
Hybrid Randomised Neighbourhoods Improve
Stochastic Local Search for DNA Code Design

Dan C. Tulpan and Holger H. Hoos�

Department of Computer Science, University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada
�dctulpan,hoos�@cs.ubc.ca

http://www.cs.ubc.ca/labs/beta

Abstract. Sets of DNA strands that satisfy combinatorial constraints play an
important role in various approaches to biomolecular computation, nanostruc-
ture design, and molecular tagging. The problem of designing such sets of DNA
strands, also known as the DNA code design problem, appears to be compu-
tationally hard. In this paper, we show how a recently proposed stochastic lo-
cal search algorithm for DNA code design can be improved by using hybrid,
randomised neighbourhoods. This new type of neighbourhood structure equally
supports small changes to a given candidate set of strands as well as much larger
modifications, which correspond to random, long range connections in the search
space induced by the standard (1-mutation) neighbourhood. We report several
cases in which our algorithm finds word sets that match or exceed the best previ-
ously known constructions.

1 Introduction

DNA codes, i.e., sets of DNA strands that satisfy combinatorial constraints, play an
important role in various approaches to biomolecular computation [7, 8], nanostructure
design [16, 18], and molecular tagging [1, 2, 6]. Good code design is important in order
to minimise errors due to non-specific hybridization between distinct strands and their
complements, to obtain a higher information density, and to obtain large sets of strands
for large-scale applications.

For the types of combinatorial constraints typically desired, there are no known
efficient algorithms for DNA code design. Techniques from coding theory have been
applied to the design of DNA codes [2, 8]; while valuable, this approach is hampered
by the complexity of the combinatorial constraints on the sets of DNA strands (“code
words”), which are often hard to reason about theoretically. For these reasons, heuristic
approaches such as stochastic local search offer much promise in design of DNA codes.

Stochastic local search (SLS) algorithms strongly use randomised decisions while
searching for solutions to a given problem. They play an increasingly important role for
solving hard combinatorial problems from various domains of Artificial Intelligence
and Operations Research, such as satisfiability, constraint satisfaction, planning, and
scheduling. Over the past few years there has been considerable success in developing
� To whom correspondence should be addressed.

2

stochastic local search algorithms as well as randomised systematic search methods for
solving these problems, and to date, stochastic search algorithms are amongst the best
known techniques for solving problems from many domains. Detailed empirical studies
are crucial for the analysis and development of such high-performance stochastic search
techniques.

Stochastic search methods have already been applied to the design of DNA codes.
Deaton et al. [3, 4] and Zhang and Shin [19] used genetic algorithms for designing DNA
codes, and provide some small sets of code words that satisfy well-motivated combina-
torial constraints. However, some details of their algorithms are not specified in these
papers. Faulhammer et al. [6] also use a stochastic search approach and provide an im-
plementation of their algorithm. In all cases, while small sets of code words produced
by the algorithms have been presented (and the papers make other contributions inde-
pendent of the word design algorithms), little or no analysis of algorithm performance
is provided. As a result it is not possible to extract general insights on the design of
stochastic algorithms for DNA code design or to do detailed comparisons of their ap-
proaches with other algorithms. Our goal is to understand which algorithmic principles
are most effective in the application of SLS methods to the design of DNA or RNA word
sets (and more generally, codes over other alphabets, particularly the binary alphabet).

Our previous work [17] presents results on the performance of a new SLS algo-
rithm for the design of DNA codes fulfilling different combinations of combinatorial
constraints, the same as the ones described in Section 2. In that work, we reported em-
pirical results that characterised performance of the SLS algorithm and indicated its
ability to find high-quality sets of DNA codes.

In this paper, we describe an improved version of the simple stochastic local search
algorithm for DNA code design presented in [17]. In particular, we describe how by
using hybrid randomised neighbourhoods, substantial performance improvements can
be achieved. To our best knowledge, this type of neighbourhood has not been previously
described and may well be applicable to SLS algorithms for other problems.

In this study, we have chosen to design word sets that fullfil the following three
constraints: Hamming distance (HD), GC content (GC), and reverse complement Ham-
ming distance (RC). We define these constraints precisely in Section 2. Our reason for
considering these constraints is that there are already some constructions for word sets
satisfying these constraints, obtained using both theoretical and experimental methods,
with which we can compare our results.

