
Stochastic Local Search Algorithms

for DNA Word Design

Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

Department of Computer Science
University of British Columbia

Vancouver, B.C., V6T 1Z4, Canada
{dctulpan,hoos,condon}@cs.ubc.ca
http://www.cs.ubc.ca/labs/beta

Abstract. We present results on the performance of a stochastic local
search algorithm for the design of DNA codes, namely sets of equal-
length words over the nucleotides alphabet {A, C, G, T} that satisfy cer-
tain combinatorial constraints. Using empirical analysis of the algorithm,
we gain insight on good design principles. We report several cases in
which our algorithm finds word sets that match or exceed the best pre-
viously known constructions.1

Keywords: DNAWord Design, Combinatorics, Stochastic Local Search, Coding
Theory, Hamming Distance, GC Content

1 Introduction

The design of DNA code words, or sets of short DNA strands that satisfy com-
binatorial constraints, is motivated by the tasks of storing information in DNA
strands used for computation or as molecular bar-codes in chemical libraries
[3,4,8,20]. Good word design is important in order to minimise errors due to non-
specific hybridisation between distinct words and their complements, to achieve
a higher information density, and to obtain large sets of words for large-scale
applications.
For the types of combinatorial constraints typically desired, there are no

known efficient algorithms for design of DNA word sets. Techniques from coding
theory have been applied to design of DNA word sets [4,10]. While valuable, this
approach is hampered by the complexity of the combinatorial constraints on the
word sets, which are often hard to reason about theoretically. For these reasons,
heuristic approaches such as stochastic local search offer much promise in the
design of word sets.

1 This material is based upon work supported by the U.S. National Science Foundation
under Grant No. 0130108, by the National Sciences and the Engineering Research
Council of Canada.

M. Hagiya and A. Ohuchi (Eds.): DNA8, LNCS 2568, pp. 229–241, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

230 Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

Stochastic local search (SLS) algorithms strongly use randomised decisions
while searching for solutions to a given problem. They play an increasingly im-
portant role for solving hard combinatorial problems from various domains of
Artificial Intelligence and Operations Research, such as satisfiability, constraint
satisfaction, planning, scheduling, and other application areas. Over the past few
years there has been considerable success in developing stochastic local search
algorithms as well as randomised systematic search methods for solving these
problems, and to date, stochastic search algorithms are amongst the best known
techniques for solving problems from many domains. Detailed empirical studies
are crucial for the analysis and development of such high-performance stochastic
search techniques.

Stochastic search methods have been used successfully for decades in the
construction of good binary codes (see for example [7].) Typically, the focus
of this work is in finding codes of size greater than the best previously known
bound, and a detailed empirical analysis of the search algorithms is not pre-
sented. Stochastic search techniques have also been applied to the design of
DNA word sets (see Section 3). However, some algorithmic details are not spec-
ified in these papers. In addition, while small sets of code words produced by
the algorithms have been presented (and the papers make other contributions
independent of the word design algorithms), little or no analysis of algorithm
performance is provided. Consequently, it is not possible to extract general in-
sights on the design of stochastic algorithms for code design or to compare their
approaches in detail with other algorithms. Our goal is to understand what algo-
rithmic principles are most effective in the application of stochastic local search
methods to the design of DNA or RNA word sets (and more generally, codes
over other alphabets, particularly the binary alphabet).

Towards this end, we describe a simple stochastic local search algorithm for
design of DNA codes, and analyze its performance using an empirical methodol-
ogy based on run-time distributions [15]. In this study, we have chosen to design
word sets that satisfy one or more of the following constraints: Hamming distance
(HD), GC content (GC), and reverse complement Hamming distance (RC). We
define these constraints precisely in Section 2. Our reason for considering these
constraints is that there are already some constructions for word sets satisfying
these constraints, obtained using both theoretical and experimental methods,
with which we can compare our results. (In follow-up work, we will apply our
methods to other, more realistic constraints.)

