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Abstract. In this paper, we study the behaviour of the Scaling and Probabilis-
tic Smoothing (SAPS) dynamic local search algorithm on the unweighted MAX-
SAT problem. MAX-SAT is a conceptually simple combinatorial problem of sub-
stantial theoretical and practical interest; many application-relevant problems, in-
cluding scheduling problems or most probable explanation finding in Bayes nets,
can be encoded and solved as MAX-SAT. This paper is a natural extension of our
previous work, where we introduced SAPS, and demonstrated that it is amongst
the state-of-the-art local search algorithms for solvable SAT problem instances.
We present results showing that SAPS is also very effective at finding optimal
solutions for unsatisfiable MAX-SAT instances, and in many cases performs bet-
ter than state-of-the-art MAX-SAT algorithms, such as the Guided Local Search
algorithm by Mills and Tsang [8]. With the exception of some configuration pa-
rameters, we found that SAPS did not require any changes to efficiently solve
unweighted MAX-SAT instances. For solving weighted MAX-SAT instances, a
modified SAPS algorithm will be necessary, and we provide some thoughts on
this topic of future research.

1 Introduction and Background

The propositional satisfiability problem (SAT) is an important subject of study in many
areas of computer science. Since SAT is N"P-complete, there is little hope to develop
a complete algorithm that scales well on all types of problem instances; however, fast
algorithms are needed to solve large problems from various domains. As with most
other work on SAT algorithms, we consider only propositional formulae in conjunctive
normal form (CNF), i.e., formulae of the form F' = A, \/.l;;, where each [;; is a
propositional variable or its negation. The I;; are called literals, while the disjunctions
\/j l;; are called clauses of F'.

Unweighted MAX-SAT is the optimisation variant of SAT in which the goal is, given
a CNF formula F', to find an assignment of truth values to the propositional variables in
F' that maximises the number of satisfied clauses. MAX-SAT is a conceptually simple
NP-hard combinatorial problem of substantial theoretical and practical interest; many
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application-relevant problems, including scheduling problems or Most Probable Expla-
nation (MPE) finding in Bayes nets can be encoded and solved as MAX-SAT [10]. Al-
though MAX-SAT is defined as a maximisation problem, it is usually more convenient
to consider the corresponding minimisation problem, where the goal is to minimise the
number of unsatisfied clauses. In weighted MAX-SAT, each clause ¢; is associated with
a weight w;, and the goal is to minimise the total weight of the unsatisfied clauses. Ob-
viously, unweighted MAX-SAT is equivalent to weighted MAX-SAT with each clause
weight equal to one (Vi : w; = 1).

Some of the best known methods for solving SAT are Stochastic Local Search (SLS)
algorithms; these are typically incomplete, i.e., they cannot determine with certainty
that a formula is unsatisfiable but they often find models of satisfiable formulae sur-
prisingly effectively [6]. Although SLS algorithms for SAT differ in their details, the
general search strategy is mostly the same. Starting from an initial, complete assign-
ment of truth values to all variables in the given formula F', in each search step, the
truth assignment of one variable is changed from true to false or vice versa; this type of
search step is also called a variable flip. Variable flips are typically performed with the
purpose of minimising an objective function that sums the number of unsatisfied clauses
(in the case of weighted MAX-SAT, this would easily generalise into minimising the
total weight of the unsatisfied clauses). Since the introduction of GSAT [15], a sim-
ple best-improvement search algorithm for SAT, much research has been conducted in
this area. Major performance improvements were achieved by the usage of noise strate-
gies [13], the development of the WalkSAT architecture [14], and further advancements
such as the Noveltyt variant of WalkSAT [5].

