
Dynamic Scoring Functions with Variable Expressions:
New SLS Methods for Solving SAT

(ONLINE APPENDIX)

Dave A. D. Tompkins and Holger H. Hoos
Department of Computer Science
University of British Columbia
{davet,hoos}@cs.ubc.ca

June 17, 2010

Version 0.1 (preliminary) – This will be updated to be consistent with Dave’s PhD dissertation once finalized. As it is
currently, it is (mostly) cut & pasted from his external examiner draft.

1 UBC Arrow Cluster
The UBC arrow cluster at UBC is composed of 55 dual 3.2GHz Intel Xeon PCs with 2GB RAM, 2MB cache, running
SuSE Linux.

2 WestGrid glacier cluster
The WestGrid glacier cluster is composed of 840 computational nodes, each with two 3.06 GHz Intel Xeon 32-bit
processors with at least 2GB of RAM, running Red Hat Linux.

3 WestGrid orcinus cluster
The WestGrid orcinus cluster is composed of 12 chassis, each containing 16 blades with two compute servers on each
blade and each server has two 3.0 GHz Intel Xeon E5450 quad-core processors, with each server sharing 16 GB of
RAM, running Red Hat Enterprise Linux Server.

4 Instances
All of our instances are available at:
http://people.cs.ubc.ca/˜davet/papers/sat10-dave-instances.zip

For our experiments we split the instance sets into halves: a test set, and a training set. To split the instances
we used a stratification strategy to ensure that the test and training set were of approximately equal hardness. As an
approximate measure of hardness, we measured the file size of the instance. We first sorted the instances by their file
size, and then segmented the instances into pairs of consecutive instances. For each consecutive pair, we randomly
placed one instance in the test set, and the other in the training set. Only the instances in the training set were used to
determine good parameter settings, and only instances in the test set were used to report experimental results.

1

http://people.cs.ubc.ca/~davet/papers/sat10-dave-instances.zip


5 ParamILS experimental information
All PARAMILS experiments were conducted with the UNIX binary of PARAMILS version 2.3.2. We used the de-
fault FocusedILS configuration of PARAMILS with settings of (deterministic, overall-obj) = (0, mean10). Because
PARAMILS can be very sensitive to the ordering of the instance list, we performed several runs of PARAMILS, each
with a randomized instance list, and selected the configuration with the best performance on the training set. To
measure this performance we ran each configuration five times on each instance in the training set and measured
the median run-length from those five runs, and then measured the mean of those medians. The current PARAMILS
software implementation only supports adaptive capping of algorithm runs after a given run-time, not after a given
run-length. Since we were interested in optimizing our algorithms in DAVE for run-length performance, but still
wanted to take advantage of PARAMILS’s excellent adaptive capping feature, we reported the run-length information
to PARAMILS as run-time information. Whether or not PARAMILS uses the solution quality to compare unsuccessful
runs changed between different PARAMILS versions due to a bug we identified, so to err on the side of caution we
included it in our run-time as follows. For a run with a run-length of rl with a solution quality of u unsatisfied clauses,
we modified the run-length to be rl + u

10 000 . Instead of simply reporting the run-length of DAVE as a run-time, we
decided to add an additional transformation to provide PARAMILS with a run-time in the same order of magnitude it
typically encounters, to avoid introducing any unintended numerical precision errors. We divided the run-length by
106, so that one million search steps in DAVE corresponded to one second in PARAMILS. We had to use a wrapper
script around DAVE to convert cutoff times received from PARAMILS back to search steps (i.e., multiply by 106).
For SATENSTEIN-LS and VW2 experiments, the instance cutoff time was 60 seconds, and for DAVE the cutoff was
10 seconds, which is the equivalent of 107 search steps. Because PARAMILS measures its total execution time by
relying on the reported run-time data, the manner in which we were reporting DAVE performance run-length data
to PARAMILS as run-time data was problematic. As a result, we specified a very large amount of cutoff time to
PARAMILS and controlled the total amount of CPU time used by PARAMILS through our computation environment.

In our experiments with PARAMILS and VE-SAMPLER, we encountered some difficulties that we believe were
caused by the very large parameter space of VE-SAMPLER. Due to Ruby’s overhead in some data structures, we
observed that the binary Ruby implementation of PARAMILS could consume a large amount of RAM (over 1 GB),
and as a consequence would be automatically terminated in our computation environment. In addition, we observed
that some of the PARAMILS runs would stagnate, not improving over the initial (default) configuration despite parallel
runs achieving great improvement. As a result of these two observations, we used an iterative strategy, where instead
of executing PARAMILS for some amount of time t, we executed k iterations of PARAMILS, each with time t/k.
For each iteration, we would use the best configuration from the previous iteration as the default configuration (see
Section 5.4).

5.1 VW2
The possible configurations for each parameter of VW2 were:

s {1, 0.33, 0.1, 0.033, 0.01, ... 0.000033, 0.00001, 0}
c {1, 0.33, 0.1, 0.033, 0.01, ... 0.00000033, 0.0000001, 0}
wp {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

We ran PARAMILS 10 times on the UBC arrow cluster for 24 hours. The best VW2 configuration found by PARAMILS
for CBMC is (s, c, wp) = (0, 0.01, 0.2). The best VW2 configuration found by PARAMILS for SWV is (s, c, wp) =
(0, 0.1, 0.05).

