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Abstract

Recent dynamic local search (DLS) algorithms such as SAPS are amongst the state-of-the-art methods for
solving the propositional satisfiability problem (SAT). DLS algorithms modify the search landscape during
the search process by means of dynamically changing clause penalties. In this work, we study whether the
resulting, ‘warped’ landscapes are easier to search than the landscapes that correspond to the original prob-
lem instances. We present empirical evidence indicating that (somewhat contrary to common belief) this is
not the case, and that the main benefit of the dynamic penalty update mechanism in SAPS is an effective
diversification of the search process. In most other high-performance stochastic local search algorithms, the
same effect is achieved by the strong use of randomised decisions throughout the search. We demonstrate
that in SAPS, random decisions are only required in the (standard) search initialisation procedure, and can be
completely eliminated from the remainder of the subsequent search process without any significant change in
the behaviour or performance of the resulting algorithms compared to the original, fully randomised SAPS
algorithm. We conjecture that the reason for this unexpected result lies in the ability of the deterministic
variants of the scaling and smoothing mechanism and the subsidiary iterative best improvement mechanism
underlying SAPS to effectively propagate the effects of initial randomisation throughout a search process that
shows the sensitive dependence on inditial conditions that is characteristic for chaotic processes.

1 Introduction and Background

The Propositional Satisfiability Problem (SAT) is one of the most prominent hard combinatorial decision prob-
lems; it plays an important role in many areas of computing and is of substantial theoretical and practical interest.
A popular and very successful approach to solving SAT is to apply Stochastic Local Search (SLS) algorithms.
A well-known class of SLS algorithms for SAT is based on the idea of Dynamic Local Search (DLS); DLS
algorithms dynamically change the evaluation function of a subsidiary local search algorithm, and hence the
search landscapes, during the search process. Well-known DLS algorithms for SAT include Morris’ Breakout
Method [8], GSAT with clause weighting [11], Frank’s GSAT with rapid weight adjustment [1], the Discrete La-
grangian Method (DLM) [14], the Smoothed Descent and Flood (SDF) and Exponentiated Sub-Gradient (ESG)
algorithms [9, 10], as well as our recent Scaling and Probabilistic Smoothing (SAPS) algorithm, which achieves
state-of-the-art performance for SAT and MAX-SAT [6, 13].

All of these DLS algorithms use dynamically changing clause penalties in order to modify (or warp) the
underlying search landscape during the search. In particular, the SAPS algorithm works as follows: All proposi-
tional variables are randomly initialised (one or zero), and each clause penalty is initialised to one. The evaluation
function for SAPS is the sum of the unsatisfied clause penalties. The subsidiary local search algorithm of SAPS
is a simple iterative best improvement method that in each step flips the variable that decreases the evaluation
function the most, with ties broken randomly. (Note that the same basic search method is underlying the GSAT
algorithm [7].) If no variable flip can reduce the evaluation function, then the algorithm is at a local minimum.
At a local minimum, either with probability �� a variable is randomly selected and flipped (a so-called random
walk step), or the clause penalties are adjusted by a scaling step, and possibly a smoothing step. At a scaling
step, all unsatisfied clause penalties are multiplied by a fixed value � � �, which is a parameter of the algorithm.
After a scaling step, a smoothing step occurs with probability �������, in which case all penalties are adjusted to
���� � ���� � � � ��� � �� � ��, where ���� is the penalty of a given clause ��, ��� is the average of all clause
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weights after scaling, and the parameter � has a fixed value between zero and one. (A detailed description of
SAPS can be found in [6].)