In parallel to the development of more refined versions of randomised iterative im-
provement strategies such as WalkSAT, another SLS method has become increasingly
popular in SAT solving. This method is based on the idea of modifying the evaluation
function in order to prevent the search from getting stuck in local minima or other attrac-
tive non-solution areas of the underlying search space. We call this approach Dynamic
Local Search (DLS). DLS strategies for SAT typically associate a clause penalty with
each clause of the given formula, which is modified during the search process. These al-
gorithms then try to minimise the total penalty rather than the number of the unsatisfied
clauses. GSAT with clause penalties [13] was one of the first algorithms based on this
idea, although it changes penalties only in connection with restarting the search pro-
cess. Many variants of this scheme have been proposed: Frank [3] uses a DLS penalty
scheme that is updated every time a variable is flipped. Morris’ Breakout Method [9]
simply adds one to the penalty of every unsatisfied clause whenever a local minimum
is encountered. The Discrete Lagrangian Method (DLM) [18] is based on a tabu search
procedure and uses a similar, but slightly more complicated penalty update scheme. Ad-
ditionally, DLM periodically and deterministically invokes a smoothing mechanism that
decreases all clause penalties by a constant amount. The Smoothed Descent and Flood
(SDF) approach [11] introduced a more complex smoothing method, and the concept
of multiplicative penalty updates, which evolved into the Exponentiated Sub-Gradient
(ESG) method [12]. Our Scaling and Probabilistic Smoothing (SAPS) [7] method im-
proved upon the ESG approach; SAPS will be described in detail in Section 2.



With the SAT problem, both complete solvers and SLS solvers have had a large
amount of success. However, complete solvers often have difficulty with MAX-SAT
problems, whereas SLS methods have been extremely effective. For MAX-SAT, much
emphasis has been placed on developing polynomial-time algorithms that can achieve
solutions within a bounded factor of the optimal solution, but in practice these algo-
rithms are not as effective as SLS approaches. In principle, any SLS algorithm for SAT
can be applied to the unweighted MAX-SAT problem with some simple modifications,
but it is not clear that algorithms effective in the SAT domain are also effective in the
MAX-SAT domain. Furthermore, in many cases the straightforward extensions of SLS
algorithms for SAT to weighted MAX-SAT problems appear to perform rather poorly.

One of the first SLS techniques applied to MAX-SAT was the Steepest Ascent
Mildest Descend (SAMD) algorithm [4], and numerous approaches have been used
since. The Iterated Local Search (ILS) algorithm by Yagiura and Ibaraki [19] (ILS-
Y1) is an effective MAX-SAT solver, and is different from many approaches in that
it implements a multi-flip neighbourhood. The Guided Local Search (GLS) approach
of Mills and Tsang (GLSSAT?2) [8] is currently considered one of the best-performing
algorithms for MAX-SAT. In this paper, we apply SAPS, our recently developed, state-
of-the-art DLS algorithm for SAT, to the unweighted MAX-SAT problem. Our em-
pirical performance results show that for a wide range of problem instances, SAPS
finds quasi-optimal (i.e., provably optimal or best known) solutions significantly faster
than the state-of-the-art GLSSAT2 algorithm. This suggests that extensions of SAPS to
weighted MAX-SAT might also reach or exceed state-of-the-art performance.

The remainder of this paper is structured as follows. In Section 2 we review the
SAPS algorithm and discuss some of its important characteristics. In Section 3, we
report and discuss the results from our empirical study of SAPS on MAX-SAT. In Sec-
tion 4 we discuss how SAPS can be extended from unweighted to weighted MAX-SAT.
Finally, Section 5 contains conclusions and points out directions for future work.

2 Scaling and Probabilistic Smoothing

In this section, we describe the Scaling and Probabilistic Smoothing (SAPS) algo-
rithm [7]. SAPS is a Dynamic Local Search (DLS) algorithm, developed as a variant of
the ESG algorithm of Schuurmans et al. [12].

Like most DLS algorithms, SAPS associates a clause penalty clp; with each clause
i, which is dynamically changed throughout the search process.® The clause penalties
help to direct the search, ideally away from local minima and toward a global optimum.
There are two distinct stages involved in updating the clause penalties: a scaling stage
and a smoothing stage. In the scaling stage, all currently unsatisfied clause penalties
are multiplied by a scaling factor a. In the smoothing stage, all penalties are adjusted
toward the clause penalty mean clp according to a smoothing factor p. In SAPS, out-
side of a local minimum the best flip candidate is always chosen, with ties broken ran-
domly. Whenever a local minimum is encountered, a random walk step is taken with

3 To avoid potential confusion between the clause weights in Weighted MAX-SAT and the
clause weights used by DLS algorithms, we strictly refer to the latter as clause penalties.
This differs from the terminology we used in [7].



procedur e UpdatePenalties(F, ¢, CLP, &, p,Psmoottr)
input:
propositional formula F', variable assignment x, clause penalties CLP = (clp;),
scaling factor a, smoothing factor p, smoothing probability Psmo0th
output:
clause penalties CLP
C = {clauses of F'}
U. = {c € C | cis unsatisfied under «}
for each i s.t. ¢; € U, do
cp; =clp; x a
end
with probability Pgmeotn dO
for each i s.t.¢; € C do
cp; =clp; x p+ (1 — p) x clp
end
end
return (CLP)
end

