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ABSTRACT
Many different machine learning algorithms exist; taking
into account each algorithm’s hyperparameters, there is a
staggeringly large number of possible alternatives overall. We
consider the problem of simultaneously selecting a learning
algorithm and setting its hyperparameters, going beyond
previous work that attacks these issues separately. We show
that this problem can be addressed by a fully automated
approach, leveraging recent innovations in Bayesian opti-
mization. Specifically, we consider a wide range of feature
selection techniques (combining 3 search and 8 evaluator
methods) and all classification approaches implemented in
WEKA’s standard distribution, spanning 2 ensemble meth-
ods, 10 meta-methods, 27 base classifiers, and hyperparame-
ter settings for each classifier. On each of 21 popular datasets
from the UCI repository, the KDD Cup 09, variants of the
MNIST dataset and CIFAR-10, we show classification per-
formance often much better than using standard selection
and hyperparameter optimization methods. We hope that
our approach will help non-expert users to more effectively
identify machine learning algorithms and hyperparameter set-
tings appropriate to their applications, and hence to achieve
improved performance.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.2 [Artificial
Intelligence]: Automatic Programming; G.1.6 [Mathematics
of Computing]: Optimization

General Terms
Algorithms, Performance, Experimentation

Keywords
Model selection; Hyperparameter optimization; WEKA

1. INTRODUCTION
Increasingly, users of machine learning tools are non-

experts who require off-the-shelf solutions. The machine
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learning community has much aided such users by making
available a wide variety of sophisticated learning algorithms
and feature selection methods through open source packages,
such as WEKA [14] and PyBrain [26]. Such packages ask
a user to make two kinds of choices: selecting a learning
algorithm and customizing it by setting hyperparameters
(which also control feature selection, if applicable). It can be
challenging to make the right choice when faced with these
degrees of freedom, leaving many users to select algorithms
based on reputation or intuitive appeal, and/or to leave hy-
perparameters set to default values. Of course, adopting this
approach can yield performance far worse than that of the
best method and hyperparameter settings.
This suggests a natural challenge for machine learning:

given a dataset, automatically and simultaneously choos-
ing a learning algorithm and setting its hyperparameters
to optimize empirical performance. We dub this the com-
bined algorithm selection and hyperparameter optimization
(CASH) problem; we formally define it in Section 3. There
has been considerable past work separately addressing model
selection [e.g., 1, 6, 7, 8, 10, 23, 24, 34] and hyperparameter
optimization [e.g., 3, 4, 5, 13, 29, 31, 22]. In contrast, de-
spite its practical importance, we are surprised to find only
limited variants of the CASH problem in the literature; fur-
thermore, these consider a fixed and relatively small number
of parameter configurations for each algorithm [see, e.g., 21].
A likely explanation is that it is very challenging to search

the combined space of learning algorithms and their hyper-
parameters: the response function is noisy and the space
is high dimensional, involves both categorical and contin-
uous choices, and contains hierarchical dependencies (e.g.,
the hyperparameters of a learning algorithm are only mean-
ingful if that algorithm is chosen; the algorithm choices in
an ensemble method are only meaningful if that ensemble
method is chosen; etc). Another related line of work is on
meta-learning procedures that exploit characteristics of the
dataset, such as the performance of so-called landmarking
algorithms, to predict which algorithm or hyperparameter
configuration will perform well [2, 21, 25, 32]. While the
CASH algorithms we study in this paper start from scratch
for each new dataset, these meta-learning procedures exploit
information from previous datasets, which may not always
be available.
In what follows, we demonstrate that CASH can be viewed

as a single hierarchical hyperparameter optimization problem,
in which even the choice of algorithm itself is considered a
hyperparameter. We also show that—based on this problem
formulation—recent Bayesian optimization methods can ob-
tain high quality results in reasonable time and with minimal
human effort. After discussing some preliminaries (Section
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2), we define the CASH problem and discuss methods for
tackling it (Section 3). We then define a concrete CASH
problem encompassing the full range of classifiers and fea-
ture selectors in the open source package WEKA (Section 4),
and show that a search in the combined space of algorithms
and hyperparameters yields better-performing models than
standard algorithm selection and hyperparameter optimiza-
tion methods (Section 5). More specifically, we show that
the recent Bayesian optimization procedures TPE [4] and
SMAC [15] often find combinations of algorithms and hy-
perparameters that outperform existing baseline methods,
especially on large datasets.