In this work, we study the factors underlying the effectiveness of DLS algorithms such as SAPS for solving
hard SAT instances. In particular, we investigate the commonly held belief that the warping of the search space
achieved by these algorithms makes the respective problem instances easier to solve and hence can be seen
as a form of learning. We present evidence that this belief is essentially incorrect and provide better insights
into the role of warping, as realised by the scaling and smoothing mechanism in SAPS, in the context of the
impressive performance of state-of-the-art DLS algorithms for SAT. Furthermore, we investigate the role of
random decisions in DLS algorithms and present empirical evidence that, contrary to earlier results for other SLS
algorithms for SAT, for SAPS the only place where randomisation is required is in the determination of the initial
truth assignment. This demonstrates that even a completely deterministic variant of the scaling and smoothing
mechanism used in SAPS achieves a sufficient degree of diversification and mobility of the search process,
leading to the same excellent performance as the original, heavily randomised SAPS algorithm. Furthermore,
the run-time of the resulting algorithm for a given SAT instance solely depends on the initial assignment, which
suggests possible directions for further, substantial performance improvements.

2 Warped Intelligence

While solving a given problem instance, DLS algorithms are dynamically warping their underlying search space
whenever they update their clause penalties. It has been suggested that the success of this approach is a result
of the fact that the clause penalties represent accumulated ‘knowledge’ about the search space (see, e.g., [1]). In
other words, DLS algorithms are ‘learning’ about the landscape they search. In particular, the resulting warped
landscape will be easier to search than the original space. Often, this reflects back to a popular analogy that a
DLS algorithm ‘fills in the holes’, i.e., the local minima, of a given search landscape. Although the notion that
the effectiveness of DLS algorithms is explained by their ability to produce warped landscapes in which solutions
can be found more efficiently appears to be widely accepted, little evidence has been provided to support this
hypothesis.

To investigate the validity of this proposed explanation, we examined the SAPS algorithm, and took snapshots
of the clause penalties whenever the algorithm had found a solution. These clause penalties were then used to
generate weighted SAT instances, which we refer to as the SAPS generated weighted instances, where the weight
of each clause is simply the corresponding clause penalty used by SAPS at the point when a solution was found.
(Here and in the following, we will use the terms ‘weight’ and ‘clause weight’ to refer to weights that are statically
associated with the clauses of a given, weighted SAT instance, while the terms ‘penalty’ and ‘clause penalty’ are
reserved for dynamically changing penalty values associated with clauses during the run of a DLS algorithm.)
Many existing SLS algorithms for SAT can be generalised easily and naturally to weighted SAT instances by
replacing their standard evaluation function, defined as the total number of clauses unsatisfied under a given truth
assignment, by a function that maps truth assignments to the corresponding weighted sum of unsatisfied clauses.
(Note that standard SAT instances can be seen as a special case of weighted SAT instances, where all clause
weights are equal.) We propose that if (on average) an algorithm can solve the weighted problem instance in
fewer search steps than the corresponding unweighted problem instance, then the weights are truly making the
instance easier.

If the efficiency of SAPS were based on its ability to learn clause weights that render the given instance easier,
this should be reflected in reduced search cost when SAPS is initialised with the clause weights from a previous
successful run. Note that this is equivalent to restarting the algorithm by randomly reinitialising all variables,
while keeping the clause penalties the same. In other words, if all the clause penalties represent ‘knowledge’ that
the algorithm has accumulated about the search space, then the modified SAPS algorithm is starting with all of
that knowledge a priori.

For this experiment, and all remaining experiments reported in this paper, we chose a number of well-known
random and structured instances from SATLIB www.satlib.org) [5]. For all experiments, we did not op-



SAPS Generated Permuted SAPS Randomly Generated
Weighted Instances Weighted Instances Weighted Instances

Instance Unweighted ����� Median ����� ����� Median ����� ����� Median �����

uf100-easy 81 0.98 1.01 1.06 0.98 1.00 1.02 1.31 1.36 1.46
uf100-hard 3,763 1.08 1.11 1.14 1.00 1.05 1.09 1.03 1.06 1.10
uf250-hard 197,044 0.98 1.06 1.14 0.35 1.01 1.04 0.97 1.03 1.06
uf400-hard 2,948,181 0.92 1.04 1.17 1.00 1.04 1.07 0.95 1.10 1.19
ais10 20,319 1.06 1.09 1.11 1.03 1.08 1.12 1.04 1.11 1.19
bw large.a 2,499 0.90 0.93 0.98 0.99 1.02 1.04 1.01 1.04 1.07
bw large.b 34,548 0.97 1.02 1.08 1.00 1.02 1.06 0.99 1.07 1.11
flat100-hard 24,248 0.99 1.02 1.04 0.97 1.02 1.05 0.98 1.01 1.04
logistics.c 9,446 0.97 1.03 1.06 1.02 1.05 1.07 1.05 1.07 1.14
ssa7552-038 3,960 0.86 0.91 0.95 0.94 0.98 1.00 1.02 1.08 1.12

