer programming solvers. In Proc. of CPAIOR-10.

10. Richter, S. Helmert, M., and Westphal, M. 2007. Landmarks revisited. In Proc. of AAAI-07.
11. Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control knowledge for forward search

planning. Journal of Machine Learning Research (JMLR) 9:683–718.

13

123