2. PRELIMINARIES
This work focuses on classification problems: learning a

function f : X 7→ Y with finite Y. A learning algorithm A
maps a set {d1, . . . , dn} of training data points di = (xi, yi) ∈
X × Y to such a function, which is often expressed via a
vector of model parameters. Most learning algorithms A
further expose hyperparameters λ ∈ Λ, which change the
way the learning algorithm Aλ itself works. For example,
hyperparameters are used to describe a description-length
penalty, the number of neurons in a hidden layer, the number
of data points that a leaf in a decision tree must contain
to be eligible for splitting, etc. These hyperparameters are
typically optimized in an “outer loop” that evaluates the
performance of each hyperparameter configuration using
cross-validation.

2.1 Model Selection
Given a set of learning algorithms A and a limited amount

of training data D = {(x1, y1), . . . , (xn, yn)}, the goal of
model selection is to determine the algorithm A∗ ∈ A with
optimal generalization performance. Generalization perfor-
mance is estimated by splitting D into disjoint training and
validation sets D(i)

train and D(i)
valid, learning functions fi by

applying A∗ to D(i)
train, and evaluating the predictive perfor-

mance of these functions on D(i)
valid. This allows for the model

selection problem to be written as:

A∗ ∈ argmin
A∈A

1
k

k∑
i=1

L(A,D(i)
train,D

(i)
valid),

where L(A,D(i)
train,D

(i)
valid) is the loss (here: misclassification

rate) achieved by A when trained on D(i)
train and evaluated

on D(i)
valid.

We use k-fold cross-validation [19], which splits the training
data into k equal-sized partitions D(1)

valid, . . . ,D
(k)
valid, and sets

D(i)
train = D \ D(i)

valid for i = 1, . . . , k.1

2.2 Hyperparameter Optimization
The problem of optimizing the hyperparameters λ ∈ Λ

of a given learning algorithm A is conceptually similar to
that of model selection. Some key differences are that hy-
perparameters are often continuous, that hyperparameter
spaces are often high dimensional, and that we can exploit
correlation structure between different hyperparameter set-
tings λ1,λ2 ∈ Λ. Given n hyperparameters λ1, . . . , λn with
domains Λ1, . . . ,Λn, the hyperparameter space Λ is a subset
of the crossproduct of these domains: Λ ⊂ Λ1 × · · · × Λn.
1There are other ways of estimating generalization perfor-
mance; e.g., we also experimented with repeated random
subsampling validation [19], and obtained similar results.

Algorithm 1 SMBO
1: initialise modelML; H ← ∅
2: while time budget for optimization has not been ex-

hausted do
3: λ← candidate configuration fromML

4: Compute c = L(Aλ,D(i)
train,D

(i)
valid)

5: H ← H∪ {(λ, c)}
6: UpdateML given H
7: end while
8: return λ from H with minimal c

This subset is often strict, such as when certain settings of
one hyperparameter render other hyperparameters inactive.
For example, the parameters determining the specifics of the
third layer of a deep belief network are not relevant if the
network depth is set to one or two. Likewise, the parame-
ters of a support vector machine’s polynomial kernel are not
relevant if we use a different kernel instead.
More formally, following [16], we say that a hyperparameter

λi is conditional on another hyperparameter λj , if λi is only
active if hyperparameter λj takes values from a given set
Vi(j) ( Λj ; in this case we call λj a parent of λi. Conditional
hyperparameters can in turn be parents of other conditional
hyperparameters, giving rise to a tree-structured space [4] or,
in some cases, a directed acyclic graph (DAG) [16]. Given
such a structured space Λ, the (hierarchical) hyperparameter
optimization problem can be written as:

λ∗ ∈ argmin
λ∈Λ

1
k

k∑
i=1

L(Aλ,D(i)
train,D

(i)
valid).