Our algorithm, described in detail in Section 4, performs local search in a space of
DNA codes of fixed size (= number of strands) that may violate the given constraints.
The underlying search strategy is based on a combination of randomised iterative im-
provement and conflict-directed random walk. The basic algorithm is initialised with
a randomly selected set of DNA words. Then, repeatedly a conflict, that is, a pair of
words that violates a constraint, is selected and resolved by modifying one of the re-
spective words. The modification step is based on different neighbourhoods which will
be further described in Section 4. The algorithm terminates when a set of DNA strands
that satisfies all given constraints is found, or after a specified number of iterations has
been completed.

3

The performance of this algorithm is primarily controlled by a so-called noise pa-
rameter that determines the probability of greedy vs. random conflict resolution. Opti-
mal settings for this parameter have been reported in [17] and we will show how these
are affected by different choices of neighbourhoods.

Our empirical results, reported in Section 5, show that compared to our previous,
simple SLS algorithm, our new SLS algorithm shows dramatically improved perfor-
mance on hard DNA code design problems. In particular, by empirically analysing its
run-time distributions, we show that for DNA code design problems studied in [17], the
new algorithm does not suffer from the previously reported severe stagnation behaviour.

We compared the sizes of the word sets obtainable by our algorithm with previously
known word sets, starting with the previously studied case of word sets that satisfy all
three constraints. Out of a total of 30 comparisons with previous results (see Tables 1
and 2), we found word sets that equal or improved on previous constructions in all but
one case. In this particular case, while our algorithm was not able to meet the previous
best construction when starting from a random initial set of words, we were still able
to improve on the best previous construction by initializing our algorithm with the best
previously known word set plus additional random words.

2 Problem Description

The DNA code design problem that we consider is: given a target � and word length
�, find a set of � DNA words, each of length �, satisfying certain combinatorial con-
straints. A DNA word of length � is simply a string of length � over the alphabet
������� ��, and naturally corresponds to a DNA strand with left end of the string
corresponding to the 5’ end of the DNA strand. We consider the following constraints:

– Hamming Distance Constraint (HD): For all pairs of distinct words ��, �� in
the set, H(��,��) � d. Here, H(��,��) represents the Hamming distance between
words �� and ��, namely the number of positions � at which the �th letter in ��

differs from the �th letter in ��.
– GC Content Constraint (GC): A fixed percentage of the letters within each word

is either G or C. Throughout, we assume that this percentage is 50%.
– Reverse Complement Hamming Distance Constraint (RC): For all pairs of DNA

words �� and �� in the set, where �� may equal ��, H(��,wcc(��)) � d. Here,
wcc(w) denotes the Watson-Crick complement of DNA word w, obtained by re-
versing w and then by replacing each � in w by � and vice versa, and replacing
each � in w by � and vice versa.

Motivation for considering these constraints can be found in many sources; see for
example Frutos et al. [8].

The total number of code words of length � defined over any quaternary alphabet is
��. The number of possible word sets of size � that can be formed with �� code words
is: �

��

�

�
�

�����

��� ��� � ���

4

For the particular example of code words with � � � and � � ���, the number of all
possible word sets is approximately �	�	������. The huge number of possible sets that
must be explored in order to find a big set of words suggests the use of non-exhaustive
search algorithms for solving this type of problems. One class of such methods are
stochastic local search algorithms and they have been used with success for many years
in code design as well as in other combinatorics areas [11].

3 Related Work

Stochastic search methods have been used successfully for decades in the construction
of good binary codes [5, 10]. Typically, the focus of this work is in finding codes of size
greater than the best previously known bound, and a detailed empirical analysis of the
search algorithms is not presented.