Fig. 1. The SAPS penalty update procedure; ¢lp is the average over all clause penalties.

probability wp (by flipping a variable that has been selected uniformly at random from
the set of all variables of F'), otherwise scaling is performed, after which a smooth-
ing stage is executed with probability Ps,,.0:n.- While the SAPS algorithm described
in [7] only performs probabilistic smoothing at local minima, recent experiments (not
reported here) demonstrate that the smoothing stage can be performed outside of local
minima (completely decoupled from the scaling stage) which provides for more robust
values of Py,,,.0:1- ReCeNt experiments (not reported here) also suggest that the random
walk step is more effective when performed with probability wp outside of local min-
ima. However, the performance enhancement is marginal, and for consistency we used
the original SAPS algorithm for the experiments conducted in the context of this study.

In Figures 1 and 2 we provide the details of our SAPS algorithm. Figure 1 shows the
algorithm outline of our penalty update procedure. Compared to ESG and other DLS
algorithms with frequent smoothing, the time complexity incurred by the smoothing
stage of SAPS is considerably reduced, since in each local optimum, smoothing is only
performed with a probability P,,,..¢n. Figure 2 shows the main SAPS algorithm and its
underlying search procedure with penalties; overall, the main algorithm is conceptually
very similar to ESG. The only modification to the SAPS algorithm for SAT required
in the context of this work was the addition of a simple mechanism by which the best
candidate solution found within a given run is stored and returned when the algorithm
terminates.

The behaviour and performance of the SAPS algorithm depend on four parameters:
a, p, Psmootn, and wp. For satisfiable instances, the performance of SAPS w.r.t. these
parameters is very robust, and setting the values of (o, Psyo0th,wp) to (1.3,0.05,0.01)
will provide nearly optimal results for most instances. To adjust for differences in the
smoothing parameter p, we developed a reactive variant of SAPS (RSAPS) that reac-
tively changes the value of p when search stagnation is detected [7].



procedure SAPS(F', a, p, wp, Psmootr)
input:
propositional formula F', scaling factor «,
smoothing factor p, random walk probability wp,
smoothing probability Psootn
output:
variable assignment x
x = Init(F)
T=x
CLP = InitPenalties(F')
while not terminate(F', ) do
z' = PenalisedSearchStep(F, z, CLP)
if ' = () then
with probability wp do
z = RandomStep(F, x)
otherwise
CLP = UpdatePenalties(F', z, CLP, , p, Psmooth)
end

return ()
end

procedur e PenalisedSearchStep(F', «, C LP)
input:
propositional formula F', variable assignment z, clause penalties CLP
output:
variable assignment & or @
U, = {variables of F that appear in clauses unsatisfied under =}
X' :={& | & is z with variable v € U, flipped}
best :=min{g(F, %, CLP) | £ € X'}
X :={2 € X'|g(F, % CLP) = best}
if best > 0 then

2:=0
else

Z = draw(X)
end
return (z)

end

Fig.2. The SAPS Algorithm for (unweighted) MAX-SAT. ‘Init’ generates a random variable
assignment z, ‘InitPenalties’ initialises all clause penalties to 1. ‘RandomStep(F,x)’ returns an
assignment obtained from z by flipping a variable that has been selected uniformly at random
from the set of all variables of F'; f(F, &) and g(F, &, CLP) denote the number and the total
penalty of the clauses in F' that are unsatisfied under assignment z, respectively. The function
‘draw(X)’ returns an element that is selected uniformly at random from set X.



3 Experimental Design and Results

To evaluate the performance of SAPS on the unweighted MAX-SAT problem, we con-
ducted extensive experiments on several sets of well-known benchmark instances, in
addition to some newly developed test sets of MAX-SAT instances that were designed
to test the performance of MAX-SAT algorithms in more detail:

jnh The set of instances known as the DIMACS j nh set have been popular benchmark
instances, and are available at SATLIB (www. sat | i b. or g). These instances are
generated with n variables such that each variable is added to each clause with prob-
ability 1/n. The literals are negated with probability 1/2 and all unit and empty
clauses are removed. Instances generated in this manner are often referred to as
Random P-SAT [16] or constant density model instances. Several of the j nh in-
stances are satisfiable.