3. COMBINED ALGORITHM SELECTION
AND HYPERPARAMETER OPTIMIZA-
TION (CASH)

Given a set of algorithms A = {A(1), . . . , A(k)} with asso-
ciated hyperparameter spaces Λ(1), . . . ,Λ(k), we define the
combined algorithm selection and hyperparameter optimiza-
tion problem (CASH) as computing

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1
k

k∑
i=1

L(A(j)
λ ,D(i)

train,D
(i)
valid). (1)

We note that this problem can be reformulated as a single
combined hierarchical hyperparameter optimization problem
with parameter space Λ = Λ(1) ∪ · · · ∪ Λ(k) ∪ {λr}, where
λr is a new root-level hyperparameter that selects between
algorithms A(1), . . . , A(k). The root-level parameters of each
subspace Λ(i) are made conditional on λr being instantiated
to Ai.
In principle, Problem 1 can be tackled in various ways.

A promising approach is Bayesian Optimization [9], and
in particular Sequential Model-Based Optimization [SMBO;
15], a versatile stochastic optimization framework that can
work explicitly with both categorical and continuous hy-
perparameters, and that can exploit hierarchical structure
stemming from conditional parameters. SMBO (outlined
in Algorithm 1) first builds a modelML that captures the
dependence of loss function L on hyperparameter settings λ
(line 1 in Algorithm 1). It then iterates the following steps:
useML to determine a promising candidate configuration
of hyperparameters λ to evaluate next (line 3); evaluate the
loss c of λ (line 4); and update the modelML with the new
data point (λ, c) thus obtained (lines 5–6).
In order to select its next hyperparameter configuration λ

using modelML, SMBO uses a so-called acquisition func-
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tion aML : Λ 7→ R, which uses the predictive distribution of
modelML at arbitrary hyperparameter configurations λ ∈ Λ
to quantify (in closed form) how useful knowledge about λ
would be. SMBO then simply maximizes this function over
Λ to select the most useful configuration λ to evaluate next.
Several well-studied acquisition functions exist [18, 27, 30];
all aim to automatically trade off exploitation (locally opti-
mizing hyperparameters in regions known to perform well)
versus exploration (trying hyperparameters in a relatively
unexplored region of the space) in order to avoid premature
convergence. In this work, we maximized positive expected
improvement (EI) attainable over an existing given error rate
cmin [27]. Let c(λ) denote the error rate of hyperparameter
configuration λ. Then, the positive improvement function
over cmin is defined as

Icmin (λ) := max{cmin − c(λ), 0}.

Of course, we do not know c(λ). We can, however, compute
its expectation with respect to the current modelML:

EML [Icmin (λ)] =
∫ cmin

−∞
max{cmin − c, 0} · pML (c | λ) dc.

(2)
One main difference between existing SMBO algorithms lies
in the model class they employ. We now review the two
whose models can handle hierarchical hyperparameters and
that are thus suitable for the CASH problem.

3.1 Sequential Model-based Algorithm Con-
figuration (SMAC)

Sequential model-based algorithm configuration [SMAC;
15] supports a variety of models p(c | λ) to capture the
dependence of the loss function c on hyper-parameters λ, in-
cluding approximate Gaussian processes and random forests.
In this paper we use random forest models, since they tend to
perform well with discrete and high-dimensional input data.
SMAC handles conditional parameters by instantiating inac-
tive conditional parameters in λ to default values for model
training and prediction. This allows the individual decision
trees to include splits of the kind “is hyperparameter λi
active?”, allowing them to focus on active hyperparameters.
While random forests are not usually treated as probabilistic
models, SMAC obtains a predictive mean µλ and variance
σλ

2 of p(c | λ) as frequentist estimates over the predictions
of its individual trees for λ; it then models pML(c | λ) as a
Gaussian N (µλ, σλ

2).
SMAC uses the expected improvement criterion defined

in Equation 2, instantiating cmin to the error rate of the
best hyperparameter configuration measured so far. Under
SMAC’s predictive distribution pML(c | λ) = N (µλ, σλ