Deaton et al. [3, 4] and Zhang and Shin [19] describe genetic algorithms for finding
DNA codes that satisfy much stronger constraints than the HD and RC constraints, in
which “frame shifts” are taken into account. However, they do not provide a detailed
analysis of the performance of their algorithms. Hartemink et al. [9] used an algorithm
for designing word sets that satisfy yet other constraints, in which a large pool (several
billion) of strands were screened in order to determine whether they meet the con-
straints. Several other researchers have used computational methods to generate word
sets (see for example [1]), but provide no details on their algorithms. Some DNA code
design programs are publicly available. The DNASequenceGenerator program [15, 7]
designs DNA sequences that satisfy certain subword distance constraints and, in addi-
tion, have melting temperature or GC content within prescribed ranges. The program
can generate DNA sequences de novo, or integrate partially specified words or exist-
ing words into the set. The PERMUTE program was used to design the sequences of
Faulhammer et al. [6] for their RNA-based 10-variable computation.

4 The Improved Stochastic Local Search Algorithm

Our basic stochastic local search algorithm, which is subject to further improvement
and development, performs local search in a space of code word sets of fixed size which
violate the given constraints. Figure 1 shows the outline of the simple SLS algorithm as
described in [17].

The underlying search strategy is based on a combination of randomised iterative
improvement and conflict-directed random walk. The search is initialised with a ran-
domly selected set of DNA strands. Then, repeatedly a conflict, that is, a pair of words
that violates a constraint, is selected and resolved by modifying one of the respective
words. The selection process for conflicting code words is done uniformly at random
from the pool of candidate code words involved in one or more conflicts. The modifica-
tion process is based on replacing a code words� that is currently involved in a conflict,
with a new code word � � chosen from a pool of related DNA words called the neigh-
bourhood of �. With probability ���
�, we select � � such that the number of conflicts
in the set of code words, �, is maximally reduced; otherwise we select a neighbour of
� uniformly at random. (
 is a parameter of our algorithm.) Here, we propose different

5

procedure StochasticLocalSearch for DNA Code Design
input: Number of words (�), word length (�), set of combinatorial constraints (�)
output: Set � of � words that fully or partially satisfies �
for � := 1 to maxTries do

� := initial set of words
�� := S
for � := 1 to maxSteps do

if � satisfies all constraints then
return �

end if
Randomly select words ��� �� � � that violate one of the constraints
	 := � ���� �� ����, i.e. all words from the neighbourhoods of �� and ��

with probability
 do
select word �� from 	 uniformly at random

otherwise
select word �� from 	 such that
number of constraint violations in � is maximally decreased

end with probability
if �� � � ���� then

replace �� by �� in �
else

replace �� by �� in �
end if
if � has no more constraint violations than �� then

�� := �;
end if

end for
end for
return ��

end StochasticLocalSearch for DNA Code Design

Fig. 1. Outline of the stochastic local search procedure for DNA code design; � ��� denotes the
neighbourhood of code word �.

types of neighbourhoods (mostly based on randomisation), which lead to performance
improvements of the basic SLS algorithm. If after a user specified number of steps no
valid code (i.e., set of DNA words satisfying all given constraints) has been found, the
search process is re-initialised and new attempt at finding a solution is made (outer loop
in Figure 1). The algorithm terminates when a valid code is found, or a given number
of unsuccessful tries have been completed.

It should be noted that our algorithm considers only words with the prescribed GC
content during the search, and the neighbourhoods are restricted accordingly. In this
paper, we consider the following neighbourhoods:

�-mutation neighbourhood. The �-mutation neighbourhood of a given code word � �

consists of all code words that can be obtained from�� by modifying up to � bases,

6

except �� itself. Our previous SLS algorithm was based on the �-mutation neigh-
bourhood; for a given pair of code words of length � (as considered in each step
of our algorithm), there are
 � � �-mutation neighbours that fulfill the GC con-
straint. The �-mutation neigbourhood of a pair of code words, in contrast, consists
of �� ��� �� 	�
� code words satisfying the GC content constraint.

Pure random neighbourhoods. Another simple way of defining the neighbourhood
of a given word � is by choosing a fixed number of random code words with the
same length and GC-content as �. Note that this pure random neighbourhood will
differ between search steps in which the same � is chosen. This type of neighbour-
hood increases the mobility of the algorithm within the search space and supports
search steps that are equivalent to several search steps in a �-neighbourhood with
small �. Somewhat surprisingly, using this rather simplistic neighbourhood mecha-
nism leads to substantial improvements in the performance of our algorithm, as we
will document in Section 5.