Our algorithm, described in detail in Section 4, takes as input the desired
word length and set size, along with a specification of which constraints the set
should satisfy, and attempts to find a set that meets these requirements. The
algorithm performs stochastic local search in a space of DNA word sets of fixed
size that may violate the given constraints, using an underlying search strategy
that is based on a combination of randomised iterative improvement and conflict-
directed random walk. The basic algorithm is initialised with a randomly selected
set of DNA words. Then, repeatedly a conflict, that is, a pair of words that
violates a constraint, is selected and resolved by modifying one of the respective

Stochastic Local Search Algorithms for DNA Word Design 231

words. The algorithm terminates if a set of DNA words that satisfies all given
constraints is found, or if a specified number of iterations have been completed.
The performance of this algorithm is primarily controlled by a so-called noise

parameter that determines the probability of greedy vs. random conflict reso-
lution. Interestingly, optimal settings of this parameter appear to be consistent
for different problem instances (word set sizes) and constraints.
Our empirical results, reported in Section 5, show that the run-time dis-

tributions that characterise our algorithm’s performance on hard word design
problems often have a “fat” right tail. This indicates a stagnation of the under-
lying search process that severely compromises performance. As a first approach
to overcome this stagnation effect, we extended our algorithm with a mechanism
for diversifying the search by occasional random replacement of a small fraction
of the current set of DNA words. Empirically, this modification eliminates the
stagnation behavior and leads to substantial improvements in the performance
of our algorithm.
We compared the sizes of the word sets obtainable by our algorithm with

previously known word sets, starting with the already extensively studied case
of word sets that satisfy the Hamming distance constraint only. Out of 42 tests,
our algorithm was able to find a word set whose size matches the best known
theoretical construction in 16 cases. We also did several comparisons with word
sets that satisfy at least two of our three constraints, for which again previous
results were available. Out of a total of 42 comparisons with previous results
that satisfy Hamming distance and Reverse Complement constraints, we found
word sets that improved on previous constructions in all but one case.

2 Problem Description

The DNA code design problem that we consider is: given a target k and word
length n, find a set of k DNA words, each of length n, satisfying certain com-
binatorial constraints. A DNA word of length n is simply a string of length n
over the alphabet {A, C, G, T }, and naturally corresponds to a DNA strand with
the left end of the string corresponding to the 5’ end of the DNA strand. The
constraints that we consider are:

– Hamming Distance Constraint (HD): for all pairs of distinct words w1, w2

in the set, H(w1,w2) ≥ d. Here, H(w1,w2) represents the Hamming distance
between words w1 and w2, namely the number of positions i at which the
ith letter in w1 differs from the ith letter in w2.

– GC Content Constraint (GC): a fixed percentage of the nucleotides within
each word is either G or C. Throughout, we assume that this percentage is
50%.

– Reverse Complement Hamming Distance Constraint (RC): for all pairs of
DNA words w1 and w2 in the set, where w1 may equal w2, H(w1,wcc(w2))
≥ d. Here, wcc(w) denotes the Watson-Crick complement of DNA word w,
obtained by reversing w and then by replacing each A in w by T and vice
versa, and replacing each C in w by G and vice versa.

232 Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

We note that there are many alternative formulations of the problem of design-
ing DNA words that better capture the chemical motivation of ensuring that the
DNA words behave well in a laboratory experiment (see for example [11]). For
example, most formulations insist that the Hamming distance between shifted
copies of words is also above a threshold. Even better than designing for Ham-
ming constraints is to directly take thermodynamic constraints into account,
so that the designed words have uniformly high melting temperature and the
melting temperature of mismatched pairs of words is relatively low [19].
However we believe that the simple constraints above are best suited to the

goals of the work presented here, for the following reasons. First, in order to
understand whether our algorithmic techniques can find large sets of words, it
is very useful to be able to compare the set sizes output by our algorithm with
previous constructions, and this is possible here. Second, there are cases where
one does not need to take shifts into account in a word design, for example when
spacers or word labels are used between words [10] or when relatively short
words are concatenated to form word labels [4]. In these cases, designs according
to the three constraints above are already directly useful. Third, it may be
that in order to design sets of words that satisfy more realistic thermodynamic
constraints, a good initial starting point would be a set designed using the simpler
combinatorial constaints above (see for example [2]). Finally, it is our hope that
once we have identified good stochastic search principles for DNA word design
for the above constraints, these principles will also be effective in designing word
sets that satisfy other constraints, and this is a research direction that we are
actively pursuing.
The huge number of possible sets that must be explored in order to find a

big set of words suggests the use of non-exhaustive, heuristic search algorithms
for solving this type of problems.