Table 1: Comparison of SAPS performance on SAPS generated weighted instances, permuted SAPS generated
instances and randomly weighted instances. For each test instance, SAPS was run 1000 times to obtain a run-
length distribution. From that distribution, 25 characteristic runs were selected according to the quantiles �����,
�����, . . . , �����. Weighted instances were then generated using the final clause penalties from each of the char-
acteristic runs. SAPS was run on each of the 25 weighted instances 250 times, and the median run from each
weighted instance was identified. Those 25 medians formed a distribution, and basic descriptive statistics of that
distribution (median, �����, �����) are presented above. For each weighted result the value shown is the ratio of
the respective run-length statistic of the weighted instance to the median run-length of the unweighted instance.
The procedure was then repeated on 25 instances where the weights were randomly permuted, and then finally
on 25 instances with randomly generated weights.

timise the SAPS parameters (�,�,�������,��) and used the default values ��	�
 �	�
 �	��
 �	���. Generally, we
measure the performance of an algorithm as the median or mean number of steps required to reach a solution.

As can be seen from the results in Table 1, the performance of SAPS on the SAPS generated weighted
instances was not significantly better than the performance of SAPS on the original (unweighted) instances, and
in some instances it was worse. Furthermore, we found no correlation between the length of the SAPS run from
which the penalties were taken (short, average, long) and the hardness of the resulting weighted instance.

Next, we considered variants of the SAPS generated weighted instances in which the weights had been
randomly permuted by assigning each weight to a randomly chosen clause. The results in Table 1 demonstrate
that SAPS behaves similarly on the original SAPS generated instances and the permuted instances. This provides
further evidence that the individual weights do not reflect specific knowledge about the respective clauses.

Finally, we looked at instances generated with completely random weights that were uniformly sampled at
random from the interval (0,1], which we refer to as randomly weighted instances. In most of the experiments,
we found no significant performance differences when we compared the performance results of SAPS on the
SAPS generated weighted instances and the randomly weighted instances. A few minor exceptions, in which the
randomly generated weights rendered the instance slightly harder than SAPS generated weights or unit weights,
are seen in Table 1 (bw large.a and ssa7552-038).

To further investigate this matter, we considered two larger SATLIB test-sets: flat100, a set of 100 randomly
generated, hard, SAT-encoded graph colouring instances with 300 variables each, and uf100, a set of 100 in-
stances from the solubility phase transition region of Random-3-SAT with 100 variables each. (Note that the
flat100 instances contain a certain amount of structure induced by the specific mechanism used for generating
random graph colouring instances and, more importantly, by the encoding into SAT.) In both cases, we repeated
the previously explained procedures on all 100 instances of the respective test-set in order to determine whether
for any of these instances using SAPS weights rendered them significantly easier than using randomly generated
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Figure 1: Comparison of SAPS performance on SAPS generated weighted instances and randomly weighted
instances obtained for the SATLIB test-sets flat100 (left) and uf100 (right). For each test instance, SAPS was
run 1000 times to obtain a run-length distribution. From that distribution, 25 characteristic runs were selected
according to the quantiles �����, �����, . . . , �����. Weighted instances were then generated using the final clause
penalties from each of the characteristic runs. SAPS was run on each of the 25 weighted instances 250 times,
and the median run from each weighted instance was identified. The median of those medians was selected as
the run-length shown above. The same procedure was carried out using 25 variants of each test instance with
randomly generated weights.

weights. The results presented in Figure 1 show that this is not the case.
Although we have established that SAPS does not generally find the SAPS generated weighted instances

easier, it may be the case that other algorithms can use these weights to their advantage. In particular, this could
be the case for weighted static algorithms such as GWSAT [12]. Unlike DLS algorithms (such as SAPS), which
dynamically change the clause penalties and may hence steer away from the original penalty values unless the
instance can be solved relatively quickly, these static algorithms will continue to use the original weights and
may thus be in a better position to exploit them. However, preliminary experiments with GWSAT (results not
presented here) indicate that similar to SAPS, GWSAT does not appear to perform better when using SAPS
generated weights as opposed to the unit weights that characterise the original, unweighted problem instances.