Hybrid randomised neighbourhoods. These are obtained by adding elements of the
pure random neighbourhood to a �-mutation neighbourhood. This effectively en-
ables the algorithm to explore regions of the search space that could not be reached
easily using pure �-mutation neighbourhoods, while still keeping the search fo-
cussed on local regions of the space of candidate sets of code words. The additional
randomisation of the search achieved by adding random code words to the set of
�-mutation neighbours enhances the ability of the SLS algorithm to escape from
local minima regions and eventually find solutions faster. As our empirical results
show, this novel type of neighbourhood leads to substantial improvements in the
performance of our SLS algorithm.

In the next section we will discuss the impact of these neighbourhoods on the perfor-
mance of our SLS algorithm for DNA code design. In particular, we will see that the
use of randomised neighbourhoods helps to avoid search stagnation and allows the al-
gorithm to find bigger DNA codes.

5 Results and Discussion

To evaluate the performance of our improved SLS algorithm, we performed two types
of computational experiments. First, detailed analyses of the run-time and run-length
distributions (RTDs and RLDs) of our algorithm on individual problem instances were
used to study the behaviour of the algorithm and the impact of parameter settings. For
these empirical analyses, the methodology of [12] for measuring and analysing RTDs
and RLDs was used. Run-length was measured in terms of search steps, and absolute
CPU time per search step was measured to obtain a cost model of these search steps.
Then, in a second type of experiment, we used the optimised parameter settings ob-
tained from the detailed analyses for obtaining DNA code sets of maximal size for
various word lengths and combinatorial constraints.

5.1 Neighbourhoods

To study and characterise the behaviour of the new proposed neighbourhood mecha-
nisms for the simple SLS algorithm, we measured RTDs and RLDs from 1000 suc-

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Number of iterations

3-mutation neighbourhood: 184 code words
2-mutation neighbourhood: 72 code words
1-mutation neighbourhood: 16 code words

Fig. 2. RLDs for different �-mutation neighbourhoods, set size � � ��, word length � � �,
Hamming distance � � �, all 3 constraints.

cessful runs of the algorithm applied to a representative problem instance with set size
� � ��, words length � � �, Hamming distance � � � and all 3 constraints (HD,
RC, and GC). Experiments with other problem instances gave analogous results (not
reported here) to the ones observed for this instance. Using extremely high settings of
the cutoff parameter ensured us that a solution was found in each individual run without
using random restarts. For each neighbourhood, we performed a number of independent
runs of the algoritm in which we measured the number of search iterations required for
finding a solution. The empirical run-length distribution that can be easily obtained
from this data gives the probability of finding a solution as a function of the number
of search iterations performed. Run-time distributions are obtained by multiplying the
number of search steps represented in the respective RLD with the corresponding CPU
time per step.

�-mutation neighbourhoods. The 1-mutation neighbourhood has been successfully
used in the simple version of the SLS algorithm described in [17]. While one would ex-
pect that using �-mutation neighbourhoods with � � � decreases the number of search
steps required for finding certain word sets, it is not clear whether the increased compu-
tational cost of scanning these larger neighbourhoods can be amortised. Figure 2 shows
RLDs for different types of �-mutation neighbourhoods for the problem instance de-
scribed above. The time required for obtaining a set of words of size � � �� with
a fixed probability � increases with � and �. For high �, this increase is much more
dramatic than for low � values. The right ‘fat’ tails of the RLDs emphasise this phe-
nomenon. As can be seen from Figure 3, the higher time complexity of the search steps
using �-mutation neighbourhoods with � � � is not amortised by the reduction in the
number of search steps. Similar results were obtained for other problem instances.

8

Pure random neighbourhoods. Interestingly, using pure random neighbourhoods leads
to better performance of our algorithm than any of the �-mutation neighbourhoods. For
our representative problem instance, this can be seen when comparing the medians of
the RTDs for �-mutation neighbourhoods in Figure 3 with the median run-times for pure
random neighourhoods for varying sizes shown in Figure 6. At the same time, using
pure random neighbourhoods leads to RTDs that do not have the same “fat” right tails
that indicated the stagnation behaviour of our SLS algorithm for the �-mutation neigh-
bourhoods. This leads to even more substantial performance advantages of pure random
neighbourhoods over the �-mutation neighbourhoods when comparing the mean CPU
times for solving a given problem instance or high percentiles of the respective RTDs.