3 Related Work

Deaton et al. [5,6] and Zhang and Shin [21] describe genetic algorithms for
finding DNA codes that satisfy much stronger constraints than the HD and RC
constraints, in which the number of mismatches must exceed a threshold even
when the words are aligned with shift. However, they do not provide a detailed
analysis of the performance of their algorithms. Hartemink et al. [12] used a
computer algorithm for designing word sets that satisfy yet other constraints, in
which a large pool (several billion) of strands were screened in order to determine
whether they meet the constraints. Several other researchers have used computer
algorithms to generate word sets (see for example [3]), but provide no details on
the algorithms.
Some DNA word design programs are publicly available. The DNASequence-

Generator program [9] designs DNA sequences that satisfy certain subword
distance constraints and, in addition, have melting temperature or GC content
within prescribed ranges. The program can generate DNA sequences de novo,
or integrate partially specified words or existing words into the set. The PER-

Stochastic Local Search Algorithms for DNA Word Design 233

MUTE program was used to design the sequences of Faulhammer et al. [8] for
their RNA-based 10-variable computation.

4 A Stochastic Local Search Algorithm

Our basic stochastic local search algorithm performs a randomised iterative im-
provement search in the space of DNA word sets; this overall approach is similar
to WalkSAT, one of the best known algorithms for the propositional satisfia-
bility problem [18,13] and Casanova, one of the best-performing algorithms for
the winner determination problem in combinatorial auctions [14]. All word sets
constructed during the search process have exactly the target number of words.
Additionally, when using the GC constraint, we ensure that all words in the
given candidate set always have the prescribed GC content.
The other two combinatorial constraints considered in this paper, the HD

and RC constraints, are binary predicates over DNA words that have to be
satisfied between any pair of words from a given DNA set. The function our
algorithm is trying to minimise is the number of pairs that violate the given
constraint(s). Figure 1 gives a general outline of our basic algorithm. In the
following, we will describe this algorithm in more detail.
The initial set of words is determined by a simple randomised process that

generates any DNA word of length n with equal probability. If the GC content
constraint is used, we check each word that is generated and only accept words
with the specified GC content. This works well for 50% GC content and typical
designs use a GC content close to 50%, but could be easily made more efficient
for less balanced GC contents if needed.
Our implementation also provides the possibility to initialise the search with

a given set of DNA words (such sets could be obtained using arbitrary other
methods); if such a set has less than k words, it is expanded with randomly
generated words such that a set of k words is always obtained. Note that the
initial word set may contain multiple copies of the same word.
In each step of the search process (i.e. one execution of the inner for loop

from Figure 1), first, a pair of words violating one of the Hamming distance
constraints is selected uniformly at random. Then, for each of these words, all
possible single-base modifications are considered. As an example of single-base
modifications take the code word ACTT of length 4. A new code word GCTT
can be obtained by replacing letter A from the first code word with letter G.
When the GC content constraint is used, this is restricted to modifications that
maintain the specified GC content. For a pair of words of length n without
the GC content constraint, this yields 6n new words. (Some of these might be
identical.)
With a fixed probability θ, one of these modifications is accepted uniformly at

random, regardless of the number of constraint violations that will result from it.
In the remaining cases, each modification is assigned a score, defined as the net
decrease in the number of constraint violations caused by it, and a modification
with maximal score is accepted. (If there are multiple such modifications, one of

234 Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

procedure Stochastic Local Search for DNA Word Design
input: Number of words (k), word length (n), set of constraints (C)
output: Set S of m words that fully or partially satisfies C
for i := 1 to maxTries do