We also studied a slight variation of GSAT, RGSAT (Restarting GSAT), which uses the same best improve-
ment search method underlying both GSAT as well as SAPS, but restarts the search from another random truth
assignment whenever it cannot perform an improving search step, i.e., whenever it encounters a local minimum
or plateau of the given search landscape. Note that RGSAT has no plateau search capabilities, but can also never
get stuck in a local minimum. The performance of RGSAT is quite poor, but it provides interesting insights into
the hardness of SAT instances for simple local search methods. We conducted a series of experiments where we
took snapshots of the warped landscape at every local minimum encountered within a SAPS search trajectory on
SATLIB instance uf100-easy. On each of the corresponding weighted instances, we then ran RGSAT multiple
times and we found that for RGSAT, these instances are becoming progressively easier to solve. However, we
also observed that RGSAT’s performance generally increases with the ruggedness of a given search landscape,
where (following common practice) we consider a landscape more rugged if it contains fewer plateaus and more
strict local minima. It is easy to see that during a SAPS run that starts from unit penalties, the landscape rugged-
ness can be expected to progressively increase, and hence it is not surprising that RGSAT finds the resulting
warped landscapes easier to search than the landscape of the original, unweighted instance.

Overall, based on our empirical results, there is no evidence to support the hypothesis that the warped land-
scapes generated by SAPS are easier to search for any reasonably powerful SLS algorithm, and hence, that the



clause penalties determined over successful runs of SAPS reflect any general knowledge on how to solve the
given problem instance more efficiently. Based on the similarity of the underlying penalty update mechanisms,
we predict that the same result will apply to the warped landscapes obtained from other DLS algorithms, but
testing this prediction will require some additional experimentation.

Based on these findings, it is worthwhile to revisit our understanding of the behaviour of DLS algorithms.
The penalty update system of SAPS is based on two mechanisms: scaling and smoothing. Scaling clearly affects
the mobility of the algorithm, i.e., its ability to escape from local minima and other non-solution areas of the
given search space. This was the original motivation for introducing the scaling mechanisms, and it seems to
serve that purpose well. It has been suggested that DLS algorithms use scaling (or similar mechanisms) to ‘fill in
the holes’ (i.e., local minima) of the given landscape [8, 11].

While this analogy is appealing, it also turns out to be very deceiving. Consider a regular 3-SAT clause
� � �� � �� � ��, and the impact of increasing the penalty of this clause on a given search landscape. Recall
that the search landscape for a CNF formula � with 
 variables is an 
-dimensional hypercube formed by the
	� truth assignments of � . Any assignment � has 
 neighbours that differ from � in the truth value of exactly
one variable. If the search is at a position in the space where clause � is unsatisfied (�� � �� � �� � �), then

 � � neighbours will also leave � unsatisfied, and increasing the clause penalty of � will raise the level (i.e.,
increase the evaluation function value) of those neighbours as well. So the level of the current assignment � will
be raised relative to only three local neighbours. But recall that ��� of the entire search space also has clause �
unsatisfied, and so while locally the space has changed relative to three local neighbours, globally 		���
 points
in the space have been affected. Hence, by modifying a clause penalty, a DLS algorithm may effect a beneficial
change in a very small local region of the search landscape, but at the global level, it is possible and rather likely
that the side-effects of this local warping can be quite detrimental, e.g., by giving rise to new local minima. (The
possibility of such detrimental side-effects has also been hinted at in [8].)