When varying the size of the pure random neighbourhoods, i.e., the number of code
words considered for replacing a given word in a candidate word set, we found that typ-
ically there is an optimal range of neighbourhood sizes. When using smaller neighbour-
hoods, the performance of the algorithm decreases since intuitively a higher number of
“shorter” search steps is required for covering the same distance in the search space
(e.g., to the nearest solution). For larger neighbourhoods, the time complexity for each
search step increases, and at some point the reduction in the number of search steps
required for finding a solution no longer amortises this higher cost. This is illustrated
for our representative problem instance in Figure 6.

Hybrid neighbourhoods. We noticed that adding random code words to �-mutation
neighbourhoods leads to improved performance of our SLS algorithm. This raises the
following question: is there any reason to keep the �-mutation neighbourhood as part
of a bigger, hybrid randomised neighbourhood?

We investigated this question in an experiment in which we compared three hybrid
neighbourhoods of 200 words that include the 1-mutation, 2-mutation, and 3-mutation
neighbours of a given word, respectively, as well as a purely random neighbourhood of
size 200. From Figures 4 and 5 we can see that for our representative problem instance,
including the 1-mutation neighbourhood in a bigger, hybrid randomised neighbourhood
results in slight performance improvements in terms of iterations as well as CPU time,
while including the 2- or 3-mutation neighbourhoods is disadvantageous.

In a second experiment we tested whether this result also holds for different neigh-
bourhood sizes. As can be seen from Figure 6, hybrid neighbourhoods obtained by
adding random neighbours to the 1-mutation neighbourhood generally leads to im-
proved performance compared to using pure random neighbourhoods of the same size.
One intuitive explanation for the efficiency of using hybrid neighbourhoods is based on
the fact that 1-mutation neighbours can be easily mutated back into the original word.
This mechanism allows the algorithm to easily and cheaply reverse problematic search
steps that, e.g., lead into a local minimum of the underlying search space.

Further experiments have been performed for different ��� �� �� combinations (e.g.,
(102,10,5), (10,10,7), (15,12,8), (25,6,3)) as well as for different set sizes and GC con-
tent fractions (e.g., � � 	
 and GC-content = 3, � �
� and GC-content = 2, and � � �
and GC-content = 1). Our algorithm found solutions faster when we used hybrid neigh-
bourhoods than when using pure random neighbourhoods, considering the total size of
the neighbourhood as being fixed in both cases. The CPU time per step is roughly the

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

CPU Time [sec]

1-mutation neighbourhood: 16 code words
2-mutation neighbourhood: 72 code words

3-mutation neighbourhood: 184 code words

Fig. 3. RTDs for different �-mutation neighbourhoods, set size � � ��, word length � � �,
Hamming distance � � �, all 3 constraints.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Number of iterations

1-mutation + random words: 16+184
Pure random : 200

2-mutation + random words: 72+128
3-mutation + random words: 184+16

Fig. 4. RLDs for pure random and hybrid neighbourhoods of size 200, set size � � ��, word
length � � �, Hamming distance � � �, all 3 constraints.

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

CPU Time [sec]

1-mutation + random words: 16+184
Pure random : 200

2-mutation + random words: 72+128
3-mutation + random words: 184+16

Fig. 5. RTDs for pure random and hybrid neighbourhoods of size 200, set size � � ��, word
length � � �, Hamming distance � � �, all 3 constraints.

same for hybrid and pure random neighbourhoods of the same size, but when using the
hybrid neighbourhood, a smaller number of steps is required for reaching the same solu-
tion quality than when using pure random neighbourhoods. Overall, in all the cases we
examined, using hybrid neighbourhoods consisting of all 1-mutation neighbours and
additional random code words lead to better performance than using pure random or
�-mutation neighbourhoods.

5.2 Noise Parameter

Introducing noise in the simple SLS algorithm, i.e., using probabilistic moves when
taking decisions, provides robustness to the algorithm and allows it to escape from local
minima. Using the previous �-mutation neighbourhood, we found an optimal setting for
this noise parameter
 around 0.2 (Figure 7) for different problem instances and sizes,
as described in [17]. When considering randomised neighbourhoods, the optimal value
for the noise parameter appears to be 0 as can be seen in Figure 8.