S := initial set of words

Ŝ := S
for j := 1 to maxSteps do

if S satisfies all constraints then
return S

end if
Randomly select words w1, w2 ∈ S that violate one of the constraints
M1 := all words obtained from w1 by substituting one base
M2 := all words obtained from w2 by substituting one base
with probability θ do

select word w′ from M1 ∪ M2 at random
otherwise

select word w′ from M1 ∪ M2 such that number of conflict violations
is maximally decreased

end with probability
if w′ ∈ M1 then

replace w1 by w′ in S
else

replace w2 by w′ in S
end if

if S has no more constraint violations than Ŝ then

Ŝ := S;
end if

end for
end for

return Ŝ
end Stochastic Local Search for DNA Word Design

Fig. 1. Outline of a general stochastic local search procedure for DNA word
design.

them is chosen uniformly at random.) Note that using this scheme, in each step
of the algorithm, exactly one base in one word is modified.

The parameter θ, also called the noise parameter, controls the greediness of
the search process; for high values of θ, constraint violations are not resolved
efficiently, while for low values of θ, the search has more difficulties to escape
from local optima of the underlying search space.

Throughout the run of the algorithm, the best candidate solution encountered
so far, i.e., the DNA word set with the fewest constraint violations, is memorised.
Note that even if the algorithm terminates without finding a valid set of size k,
a valid subset can always be obtained by iteratively selecting pairs of words
that violate a Hamming distance constraint and removing one of the two words

Stochastic Local Search Algorithms for DNA Word Design 235

involved in that conflict from the set. Hence, a word set of size k with t constraint
violations can always be reduced to a valid set of at least size k − t.
Hamming distances between words and/or their reverse complements are not

recomputed in each iteration of the algorithm; instead, these are computed once
after generating the initial set, and updated after each search step. This can be
done very efficiently, since any modification of a single word can only affect the
Hamming distances between this word and the k−1 remaining words in the set.
The outer loop of our algorithm can perform multiple independent runs of the

underlying search process. In conjunction with randomised search initialisation,
multiple independent runs can yield better performance; essentially, this is the
case if there is a risk for the search process to stagnate, i.e., to get stuck in a
region of the underlying search space that it is very unlikely to escape from. In
this context, the parameter maxSteps, that controls the number of steps after
which the search is aborted and possibly restarted from a new initial word set,
can have an important impact on the performance of the algorithm; this will
become apparent in our experimental results presented in Section 5.
The simple SLS algorithm presented above can easily be enhanced with an

additional diversification mechanism that is based on occasional random replace-
ments of small subsets of code words. In this extended algorithm, after perform-
ing a search step, i.e., after each iteration of the inner loop of Figure 1, we check
whether more than nsteps steps have been performed since the last improvement
over the best candidate solution found so far. Whenever this is the case, we take
it as in indication for search stagnation and perform a diversification step by
replacing a fixed fraction fr of the code words with words that are newly gener-
ated at random (this is done exactly as during search initialisation). After this
we continue as in the simple SLS algorithms; we generally make sure that betwen
any two diversification steps at least nsteps simple search steps are performed.
The values nsteps and fr are additional parameters of the extended algorithm.

5 Results

To evaluate the performance of our SLS algorithm (and its variants), we per-
formed two types of computational experiments. Detailed analyses of the run-
time distributions of our algorithm on individual problem instances were used
to study the behavior of the algorithm and the impact of parameter settings.
For these empirical analyses, the methodology of [15] for measuring and analyz-
ing run-time distributions (RTDs) of Las Vegas algorithms was used. Run-time
was measured in terms of search steps, and absolute CPU time per search step
was measured to obtain a cost model of these search steps . The other type of
experiment used the optimised parameter settings obtained from the detailed
analyses for obtaining DNA word sets of maximal size for various word lengths
and combinatorial constraints.
Introducing noise in our algorithmic approach, i.e. using probabilistic moves

when taking decisions, provides robustness to our algorithm and allows it to
escape from local minima encountered during search. Thorough experimentation

236 Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Number of steps

Simple SLS: k=100
Simple SLS: k=120
Simple SLS: k=140

1-2**(-x/350)
1-2**(-x/18000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
.

Number of steps.