rndn-mu We used several test sets of overconstrained (unsatisfiable) Uniform Random
3-SAT instances in our experiments. These instances are obtained by randomly and
independently generating m clauses of length three as follows: The respective three
literals are selected uniformly at random from the set of all possible literals over the
given n variables; clauses that contain more than one literal with the same variable
are discarded [16].

bor-ku These test sets consist of satisfiable and unsatisfiable MAX-2-SAT and MAX-
3-SAT instances (both weighted and unweighted) and have been described and used
in [1]. For each problem size and clause length, there are only 2-9 instances, and
all instances are overconstrained. For our experiments, we only ran experiments on
the unsatisfiable unweighted instances, which we grouped together in one MAX-2-
SAT and one MAX-3-SAT test set.

rndul000a These instances are unweighted variants of instances from a set originally
used by Yagiura and Ibaraki [20].# They were generated in a fashion similar to the
j nhinstances and have 1000 variables and 7700 clauses each.

In total, we used 789 unique instances in our empirical evaluation of SAPS for un-
weighted MAX-SAT. All experiments were conducted on IBM servers with dual 2GHz
Intel Xeon processors (hyperthreading disabled for accurate time results) with 512KB
CPU cache and 4GB RAM, running Red Hat Linux 7.3. For each problem instance
and algorithm, we measured empirical run-length and run-time distributions (RLDs
and RTDs) [6] based on at least 100 successful runs, in each of which the algorithm
was run until the respective quasi-optimal solution quality was reached. Run-times
are reported in terms of the medians of the corresponding RLDs (measured in search
steps) or RTDs (measured in CPU seconds). For the SAPS experiments, no instance-
specific parameter tuning was conducted; the parameters («,p, Psmooth,wp) Were set to
(1.05,0.8,0.05,0.01) as generally good values, except for the heavily overconstrained
instances, where we used o = 1.01. For the GLSSAT2 software, the default settings
were used (except for cutoff), and for the ILS-Y software, the neighbourhood size was
set to 2.

4 The respective weighted test set is available online at: ht t p: / / ww- or . anp. i . kyot o-
u. ac.j p/ menber s/ yagi ur a/ benchmarks. htm .
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Fig. 3. Comparison between search step (left) and run-time (right) performance of SAPS and
GLSSAT2 on the j nh test set. Every point correspond to the median performance over 100 runs
of each algorithm on a single instance. Run-time is measured in CPU seconds.

In our empirical study, we generally measured the run-time and number of search
steps for reaching provably optimal or best-known solution qualities. Where possible,
Borcher and Furman’s complete solver maxsat [1] was used to determine the optimal
solution quality for each instance. (This is the best-performing complete MAX-SAT
solver we are aware of.) For larger instances, which become quickly intractable for this
solver, we used quasi-optimal solution qualities obtained from Iterated Robust Tabu
Search, a state-of-the-art SLS algorithm for MAX-SAT, in conjunction with an “itera-
tive deepening” scheme (for details, see [17], where exactly the same solution qualities
are used). In all cases, the solution qualities thus obtained could not be improved upon
with any method we are aware of (including SAPS), and in several cases their optimality
was confirmed by the complete maxsat solver (which took several CPU days).

As we will demonstrate in Table 1, GLSSAT2 consistently outperforms ILS-Y1, and
so we compare the performance of SAPS primarily with that of GLSSAT2. Our first
comparison between SAPS and GLSSAT? is shown in Figure 3, where we compare
the search step performance and time performance of the two algorithms on the j nh
problem instances. Each data point in the figure represents a single problem instance,
where points above and to the left of the diagonal represent instances where SAPS out-
performed GLSSAT2. From Figure 3 (left) it is clear that GLSSAT?2 generally requires
fewer search steps than SAPS for finding quasi-optimal solutions. However, comparing
the search step results to the time performance results in Figure 3 (right) clearly illus-
trates one of the key features of SAPS: fast search steps. When the comparison is made
for time performance, SAPS outperforms GLSSAT?2 by a median speedup factor (s.f.)
of 3.9.