5.2 VW2+VE
The possible configurations for each parameter of VW2+VE were:

w {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35,
40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175, 200}

c {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2,
1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.25, 2.5,
2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 15, 20, 25, 30,

2



35, 40}
a {0.125, 0.25, 0.5, 1, 2, 4, 8}

The value of wp is calculated from w as 1
1+w . We ran PARAMILS 20 times on the WestGrid glacier cluster for 24

hours. The best VW2+VE configuration found by PARAMILS for CBMC is (c, a, wp) = (0.95, 8, 0.05).

5.3 WALKSAT+VE
For each term in WALKSAT+VE, the possible configurations for the parameters c, a and w (wp) were the same as for
VW2+VE. For the normalizations, the possible configurations for make and relMake were:

‖p‖flat =
p−min(p)

max(p)−min(p)
(1)

‖p‖max =
p

max(p)
(2)

‖p‖sum =
p

sum(p)
(3)

and the possible configurations for break and relBreak included all of the above normalizations in the form of (1 −
‖p‖), as well as:

‖x‖-max =
max(x) + min(x)− x

max(x)
(4)

We ran PARAMILS 20 times on the WestGrid glacier cluster for 96 hours. The best WALKSAT+VE configuration
found by PARAMILS for CBMC is (wp) = (0.5) and the scoring function is:

1.05 · (‖make‖flat)
8
+ 1.35 · (‖relMake‖flat)

4

+8 · (1− ‖break‖max)
1/2

+ 2.25 · (1− ‖relBreak‖max)
4 . (5)

5.4 VE-SAMPLER

For VE-SAMPLER, the possible configurations for the weight of each sub-controller (w), the exponents in the VEs
(a) and the co-efficients of the clw function (c) were:

w {0, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 12.5, 15, 20,
25, 30, 40, 50, 75, 100}

a {0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16}
c {0, 0.1, 0.25, 0.5, 0.667, 0.8, 0.9, 0.95, 1, 1.05,

1.1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 7.5, 10}

The possible configurations for the properties (or ratio of properties) used in the VEs are listed in the paper. For each
property, we allowed only two possible normalizations, depending on whether or not the property is a maximal or
minimal property (see the paper). The possible normalizations were ‖p‖flat, ‖p‖max, (1 − ‖p‖flat) or ‖p‖-max (see
Section 5.3 above). We ran PARAMILS for 4 iterations, where for each iteration we ran PARAMILS 40 times for 24
hours. For CBMC we used the WestGrid glacier cluster, and for SWV we used the WestGrid orcinus cluster. The best
VE-SAMPLER configuration found by PARAMILS on CBMC is:

w1 = 3 e1 = freebie
w2 = 30 e2 = (‖break‖-max)

1/4
+ clw(0, 0, 2) · (1− ‖relBreak‖flat)

16

w3 = 50 e3 = (‖relMake‖max) + clw(3.5, 0.9, 5) · (‖age′‖max)
8

w4 = 3 e4 = (‖make‖flat) + clw(0.25, 3.5, 1.05) · (‖flips‖-max)
1/8

w5 = 30 e5 = (‖relMake‖flat)
2
+ clw(0.25, 0.25, 3) · (‖age′‖flat)

w6 = 1 e6 = (‖make‖max)
8
+ clw(0.95, 3.5, 0.5) · (‖age‖max)

(6)

3



The best VE-SAMPLER configuration found by PARAMILS on swv (partial) is:

w1 = 3 e1 = freebie
w2 = 15 e2 = (1− ‖break‖flat)

1/16
+ clw(0, 0.25, 1) · (‖make‖max)

1/2

w3 = 50 e3 = (‖break‖-max)
16

+ clw(0.1, 5, 0.25) · (‖flips‖-max)
1/2

w4 = 50 e4 = (‖break‖-max)
1/16

+ clw(0.1, 3.5, 1.75) · (‖flips‖-max)
1/16

w5 = 3 e5 = (‖relBreak‖-max) + clw(1, 5, 7.5) · (1− ‖flips‖flat)
1/16

w6 = 5 e6 = (‖make‖flat)
1/2

+ clw(2.5, 0.1, 1.05) · (‖flips‖-max)

(7)

5.5 SATENSTEIN

For SATENSTEIN-LS, we used two PARAMILS configuration files provided by the SATENSTEIN-LS authors. We
ran PARAMILS 40 times (20 times for each configuration file) on the WestGrid orcinus cluster for 96 hours. The
configuration of SATENSTEIN-LS found by PARAMILS on swv (partial) is:

-adaptive 0 -adaptivenoisescheme 1 -adaptiveprom 0
-adaptpromwalkprob 0 -adaptwalkprob 0 -alpha 1.066 -c 0.00001
-clausepen 1 -decreasingvariable 3 -dp 0.05 -heuristic 2
-maxinc 20 -novnoise 0.5 -performalternatenovelty 1
-performrandomwalk 1 -pflat 0.05 -phi 5 -promdp 0.05
-promisinglist 0 -promnovnoise 0.5 -promphi 5 -promtheta 6
-promwp 0.01 -ps 0 -randomwalk 4 -rdp 0.05 -rfp 0.15 -rho 0.8
-rwp 0.1 -rwpwalk 0.05 -s 0.001 -sapsthresh -0.1
-scoringmeasure 3 -selectclause 1 -singleclause 0
-smoothingscheme 1 -tabu 5 -tabusearch 0 -theta 6
-tiebreaking 2 -updateschemepromlist 3 -varinfalse 1 -wp 0.05
-wpwalk 0.7

4


	1 UBC Arrow Cluster
	2 WestGrid glacier cluster
	3 WestGrid orcinus cluster
	4 Instances
	5 ParamILS experimental information
	5.1 VW2
	5.2 VW2+VE
	5.3 WalkSAT+VE
	5.4 VE-Sampler
	5.5 SATenstein