Simple SLS
Random Replacement: 3%

1-2**(-x/7500)

Fig. 2. RTDs for SLS algorithm. Left side: HD and GC constraints (different
set sizes k ∈ {100, 120, 140}); right side: HD, GC, RC constraints (SLS with and
without random replacement).

(not reported here due to restricted space) shows that the setting of the noise
parameter, θ, has a substantial effect on the performance of our algorithm: the
time required for solving a given problem instance can easily vary more than an
order of magnitude depending on the noise parameter setting used. Somewhat
surprisingly, empirically optimal settings of θ are consistently close to 0.2 for
different problem instances and sizes; consequently, this value was used for all
experimental results reported here.
The absolute CPU time for each search step was measured on a PC with 2

1GHz Pentium III CPUs, 512 MB cache and 1GB RAM running Red Hat Linux
7.1 (kernel 2.4.9). The obtained values range between .0006 CPU seconds for
HD and GC constraints and .0079 CPU seconds for HD and RC constraints,
both using set size k = 100, word length n = 8, and Hamming distance d = 4.

5.1 RTD Analysis

To study and characterise the behavior of our algorithm, we measured RTDs from
1000 runs (i.e. maxTries = 1000) of the algorithm applied to individual problem
instances, using extremely high settings of the cutoff parameter, maxSteps, to
ensure that a solution was found in each run without using random restarts. For
each run, we recorded the number of search steps (i.e. executions of the inner for
loop of Figure 1) required for finding a solution. From this data, the RTD gives
the probability of success as a function of the number of search steps performed.
As can be seen in Figure 2 (left side), for given constraints, n, and d, the time

required for obtaining a word set of size k with a fixed probability p increases with
k for all p. Furthermore, for high p, this increase is much more dramatic than for
low p, as can be seen in the “fat” right tails of the RTDs. This indicates that our
simple SLS algorithm, even when using optimised noise settings, can suffer from
stagnation behavior that compromises its performance for long run-times. The
easiest way to overcome this stagnation effect is to restart the algorithm after a
fixed numbermaxSteps of search steps. Optimal values ofmaxSteps can be easily

Stochastic Local Search Algorithms for DNA Word Design 237

determined from the empirical RTD data (see [15]). When solving a problem
instance for the first time, however, this method is not applicable (unless the
RTD can be estimated a priori), and the actual performance depends crucially
on the value used for maxSteps.
It is therefore desirable to find different mechanisms for ameliorating or elim-

inating the observed search stagnation. The random replacement variant of our
simple SLS algorithm described at the end of the previous section was designed
to achieve this goal, and in many cases substantially reduces the stagnation ef-
fect (Figure 2 shows a typical example), leading to a significant improvement
in the robustness and performance of our algorithm. However, as can be shown
by comparing the empirical RTDs with appropriately fitted exponential distri-
butions (see Figure 2: right side), even this modification does not completely
eliminate the stagnation behavior.

5.2 Quality of Word Sets Obtained by Our Algorithm

Using the improvements and parameter settings obtained from the detailed anal-
ysis described above, we used our SLS algorithm to compute word sets for a large
number of DNA code design problems. The corresponding results can be sum-
marised as follows (detailed results are tabulated in the Appendix):

HD constraint only. There is a significant body of work on the construc-
tion of word sets over an alphabet of size 4 that satisfy the Hamming distance
constraint only, with the best bounds summarised by Bogdanova et al. [1]. We
used our algorithm to design word sets in which the word lengths ranged from
4 to 12 with the minimum Hamming distance between pairs of words ranging
from 4 to 10. Out of 42 tests, our algorithm was able to find a word set whose
size matches the best known theoretical construction in 16 cases.

HD+RC constraints. In this case, we considered word lengths ranging
from 4 to 12, and the minimum Hamming and reverse complement Hamming
distances between pairs of words ranging from 4 to 10. Out of 42 tests, our algo-
rithm was able to find a word set whose size matched or exceeded the theoretical
results of Marathe et al. [17] in 41 cases.