The smoothing mechanism is required to compensate for these undesired, global side-effects. Essentially,
smoothing helps the SAPS algorithm to ‘forget’ clause penalties that were important in order to escape from a
local minima region, but are no longer helpful after the search has left that region. In some sense, scaling and
smoothing try to balance short-term versus long-term memory effects of the search. Since in DLS algorithms
like SAPS, long-term memory effects seem to be mostly undesired side-effects of crucially important short-term
modifications of the search landscape, the main role of smoothing appears to be to limit the long-term effects of
these local changes. (See also the discussion of long-term vs short term effects in [1].) Hence, when we re-use
the penalties from a previous run of SAPS, we start in a completely different area of the search space, and the
most recent local warping (which dominates the SAPS search behaviour) is of no benefit. Recent local changes
from the previous search will be gradually ‘forgotten’ through smoothing, leaving the accumulated residual ‘long
term’ memory (clause penalties) of the previous search, which according to our results does not appear to be
effective in reducing search cost.

Overall, the results from our empirical investigation suggest that the penalty-based mechanisms used by
SAPS and other DLS algorithms for warping the search landscape mainly serves as a diversification mechanism,
which allows the search process to effectively avoid and overcome stagnation due to local minima and plateau
regions while maintaining its heuristic guidance.

3 Random Decisions Need Not Apply

By definition and in practice, random decisions are an essential ingredient of stochastic local search and they
are often crucial for achieving high performance in a robust way [3]. But it may be noted that the strongly
randomised search mechanisms found in SAT algorithms such as GWSAT or WalkSAT [12], serve essentially
the same purpose as the scaling and smoothing mechanism in SAPS: effective diversification of the search.
Together with an earlier observation that high-performance DLS algorithms, after an initial search phase, often
become nearly deterministic [10], this raises the question where and to which extent randomness is needed in the
context of DLS algorithms.



We begin our investigation of this issue with the observation that after the search is initialised (at a randomly
selected truth assignment) SAPS uses three types of random decisions:

1. Random tie-breaking: When two or more variables would give the identical best improvement when
flipped, one of them is chosen at random.

2. Random walk steps: When a local minimum is encountered, a random walk is performed with probability
��.

3. Probabilistic smoothing: Scaling, which also occurs only when a local minimum is encountered, is fol-
lowed by smoothing with probability �������.

When examining the importance of each of these mechanisms in more detail, we found the following:

1. Random tie-breaking: On long search trajectories, after the algorithm has performed scaling and smooth-
ing, most clause penalties become unique, and so the possibility of encountering a tie becomes increasingly
unlikely.

2. Random walk steps: We have not encountered any empirical evidence that the random walk mechanism
(originally inherited from the ESG algorithm) is important for the performance of SAPS, and in our expe-
rience setting �� � � does not degrade performance.

3. Probabilistic smoothing: The circumstances under which probabilistic smoothing will produce a substan-
tially different search trajectory from periodic smoothing appear to be rare, and we have not seen any
instances where this difference has significantly altered the algorithm’s performance.

Together, these observations suggest that none of the random decisions discussed so far are crucial to the be-
haviour and performance of SAPS. To test this hypothesis, we designed a SAPS variant called SAPS/NR, which
differs from SAPS only in the following three aspects:

1. Deterministic tie-breaking: Whenever a tie between variables occurs, the SAPS/NR algorithm determinis-
tically chooses the variable with the lowest index value.

2. No random walk steps: The �� parameter is always set to zero, so that random walk steps are never
performed.

3. Periodic smoothing: The probabilistic smoothing is replaced with deterministic periodic smoothing, where
smoothing occurs every ��������� local minima.

At first glance, it may seem that SAPS/NR is completely deterministic, but we must emphasise that the initialisa-
tion of SAPS/NR is identical to the procedure in SAPS, and consequently the initial starting position for each run
of SAPS/NR is completely random. The results of a simple experiment in which we measured the performance
differences between SAPS and SAPS/NR are reported in Table 2; clearly, there is no significant difference be-
tween the behaviour of SAPS and SAPS/NR on our test instances. In particular, it is somewhat surprising that
there appears to be no significant reduction in the variability of the run-time for the same problem instance.