One possible explanation for this phenomenon may reside in the added need of
greediness in the search algorithm when searching bigger neighbourhoods. Further-
more, the additional diversification provided by random neighbours can apparently
compensate and even substitute for the effect of the noise mechanism – both provide
mechanisms for escaping from local optima in the underlying search space.

5.3 New DNA Codes and Empirical Bounds

After studying the impact of neighbourhood type and size as well as the noise parameter
setting, we used the enhanced SLS algorithm (based on hybrid randomised neighbour-
hoods) to solve a number of challenging instances of our DNA code design problem.

11

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

C
P

U
 ti

m
e

[s
ec

]

Neighborhood size

1-mutation + random ngb
Pure random ngb

Fig. 6. Median number of CPU seconds for different neighbourhood sizes, set size � � ��, word
length � � �, Hamming distance � � �, GC-content = 50%, all 3 constraints.

1000

10000

100000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ed

ia
n

nu
m

be
r

of
 s

te
ps

 to
 fi

nd
 s

ol
ut

io
n

Noise parameter theta

Fig. 7. Median number of iterations as a function of noise parameter values: �-mutation neigh-
bourhood, all three constraints, � � �, � � �, and � � ��.

For the DNA code design problem with all three constraints (HD, GC, RC) and
50% GC-content, we compared the sizes of the word sets obtained with our new SLS
algorithm with previously known word sets [17]. Out of a total of 31 comparisons with
previous results (see Tables 1 and 2), we found word sets that equal or improved on
previous constructions in all but one case. In this particular case (� � � and � � �),

12

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6

M
ed

ia
n

nu
m

be
r

of
 it

er
at

io
ns

Noise parameter

Fig. 8. Number of iterations as a function of noise parameter values: hybrid neighbourhood, all
three constraints, � � �, � � �, and � � ��.

n/d 2 3 4 5 6 7 8 9 10

4 20 ������ 5 ������ 2 ������� - - - - - -
6 282 ���� 37 ����� 11 ���� 2 ������� 2 ������� - - - -
8 3981 ����� 350 ������ 92� ������� 19 ������ 7 ����� 2 ������ 2 ������ - -
10 x 3700 ��	
�� 640 ������ 127 ��
����� 37 ��	�� 11 ������ 5 ������ 2 ����� 1 �������

12 x x 5685 ������ 933 ������ 210 �������� 59 �

�� 21 ���
�� 9 �������� 3 ������

Table 1. Set sizes for (HD,RC,GC) DNA codes obtained with the simple SLS algorithm pre-
sented in [17]. 1-mutation neighbourhood have been used for all the results. The numbers in
square brackets represent the average number of iterations spent by the algorithm to obtain the
set with the specified size.

we obtained a code of size 107 when initialising the search with a random set of code
words. This is a substantial improvement over our simple SLS algorithm, which only
found codes sizes of 92. However, for the same case, Frutos et al. [8] constructed a set
of 108 words. But even with our simple algorithm we have obtained sets of 112 code
words by initialising the search with the best known set containing 108 code words and
by iteratively expanding this set with one additional code word at a time (initialised at
random) [17]. The same code size of 112 is also achieved by our new SLS algorithm
with randomised neighbourhoods. It may be noted that Frutos et al. used a theoretical
approach to design the 108 set. Their map-template construction relies on symmetries
and other mathematical properties of this specific code design problem and, different
from our SLS algorithm, it cannot be used for iteratively improving or expanding a
given code.