HD+GC constraints. We obtained word sets satisfying the Hamming dis-
tance and the 50% GC content constraints for words length ranging from 4 up
to 20, and the minimum Hamming distance between pair of words ranging from
2 to 10. Compared to the results reported by Corn et al. [16], we obtained bigger
sets in almost all cases except two particular combinations, namely word length
8 and Hamming distance 4 and word length 12 and Hamming distance 6.

HD+RC+GC constraints. We obtained word sets for word lengths rang-
ing from 4 to 12, and the minimum Hamming and reverse complement Hamming
distances between pairs of words ranging in length from 4 to 10. There was no
body of previous results that we could compare with except in one case, namely
for words of length 8 with 50%GC content that satisfy the Hamming and reverse-
complement constraints with at least 4 mismatches between pairs of words. For
this case, Frutos et al. [10] constructed a set of 108 words of length 8. We were
not able to obtain any 108 DNA word sets satisfying these constraints, using

238 Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

our algorithm when initialised with a random initial set. The biggest set found
had 92 code words. However, when we initialised our algorithm with the set of
108 words obtained by Frutos et al., along with one additional randomly chosen
word, we were able to obtain a valid set of size 109. Continuing this incremental
improvement procedure, we were able to construct sets containing 112 words
in less than one day of CPU time. Interestingly, this set has the same general
“template-map” structure as the set of Frutos et al.

6 Conclusions

We have presented a new stochastic local search algorithm for DNA word design,
along with empirical results that characterise its performance and indicate its
ability to find high-quality sets of DNA words satisfying various combinations
of combinatorial constraints.
In future work, we will examine ways to further improve our algorithm. One

possibility is to consider a more diverse neighbourhood instead of the rather
small neighbourhood that we now explore (which is based on single base modi-
fications). We conjecture that, particularly when the GC constraint is imposed,
the current small neighbourhood structure limits the effectiveness of the algo-
rithm. Another possibility is to consider more complex stochastic local search
strategies, which we expect to achieve improved performance that will likely lead
to larger word sets.
In another direction of future work, we will test our methods on different word

design constraints, including those based on thermodynamic models. While mod-
ified or additional constraints can be quite easily accommodated by relatively
minor modifications of our current SLS algorithm and its variants, different algo-
rithmic strategies might be more efficient for solving these word design problems.
Finally, it would be interesting to see if better theoretical design principles

can be extracted from the word sets that we have now obtained empirically. In
the construction of classical codes, theory and experiment are closely linked, and
we expect that the same can be true for the construction of DNA codes.

References

1. Galina T. Bogdanova, Andries E. Brouwer, Stoian N. Kapralov & Patric R. J.
Ostergard, Error-Correcting Codes over an Alphabet of Four Elements, Andries
Brouwer (aeb@cwi.nl)

2. A. Ben-Dor, R. Karp, B. Schwikowski, and Z. Yakhini, “Universal DNA tag sys-
tems: a combinatorial design scheme,” Proc. RECOMB 2000, ACM, pages 65-75.

3. R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, and L.M.
Adleman, “Solution of a satisfiability problem on a gel-based DNA computer,”
Preliminary Proc. Sixth International Meeting on DNA Based Computers, Leiden,
The Netherlands, June, 2000.

4. S. Brenner and R. A. Lerner, “Encoded combinatorial chemistry,” Proc. Natl.
Acad. Sci. USA, Vol 89, pages 5381-5383, June 1992.

Stochastic Local Search Algorithms for DNA Word Design 239

5. R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr.,
“Good encodings for DNA-based solutions to combinatorial problems,” Proc. DNA
Based Computers II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and
E. B. Baum, Editors, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 44, 1999, pages 247-258.

6. R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and S. E.
Stevens, Jr., “Genetic search of reliable encodings for DNA-based computation,”
Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors),
Proceedings of the First Annual Conference on Genetic Programming 1996.

7. A. A. El Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, “Using simulated
annealing to design good codes,” IEEE Transactions on Information Theory, Vol.
IT-33, No. 1, January 1987.

8. Faulhammer, D., Cukras, A. R., Lipton, R.J., and L. F. Landweber, “Molecular
computation: RNA solutions to chess problems,” Proc. Natl. Acad. Sci. USA, 97:
1385-1389.