To see how SAPS/NR behaves when the number of random decisions is reduced even further, we conducted
an additional experiment in which we first reduced the total randomness to zero by initialising all variables to a
fixed initialisation value and confirmed that all runs were identical. We then allowed one variable to be randomly
initialised, then two variables, and so on. The results of this experiments, reported in Table 3, shows that even
for as few as 32 random decisions (i.e., 32 random variable initialisations), the behaviour of SAPS/NR is not
substantially different from that of the fully randomised original SAPS algorithm. Even more surprisingly, even
for 4 random decisions, as illustrated in Figure 2, the run-time, which can now take only 16 different values,
often exhibits the variability that is observed for fully randomised SAPS as well as for all other state-of-the-art
SLS algorithms for SAT [4].



SAPS SAPS/NR
Instance Mean c.v. Mean c.v.

uf100-easy 102 0.75 103 0.70
uf100-hard 5,572 0.95 5,458 0.97
uf250-hard 296,523 0.98 282,668 1.02
uf400-hard 4,349,480 0.75 3,662,192 0.83
ais10 32,810 1.01 31,527 0.99
bw large.a 3,374 0.85 3,245 0.81
bw large.b 50,025 0.95 50,266 0.94
flat100-hard 35,124 1.02 33,519 0.98
logistics.c 12,873 0.76 12,458 0.83
ssa7552-038 4,460 0.44 4,399 0.41

Table 2: Performance comparison of SAPS and SAPS/NR. For each instance, SAPS and SAPS/NR were run
1000 times, and the mean and coefficient of variation (c.v.) of the run lengths are shown for each instance. The
c.v. is calculated as the standard deviation divided by the mean (��
�). Note that c.v. � � characterises an
exponential run-length distribution, which is typical for high-performance SLS algorithms for SAT.

# Random flat100-hard uf100-hard bw large.a
Decisions Mean c.v. Mean c.v. Mean c.v.

0 24,198 0.00 4,764 0.00 2,160 0.00
1 28,491 0.51 5,316 0.44 3,016 0.40
2 30,315 0.68 4,834 0.67 2,989 0.59
4 33,966 0.90 5,408 0.88 3,254 0.75
8 33,467 0.98 5,413 0.94 3,218 0.81

16 34,074 0.99 5,560 0.97 3,285 0.84
32 34,113 0.99 5,476 0.96 3,276 0.83
64 34,099 0.99 5,435 0.96 3,265 0.84

# vars 33,769 0.98 5,458 0.97 3,245 0.81
SAPS 33,519 0.98 5,572 0.95 3,374 0.85

(# random) (9,780) (2,750) (1,590)

Table 3: The effect of varying the number of random decisions in the initialisation of SAPS/NR. For a SAPS/NR
experiment with 
 variables and � random decisions, (
 � �) variables were randomly selected and assigned a
truth value (�,�) randomly, and then those variables were fixed for the remainder of that experiment. In each
experiment, 1000 runs were conducted (250 for uf400-hard) and the run-length mean and c.v. were found. Each
experiment was then repeated 100 times on every instance, where the randomly selected (
 � �) variables to
fix were different for every experiment. The median results of those 100 experiments are presented above for
each instance. For comparison, the corresponding values for SAPS are shown, in addition to the mean number of
random decisions made in a run of SAPS.
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Figure 2: Quantile-quantile plot of the run-length distributions for SAPS/NR vs regular SAPS on SATLIB in-
stances flat100-hard (left) and uf100-hard (right). The data is based on 1000 runs on each of SAPS, SAPS/NR
(4 random decisions) and SAPS/NR (
 random decisions, where 
 is the number of variables). For the 1000
runs with only 4 random decisions, (
 � �) variables were selected at random and assigned a truth value (�,�)
randomly, and then those variables were fixed for all 1000 runs.