In Figure 4, we present similar results for the r nd100- 500u, r nd150- 750u,
and r nd200- 1000u test sets. All of these sets have the same clauses/variables ratio
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of 5, so we would expect to see similar differences in performance between the two al-
gorithms. Considering that the solubility phase transition for Uniform Random-3-SAT
occurs at a clauses/variables ratio near 4.3 [2], these instances are slightly overcon-
strained. The results in Figure 4 (left) and (right) closely resemble the results presented
in Figure 3; for most instances, GLSSAT?2 requires fewer search steps for finding quasi-
optimal solutions, but when taking into account the CPU time per search step, SAPS
typically performs better than GLSSAT2.

When analyzing the run-time performance of an SLS algorithm, it is important to
study the distribution of the run-times on individual problem instances [6]. In Fig-
ure 5 (left) we present the RLDs for the ILS-YI, GLSSAT2 and SAPS algorithms
on a medium hardness instance from the set r nd100- 500u. From this figure, it can
be seen that GLSSAT2 consistently outperforms SAPS when measuring run-time in
search steps, and SAPS outperforms ILS-Y1; the RLDs for all three algorithms are
closely approximated by exponential distributions, which is known to be typical for
high-performance SLS algorithms for SAT when using optimal or close-to-optimal pa-
rameter settings [6]. This picture changes for the respective RTDs shown in Figure 5
(right); clearly, SAPS performs best when measuring CPU time, which again highlights
the significant difference between search step performance and run-time performance.

It is interesting to note that the optimal solutions of the instances in the slightly
overconstrained test set r nd100- 500u have between 1 and 5 unsatisfied clauses, with
an average of 2.8 unsatisfied clauses per instance. This is in marked contrast to the
sets of heavily overconstrained instances with a clauses/variables ratio of 10; e.g., for
the instances from test set r nd100- 1000u, quasi-optimal solutions have between 24
and 36 unsatisfied clauses, with an average of 32.2 unsatisfied clauses per instance.
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Parameters for SAPS(a,p, Psmooth,wp) are (1.05,0.8,0.05,0.01), GLSSAT? is with default set-

tings, and ILS-Y1 is with default settings, using the 2-flip neighbourhood.

While for all other instances used in this study, SAPS performed well using o = 1.05,
for these heavily overconstrained instances, a much smaller value of « is required for
achieving good performance of SAPS (as previously stated, we use a = 1.01). The
significance of this difference in o will be addressed later in this Section. In Figure 6 we
present a comparison of GLSSAT2 and SAPS performance on heavily overconstrained
instances. From this figure, it is clear that SAPS outperforms GLSSAT?2 for these test
sets in terms of both search steps (left) and CPU time (right) required for finding quasi-
optimal solutions.

In Table 1 we summarise the results from our experiments on all test sets used in this
study. For each problem instance, at least 100 runs of each algorithm were performed,
in each of which a quasi-optimal solution was found. From the RLDs and RLDs thus
obtained, we determined the median number of search steps and median CPU time for
finding a quasi-optimal solution of the respective instance; the values shown in the table
are the medians of these search cost measures over the respective test-sets. To indicate
the variability in instance hardness within each set, we also report the ratio of the 90%
and 10% quantiles (g.90/g.10) of the instance search cost over the respective test set
(measured in search steps). To help further illustrate the excellent time performance of
SAPS, the speedup factor for the median instance is given, in addition to the fraction
of instances for which the SAPS algorithm was best in terms of CPU time required for
finding a quasi-optimal solution of a given instance.

For the heavily overconstrained instances, ILS-YI shows impressive search step
performance, but as mentioned previously, when considering the time complexity of the
search steps, this performance advantage is not amortised. GLSSAT?2 does not perform
well on the heavily overconstrained instances, but overall it shows a very impressive
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search step performance. However, the search steps in GLSSAT?2 are expensive, and
compared to the search steps of SAPS, they are slow.

Finally, we found that the bor - ku instances were very easy to solve for all of the
algorithms tested here and that once again SAPS showed the best time performance.
Furthermore, the most impressive median time speedup of SAPS over GLSSAT?2 was
found for the r ndu1000a test set; for the same test set, even after 10 million search
steps, less than 50% of the runs of the ILS-Y algorithm reached a quasi-optimal solu-
tion quality.

Overall, it is interesting to note that in order to achieve the reported excellent perfor-
mance of SAPS, the only parameter that needed to be adjusted for the various test-sets
was the scaling factor, a. When SAPS was tested on satisfiable instances, a parameter
setting of & = 1.3 was found to generally give good performance. On most satisfiable
instances we tested, near-optimal performance of SAPS was obtained with that setting.
However, initial experiments with SAPS on unweighted MAX-SAT with o = 1.3 pro-
duced discouraging performance results; subsequently, we discovered that a lower value
of o was required for unsatisfied, and particularly for heavily overconstrained instances.