It may be noted that, to our best knowledge, there are no theoretical bounds for
DNA codes fulfilling the HD, RC, and GC constraints known from the literature. Some

13

n/d 2 3 4 5 6 7 8 9 10

4 24 ������ 6 ������ 2 ������� - - - - - -
6 310 ��
�� 41 ������ 15 ����� 4 ������� 2 ������� - - - -
8 4022 ����
�� 390 ������ 107� ����� 26 ����� 12 ���	�� 2 ������� 2 ������� - -
10 x 4007 ����
�� 790 ������ 158 ���� 41 ������ 15 ����� 6 ������ 2 ������ 2 �������

12 x x 6100 ������ 988 ������� 240 ������ 70 ���
�� 25 ������ 9 ������ 4 �����

Table 2. Set sizes for (HD,RC,GC) DNA codes obtained with the improved SLS Algorithm.
�-mutation+random code words neighbourhoods have been used. The number of random code
words used here are ���� ���� ����� 	����. For � � �, � � � we found a better bound, namely
112 code words by initializing our algorithm with the best previously known word set (108 code
words) plus an additional random word. Bold-face numbers represent improved set sizes com-
pared with the previous ones obtained in [17]. The numbers in square brackets represent the
average number of iterations spent by the algorithm to obtain the set with the specified size.

theoretical upper and lower bounds have been published by Marathe et al. [14] for
codes satisfying the HD and RC constraints. We compared our results with their bounds,
keeping also in mind that our codes have a fixed GC content. For the ��� �� � ��� ��
case, our best result (code size 112) is quite close to the lower bound of 128 from
Marathe et al., but of course it is not clear whether that bound applies for codes that
additionally have to satisfy the 50% GC content constraint we used. In other situations,
our results improved on the Marthe et al. bounds. For example, for ��� �� � ���� 	�,
their lower bound is 32 code words, while our simple and enhanced SLS algorithm
reach code sizes of 127 and 158, respectively. It is also worth noting in most cases,
the ranges between the theoretical lower and upper bounds from Marateh et al. are
very large. For example, for the (10,5) case, the the upper bound is 1202, compared
to a lower bound of 32. This provides some indication that there might be room for
substantial improvements in the code sizes achievable for these and related code design
problems.

Finally, it is worth mentioning that based on a very limited initial investigation,
our new SLS algorithm based on randomised neighbourhoods achieves performance
improvements similar to the ones reported here for the (HD, GC, RC) constraint com-
bination for other code design problems that include the GC content constraint (e.g.,
HD and GC constraints). We are currently performing an in-depth analysis of our algo-
rithm’s performance on these closely related code design problems, the results of which
we plan to present in the near future.

6 Conclusions

We presented an improved version of the simple SLS algorithm for DNA Code De-
sign proposed in [17], based on a new neighbourhood generation mechanism, along
with empirical results that characterise its performance. New insights on the role of the
neighbourhood type and size have been described and we showed evidence that by us-
ing hybrid randomised neighbourhoods, the performance of our original SLS algorithm

14

can be significantly improved. Intuitively, the use of randomised �-mutation neighbour-
hoods enhances the ability of the SLS algorithm to escape from local minima regions,
and facilitates the exploration of regions in the underlying search space that are very far
apart with respect to the traditional 1-mutation neighbourhood.

In future work, we plan to examine further ways for improving the algorithm. The
existing theoretical bounds on combinations of constraints (see Section 5.3) similar to
the ones considered here, indicate that there should be sustantial room for further im-
provements. One possibility to improve the SLS algorithm is to consider more complex
SLS strategies, which are expected to achieve improved performance that hopefully
will lead to larger word sets. In another direction of future work, we plan to use hybrid
randomised neighbourhood mechanisms for DNA code design problems with different
constraint combinations as well as for the design of binary codes.

Search space analysis may provide more insight on the hidden mechanisms that
make it difficult to computationally solve DNA code design problems and shed more
light on the precise reasons for the efficiency of the hybrid neighbourhoods studied
here. Finally, it would be interesting to see if better theoretical design principles can
be extracted from the codes that are empirically obtained from high-performance SLS
algorithms for DNA code design.

Acknowledgments. This work has been supported by NSERC Individual Research Grant
#238788; it builds on previous research in collaboration with Anne Condon, who also provided
valuable feedback on the ideas presented here.

References

1. R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, and L.M. Adleman,
“Solution of a satisfiability problem on a gel-based DNA computer”, Preliminary Proc. Sixth
International Meeting on DNA Based Computers, Leiden, The Netherlands, June, 2000.

2. S. Brenner and R.A. Lerner, “Encoded combinatorial chemistry”, Proc. Natl. Acad. Sci.
USA, Vol 89, pages 5381–5383, June 1992.