This result appears to be in stark contrast with earlier observations by Gent and Walsh [2], who demonstrated
that the initial starting position is typically not important for the performance of variants of GSAT. Indeed, it can
be shown that for the regular SAPS algorithm, deterministic initialisation does not lead to significantly different
behaviour, since apparently, the other random decisions are sufficient for ensuring sufficient diversification and
mobility of the search process. The ESG algorithm also exhibits the same behaviour, where ESG has only two
of the three sources of randomness described for SAPS (no probabilistic smoothing), but for a deterministic
initialisation those two sources provide the same degree of variability as observed for regular ESG or SAPS.
However, in the absence of other random decisions, the initial starting position is not only important, but also
sufficient for achieving the same (desirable) behaviour as exhibited by SAPS, ESG and other high-performance
SLS algorithms for SAT.

In this context, it is interesting to note that implementations of all SLS algorithms on traditional computers
are in fact deterministic, since they use pseudo-random number generators instead of a true source of randomness
as the basis for any “random” decision. Much in tune with current theoretical thinking, this suggests that true
randomness is probably not needed for achieving good performance in SLS algorithms and other methods for
solving hard combinatorial problems. Instead, the crucial role of pseudo-random decisions is to diversify the
search process in a way that is independent from features of the given problem instance, in order to compensate
for weaknesses in the heuristics that otherwise guide the search. Our results suggest that for DLS algorithms such
as SAPS/NR, the complex interaction between the subsidiary greedy local search process and the effects of the
warping of the search space accomplished by the scaling and smoothing mechanisms to a large extent fulfill the
same role. This leads to a search process that is chaotic in the sense of a dynamical system that shows extremely
sensitive dependence on its initial conditions. (Note that chaotic behaviour is often defined based on sensitive
dependence on initial conditions.) We conjecture that this chaotic nature of the search propagates and amplifies
the effects of the random initialisation through arbitrarily long search trajectories and thus reduces the need for
further random decisions throughout the search process, while achieving the high mobility and diversification
that is crucial for achieving the excellent performance of SAPS. Clearly, further investigation is required in order
to validate this interpretation of the search process in SAPS/NR and SAPS.



4 Conclusions and Further Work

In this paper, we presented an initial investigation into the factors underlying the excellent performance of state-
of-the-art dynamic local search algorithms for SAT. Our empirical results show that the warping of search land-
scapes effected by the scaling and smoothing mechanism of SAPS, a state-of-the-art dynamic local search al-
gorithm for SAT, does not typically correspond to a global simplification of the given problem instance. The
local warping achieved by scaling plays a crucial role in allowing the subsidiary greedy local search algorithm
to escape from local minima of its evaluation function, but can have large, unwanted effects on the search land-
scape on a global scale. Therefore, it is crucial to provide a mechanism that allows for undoing these unwanted
changes. In SAPS, this function is performed by the smoothing stage, which helps the algorithm ‘forget’ about
recent scaling effects. Hence the primary effect of scaling and smoothing corresponds to a form of reactive
short-term memory; however, because of the nature of the smoothing operation, SAPS shows long-term memory
effects which typically do not appear to be helpful for the search process. Currently, we are extending the work
presented here by trying to isolate the short-term from the long-term memory of the algorithm, as well as by fur-
ther studying the nature of the dynamically changing landscapes in dynamic local search using standard search
space analysis techniques. We believe that it may be possible to devise a modified long-term memory mechanism
that, unlike the current smoothing scheme in SAPS, can be useful for rendering problem instances easier as the
search progresses.

Furthermore, we have shown that, as a result of the properties of the scaling and smoothing mechanism,
the role of randomness in SAPS is somewhat different from other SLS algorithms; in particular, after randomly
initialising the search process, all further random decisions can be eliminated without any significant effect on the
behaviour and performance of the algorithm. The resulting variant of SAPS, SAPS/NR, essentially shows chaotic
behaviour in that the length of successful runs is extremely sensitively dependent on the initial truth assignment.
We believe that this is a non-trivial effect of the complex interaction between the simple subsidiary greedy search
algorithm and the dynamics of penalty updates. We are currently investigating this chaotic behaviour in more
detail; furthermore, we are trying to find heuristics that allow us to initialise SAPS/NR in a way that biases it
toward substantially shorter run-times. Particularly for structured problem instances, we are hopeful that such
heuristic initialisation methods can be devised, leading to further improvements in the state-of-the-art in SAT
solving.
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