Intuitively, this phenomenon can be explained as follows: The obvious difference
between satisfiable and unsatisfiable instances is that in the latter case, any optimal
solution leaves some clauses unsatisfied. It is reasonable to assume that for unsatisfi-
able instances, there are sub-optimal local minima in the objective function (number
of unsatisfied clauses) that share unsatisfied clauses with the global optima. Clearly,
when SAPS encounters such a local minimum, the penalties of these clauses will be
increased along with those of all other unsatisfied clauses, which allows the search pro-
cess to avoid stagnation in this area of the search space. This, however, may easily have



Problem ILS-YI GLSSAT?2 SAPS 1.0

Set steps| time| Z—j’g steps| time|;’:—j’g a| steps|time|;1:—j’g| f.b.| s.f.
jnh 3,037 419.8| 24.1 751| 9.5| 8.5|(1.05| 1,391| 2.4/11.6/0.94| 3.9
rnd100-500u || 1,398| 108.7| 8.9 563| 4.5| 7.5|{1.05| 929| 1.2| 8.0{1.00| 3.6
rnd125-625u 3,879 302.8| 24.2|| 1,329| 10.6(12.5|(1.05| 2,264| 3.3|17.1|0.94| 3.2
rnd150-750u 7,674 607.6| 51.5|| 2,552| 19.4|21.5|(1.05| 4,127| 6.4/18.9/0.95| 3.0
rnd175-875u |{20,029(1,514.6|120.8|| 4,119| 33.1|28.1(/1.05| 8,920|15.2|21.0|0.92| 2.2
rnd200-1000u||31,968|2,440.8| 29.7|| 5,301| 44.2|23.5||1.05(13,343(21.1|18.3|0.91| 2.1
rnd100-1000u 884| 133.6/ 6.1|| 2,119| 27.2| 7.4||]1.01| 1,115| 3.9| 9.9|1.00| 7.0
rnd150-1500u|| 3,237 499.7| 15.5||11,035|148.1| 4.8|(1.01| 7,723|34.2|10.0|1.00| 4.3

bor-2u 76 5.6| 18.1 88| 1.1|14.1)|1.05 73| 0.1/71.2/0.80| 7.7
bor-3u 740| 65.3] 32.0|| 425 4.7(30.9||1.05| 487| 1.1|39.3|1.00| 4.5
rndul1000a — —| —|20,812|832.4| 6.5||1.05|27,434|67.4| 7.8/0.90|12.3

Table 1. Performance comparison of ILS-Y1, GLSSAT2, and SAPS over a range of unweighted
MAX-SAT test sets. The precise meaning of the step and time performance is explained in the
text, CPU times are measured in CPU milliseconds. The speedup factor s.f. shows the improve-
ment in time performance of SAPS over GLSSAT2. The “fraction of best” measure f.b. indicates
the fraction of instances within the respective test-sets for which SAPS performs better than
GLSSAT2? in terms of CPU time. For SAPS, default parameters settings of (p,Psmooth, wp)=
(0.8,0.05, 0.01) were used; GLSSATZ2 annd ILS-Y1 were used with their respective default set-
tings.

the side effect of modifying the search space around the optimal solution(s) in a way
that makes it harder for SAPS to efficiently reach an optimal solution. (Note that al-
though it might be desirable to change the evaluation function in such a way that only
the current local minimum is eliminated, changes of the clause penalties used by a DLS
algorithm for SAT or MAX-SAT will usually affect large areas of the search space.)

For this reason, we would expect that aggressive scaling (i.e., high « settings) be-
comes more detrimental to the efficiency of SAPS as the number of unsatisfied clauses,
and hence the potential undesired side effects of scaling, increases. By using smaller
« settings for more heavily overconstrained MAX-SAT instances, the impact of each
single scaling stage, and hence presumably the magnitude of the unwanted side effects,
is reduced, resulting in improved performance of SAPS, as observed in our empirical
study.