9. U. Feldkamp, W. Banzhaf, H. Rauhe, “A DNA sequence compiler,”
Poster presented at the 6th International Meeting on DNA Based
Computers, Leiden, June, 2000. See also http://ls11-www.cs.uni-
dortmund.de/molcomp/Publications/publications.html (visited November 11,
2000).

10. A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith,
and R. M. Corn, “Demonstration of a word design strategy for DNA computing
on surfaces,” Nucleic Acids Research, Vol. 25, No. 23, December 1997, pages 4748-
4757.

11. M. Garzon, R. J. Deaton, J. A. Rose, and D. R. Franceschetti, “Soft molecular
computing,” Preliminary Proc. Fifth International Meeting on DNA Based Com-
puters, June 14-15, MIT, 1999, pages 89-98.

12. A.J. Hartemink, D.K. Gifford, and J. Khodor, “Automated constraint-based nu-
cleotide sequence selection for DNA computation,” 4th Annual DIMACSWorkshop
on DNA-Based Computers, Philadelphia, Pennsylvania, June 1998

13. Holger H. Hoos, Stochastic Local Search - Methods, Models, Applications, infix-
Verlag, Sankt Augustin, Germany, ISBN 3-89601-215-0, 1999.

14. H.H. Hoos and C. Boutilier, “Solving combinatorial auctions using stochastic
local search,” In Proceedings of the Seventeenth National Conference on Artificial
Intelligence, pages 22–29, Austin, TX, 2000.

15. H.H. Hoos and T. Stützle, “Evaluating Las Vegas Algorithms — Pitfalls and
Remedies,” In Proceedings of the Fourteenth Conference on Uncertainty in Artifi-
cial Intelligence (UAI-98), 1998, pages 238-245.

16. M. Li, H-J. Lee, A. E. Condon, and R. M. Corn, “DNA Word Design Strategy for
Creating Sets of Non-interacting Oligonucleotides for DNA Microarrays,” Lang-
muir, 18, 2002, pages 805-812.

17. A. Marathe, A. Condon, and R. Corn, “On combinatorial DNA word design,” J.
Computational Biology, 8:3, 2001, 201-220.

18. D. McAllester, H. Kautz, and B. Selman, “Evidence for invariants in local search,”
Proc. AAAI-97, 321–326, Providence, RI, 1997.

19. J. A. Rose, R. Deaton, D. R. Franceschetti, M. Garzon, and S. E. Stevens, Jr., “A
statistical mechanical treatment of error in the annealing biostep of DNA compu-
tation,” Special program in DNA and Molecular Computing at the Genetic and
Evolutionary Computation Conference (GECCO-99), Orlando, FL., July 13-17,
1999, Morgan Kaufmann.

240 Dan C. Tulpan, Holger H. Hoos, and Anne E. Condon

20. H. Yoshida and A. Suyama, “Solution to 3-SAT by breadth first search,” Proc. 5th
Intl. Meeting on DNA Based Computers, M.I.T. 1999, pages 9-20.

21. B-T. Zhang and S-Y. Shin, “Molecular algorithms for efficient and reliable DNA
computing,” Proc. 3rd Annual Genetic Programming Conference, Edited by J. R.
Koza, K. Deb, M. Doringo, D.B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Morgan
Kaufmann, 1998, pages 735-742.

Appendix

In this appendix, we report the sizes of word sets obtained by the SLS algorithm
presented in this paper. This data illustrates in detail the performance of our
algorithm and will be useful as a baseline for future work. Most of the word sets
are publicly available at http://www.cs.ubc.ca/∼dctulpan/papers/dna8/tables.
The data on our word sets is grouped in four tables showing the results for

different constraint combinations as follows:HD (Table 1), HD+GC (Table 2),
HD+RC (Table 3) and HD+RC+GC constraints (Table 4). In these tables,
entries in bold face match or exceed the best previously known lower bounds.
All other values are smaller than known lower bounds for corresponding (n, d)
values. Dashes (“–”) indicate cases of limited or no interest for DNA word
design, for which we did not run our algorithm.
Along with each maximal word set size found for our algorithm, we also report

the corresponding median number of steps spent by our algorithm in order to
find that set (in square brackets, [. . .], typically specified in thousands of search
steps). Each table entry is based on between 5 and 20 runs of our algorithm;
the precise number of runs was varied with problem size and solution quality;
median run times are taken over successful runs only.