3. R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti, and S.E. Stevens, Jr., “Good en-
codings for DNA-based solutions to combinatorial problems,” Proc. DNA Based Computers
II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and E. B. Baum, Editors, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, pages
247–258, 1999.

4. R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, and S.E. Stevens, Jr.,
“Genetic search of reliable encodings for DNA-based computation,” Koza, John R., Gold-
berg, David E., Fogel, David B., and Riolo, Rick L. (editors), Proceedings of the First Annual
Conference on Genetic Programming 1996.

5. A.A. El Gamal, L.A. Hemachandra, I. Shperling, and V.K. Wei, “Using simulated annealing
to design good codes,” IEEE Transactions on Information Theory, Vol. IT-33, No. 1, January
1987.

6. D. Faulhammer, A.R. Cukras, R.J. Lipton, and L.F. Landweber, “Molecular computation:
RNA solutions to chess problems,” Proc. Natl. Acad. Sci. USA, 97: 1385-1389, 2000.

7. U. Feldkamp, W. Banzhaf, H. Rauhe, “A DNA sequence compiler,” Poster presented
at the 6th International Meeting on DNA Based Computers, Leiden, June, 2000. See

15

also http://ls11-www.cs.uni-dortmund.de/molcomp/Publications/publications.html (visited
November 11, 2000).

8. A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W. Sanner, A.E. Condon, L.M. Smith, and R.M. Corn,
“Demonstration of a word design strategy for DNA computing on surfaces,” Nucleic Acids
Research, Vol. 25, No. 23, pages 4748-4757, December 1997.

9. A.J. Hartemink, D.K. Gifford, and J. Khodor, “Automated constraint-based nucleotide se-
quence selection for DNA computation,” 4th Annual DIMACS Workshop on DNA-Based
Computers, Philadelphia, Pennsylvania, June 1998.

10. I.S. Honkala, and P.R.J. Ostergard, “Code design,” In Local Search In Combinatorial Opti-
mization (E. Aarts and J.K. Lenstra, eds.), Wiley-Interscience Series in Discrete Mathemat-
ics and Optimization, 1997.

11. H.H. Hoos, “Stochastic Local Search - Methods, Models, Applications”, infix-Verlag, Sankt
Augustin, Germany, ISBN 3-89601-215-0, 1999.

12. H.H. Hoos and T. Stützle, “Evaluating Las Vegas Algorithms — Pitfalls and Remedies,” In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98),
pages 238-245, 1998.

13. M. Li, H-J. Lee, A.E. Condon, and R.M. Corn, “DNA Word Design Strategy for Creating
Sets of Non-interacting Oligonucleotides for DNA Microarrays,” Langmuir, 18, pages 805-
812, 2002.

14. A. Marathe, A. Condon, and R. Corn, “On combinatorial DNA word design,” J. Computa-
tional Biology, 8:3, pages 201-220, 2001.

15. Programmable DNA web site, http://ls11-www.cs.uni-dortmund.de/
molcomp/Downloads/downloads.html. Visited November 11, 2000.

16. J.H. Reif, T.H. LaBean, and N.C. Seeman, “Challenges and Applications for Self-Assembled
DNA Nanostructures”, Proc. Sixth Inter.l Workshop on DNA-Based Computers, Leiden,
The Neth., June, 2000. DIMACS Ed. by A. Condon and G. Rozenberg, Lecture Notes in CS,
Springer-Verlag, Berlin Heidelberg, vol. 2054, pages 173-198, 2001.

17. D.C. Tulpan, H.H. Hoos, A. Condon, “Stochastic Local Search Algorithms for DNA Word
Design”, DNA 8 Conference, Japan, March 2002.

18. B. Yurke, A.J. Tuberfield, A.P.Jr Mills, F.C. Simmel and J.L. Neumann, “A DNA-fuelled
molecular machine made of DNA.” Nature 406, pages 605-608, 2000.

19. B-T. Zhang and S-Y. Shin, “Molecular algorithms for efficient and reliable DNA comput-
ing,” Proc. 3rd Annual Genetic Programming Conference, Edited by J. R. Koza, K. Deb,
M. Doringo, D.B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Morgan Kaufmann, pages
735-742, 1998.