On the other hand, when we examined the results (not shown) for different instances
within the same test set, we found no correlation between the number of unsatisfied
clauses in the respective optimal solution qualities and the optimal value of . How-
ever, we did find strong evidence suggesting that within a test set, harder instances are
solved faster when using a smaller value of a. As can be seen in Figure 6, the perfor-
mance ratio between SAPS and GLSSAT2 appears to slightly decrease with instance
hardness within the test set. We found that this effect can be avoided by decreasing the
scaling factor « as the instance hardness increases. This could indicate that the hard-
ness differences of MAX-SAT instance sampled from the same random distribution are



partially due to the way in which global and local optima are coupled in terms of shared
unsatisfied clauses.

Clearly, it would be highly desirable to shed further light on these issues by analysing
the composition and distance of local minima in relation to the optimal solution, and by
characterising the changes in the search landscape induced by the dynamic adjustment
of the clause penalties in SAPS; both of these directions are currently being followed in
our ongoing research. Furthermore, based on our observations and reasoning presented
here, it would seem that in contrast to the reactive mechanism used in RSAPS [7] for
automatically adjusting the smoothing parameter p, an adaption mechanism for the scal-
ing factor a might be more beneficial to SAPS for MAX-SAT; devising and studying
such mechanisms constitutes another direction for further research.

4 Initial Thoughts on SAPS for Weighted MAX-SAT

Applying the SAPS algorithm to unweighted MAX-SAT is a necessary stepping stone
to developing an effective DLS algorithm for weighted MAX-SAT. When moving from
unweighted to weighted MAX-SAT, DLS algorithms have to contend with an interest-
ing issue: how should the fixed clause weights in a weighted MAX-SAT instance inter-
act with the dynamically changing clause penalties? To date, three different DLS algo-
rithms for MAX-SAT have used three very different approaches. In Shang and Wah’s
first DLM algorithm for weighted MAX-SAT [18], an evaluation function is used which
sums the clause weights w; and the clause penalties cIp; over all unsatisfied clauses. A
variant of this algorithm known as DLM-99-SAT uses clause penalties only, but these
are initialised to the clause weights, and during the search, the clause penalties are mod-
ified proportionately to the respective clause weights. Finally, the GLSSAT algorithm
for weighted MAX-SAT defines a utility function as ¢lp;/1 + w; to determine which
penalty weights are updated, but it does not use the clause weights directly to guide the
search.

In addition to the three methods described above, a variety of other approaches
can be used for incorporating clause weights and penalties into an extension of SAPS
for weighted MAX-SAT. Limited preliminary results suggest that at least some of the
resulting SAPS variants appear to perform at least as good as GLSSAT2 on standard
benchmarks for weighted MAX-SAT, but a better understanding of the search dynamics
and a more thorough empirical analysis is required to confirm these results.

5 Conclusions & Future Work

In this study, we applied the Scaling and Probabilistic Smoothing (SAPS) algorithm
to the unweighted MAX-SAT problem; it extends our previous work, in which we
developed the SAPS algorithm for the SAT problem, and established it as a state-of-
the-art SLS algorithm for SAT. Here, we presented empirical evidence that SAPS per-
forms similarly excellent on unweighted MAX-SAT, where it consistently outperforms
GLSSAT2, one of the best performing MAX-SAT algorithms known to-date. For all of
the problem test sets we examined, SAPS was at least 2 times faster than GLSSAT2
in finding optimal or best known solutions, and for some instances SAPS was over 10



times faster. We found that the performance of SAPS was relatively robust w.r.t. param-
eter settings; only for heavily overconstrained problem instances, a different setting of
the scaling parameter was required to reach state-of-the-art performance. We provided
some insight into this behaviour and some of the other phenomena we encountered.

This work provides a solid foundation for assessing and understanding the be-
haviour of SAPS on MAX-SAT, and provides a natural stepping stone for developing a
SAPS variant for weighted MAX-SAT. Since SAPS is a Dynamic Local Search (DLS)
algorithm, and uses dynamic clause penalties, there are many different ways of com-
bining the clause penalties with the clause weights specified in a weighted MAX-SAT
instance. Some of these variants are currently being implemented and empirically eval-
uated. When we proposed SAPS for SAT, we found it helpful to reactively tune the
smoothing component of the algorithm, but from our work presented here, we found
that unsatisfiable instances are more sensitive to the scaling component of the algo-
rithm. Hence, we will turn our attention to developing a SAPS variant that dynamically
adapts the scaling parameter during the search. Overall, based on the promising re-
sults reported here, we believe that SAPS has the potential to exceed the performance
of the best-performing algorithms for MAX-SAT (weighted and unweighted) currently
known.
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