n \ d 4 5 6 7 8 9 10

4 4 [.01k] - - - - - -

5 16 [1.5k] 4 [.02k] - - - - -

6 64 [80k] 9 [15k] 4 [.02k] - - - -

7 78 [70k] 23 [75k] 8 [.5k] 4 [.04k] - - -

8 219 [65k] 55 [40k] 19 [50k] 5 [.03k] 4 [.09k] - -

9 616 [285k] 138 [65k] 41 [50k] 15 [50k] 5 [.1k] 4 [.12k] -

10 1783 [471k] 358 [312k] 95 [130k] 32 [75k] 12 [5k] 5 [.5k] 4 [.32k]

11 5598 [523k] 967 [592k] 227 [165k + .1k] 70 [36k] 27 [545k] 10 [15k] 4 [.05k]

12 >10000 [24k] 2689 [263k] 578 [300k] 156 [735k] 53 [390k] 23 [532k + .5k] 9 [.5k + 5k]

Table 1. Empirical bounds on HD quaternary codes.

Stochastic Local Search Algorithms for DNA Word Design 241

4-2 5-2 6-3 7-3 8-4 9-4 10-5 11-5 12-6

48 [.3k] 142 [93k] 85 [860k] 230 [650k] 209 [] 400 [72k] 256 [250k] 620 [48k] 410 []

13-6 14-7 15-7 16-8 17-8 18-9 19-9 20-10

990 [36k] 500 [5k] 1571 [1000k] 966 [242k] 2355 [745k] 1200 [15k] 3451 [396k] 2193 [596k] -

Table 2. Empirical bounds on (HD,GC) quaternary codes for different n-d
combinations.

n \ d 4 5 6 7 8 9 10

4 2 [.02k] - - - - - -

5 4 [.02k] 2 [.005k] - - - - -

6 28 [28k] 4 [.1k] 2 [.02k] - - - -

7 40 [254k] 11 [3k] 2 [.005k] 2 [.05k] - - -

8 112 [850k] 27 [7k] 10 [31k] 2 [.01k] 2 [.03k] - -

9 314 [677k] 72 [142k] 20 [37k] 8 [16k] 2 [.02k] 2 [.04k] -

10 938 [702k] 180 [386k] 49 [287k] 16 [495k] 8 [11.01k] 2 [.01k] 2 [.02k]

11 2750 [117k] 488 [257k] 114 [145k] 35 [6k] 12 [1k] 5 [2k] 2 [.05k]

12 >8000 [72k] 1340 [400k] 290 [327k] 79 [236k] 27 [712.5k] 11 [828k] 4 [.2k]

Table 3. Empirical bounds on (HD,RC) quaternary codes.

n \ d 4 5 6 7 8 9 10

4 2 [.001k] - - - - - -

6 11 [3k] 2 [.003k] 2 [.006k] - - - -

8 92� [4000k] 19 [1.2k] 7 [10k] 2 [.01k] 2 [.02k] - -

10 640 [406k] 127 [170.5k] 37 [38k] 11 [134k] 5 [1.3k] 2 [.02] 1 [.005k]

12 5685 [455k] 933 [531k] 210 [121.5k] 59 [77k] 21 [217k] 9 [341.5k] 3 [1.5k]

Table 4. Empirical bounds on (HD,RC,GC) quaternary codes. For the �’d
entry we found a better bound, namely 112 code words as described in Section
5.2.

	Stochastic Local Search Algorithms for DNA Word Design
	Introduction
	Problem Description
	Related Work
	A Stochastic Local Search Algorithm
	Results
	RTD Analysis
	Quality of Word Sets Obtained by Our Algorithm

	Conclusions
	References
	Appendix