2),
this expectation is the closed-form expression

EML [Icmin (λ)] = σλ · [u · Φ(u) + ϕ(u)],

where u = cmin−µλ
σλ

, and ϕ and Φ denote the probability
density function and cumulative distribution function of a
standard normal distribution, respectively [18].
SMAC is designed for robust optimization under noisy

function evaluations, and as such implements special mech-
anisms to keep track of its best known configuration and
assure high confidence in its estimate of that configuration’s
performance. This robustness against noisy function evalua-
tions can be exploited in combined algorithm selection and
hyperparameter optimization, since the function to be opti-
mized in Equation (1) is a mean over a set of loss terms (each
corresponding to one pair of D(i)

train and D(i)
valid constructed

from the training set). A key idea in SMAC is to make
progressively better estimates of this mean by evaluating
these terms one at a time, thus trading off accuracy and com-
putational cost. In order for a new configuration to become a
new incumbent, it must outperform the previous incumbent
in every comparison made: considering only one fold, two
folds, and so on up to the total number of folds previously
used to evaluate the incumbent. (Furthermore, every time
the incumbent survives such a comparison, it is evaluated on
a new fold, up to the total number available, meaning that
the number of folds used to evaluate the incumbent grows
over time.) A poorly performing configuration can thus be
discarded after considering just a single fold.
Finally, SMAC also implements a diversification mecha-

nism to achieve robust performance even when its model is
misled, and to explore new parts of the space: every second
configuration is selected at random. Because of the evalu-
ation procedure just described, this requires less overhead
than one might imagine.

3.2 Tree-structured Parzen Estimator (TPE)
While SMAC models p(c | λ) explicitly, the Tree-structure

Parzen Estimator [TPE; 4] uses separate models for p(c) and
p(λ | c). Specifically, it models p(λ | c) as one of two density
estimates, conditional on whether c is greater or less than a
given threshold value c∗:

p(λ | c) =
{
`(λ), if c < c∗.

g(λ), if c ≥ c∗.
(3)

Here, c∗ is chosen as the γ-quantile of the losses TPE ob-
tained so far (where γ is an algorithm parameter with a
default value of γ = 0.15), `(·) is a density estimate learned
from all previous hyperparameters λ with corresponding
loss smaller than c∗, and g(·) is a density estimate learned
from all previous hyperparameters λ with corresponding
loss greater than or equal to c∗. Intuitively, this creates a
probabilistic density estimator `(·) for hyperparameters that
appear to do ‘well’, and a different density estimator g(·)
for hyperparameters that appear ‘poor’ with respect to the
threshold. Bergstra et al. [4] showed that the expected im-
provement EML [Icmin (λ)] from Equation 2 is proportional
to closed-form expression:

E[Icmin (λ)] ∝
(
γ + g(λ)

`(λ) · (1− γ)
)−1

.

TPE maximizes this expression by generating many candi-
date hyperparameter configurations at random and picking
a λ that minimizes g(λ)/`(λ).
The density estimators `(·) and g(·) have a hierarchical

structure with discrete, continuous, and conditional variables
reflecting the hyperparameters and their dependence rela-
tionships. For each node in this tree structure, a 1-D Parzen
estimator is created to model the density of the node’s cor-
responding hyperparameter. For a given hyperparameter
configuration λ that is added to either ` or g, only the 1-D
estimators corresponding to active hyperparameters in λ
are updated. For continuous hyperparameters, these 1-D
estimators are constructed by placing density in the form
of a Gaussian at each hyperparameter value λi, with stan-
dard deviation set to the larger of each point’s left and right
neighbours. Discrete hyperparameters are estimated with
probabilities proportional to the number of times that a par-
ticular choice occurred in the set of observations. To evaluate
a candidate hyperparameter λ’s probability estimate, TPE
starts at the root of the tree and descends into the leaves
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Table 1: Classifiers in Auto-WEKA. ∗ indicates
meta-methods, which in addition to their own pa-
rameters take one ‘base’ classifier and its parame-
ters. + indicates ensemble methods that take as in-
put up to 5 ‘base’ classifiers and their parameters.
We report the number of Categorical and Numeric
hyperparameters for each method.

Classifier Categorical Numeric

Bayes Net 2 0
Naive Bayes 2 0
Naive Bayes Multinomial 0 0
Gaussian Process 3 6
Linear Regression 2 1
Logistic Regression 0 1
Single-Layer Perceptron 5 2
Stochastic Gradient Descent 3 2
SVM 4 6
Simple Linear Regression 0 0
Simple Logistic Regression 2 1
Voted Perceptron 1 2
KNN 4 1
K-Star 2 1
Decision Table 4 0
RIPPER 3 1
M5 Rules 3 1
1-R 0 1
PART 2 2
0-R 0 0
Decision Stump 0 0
C4.5 Decision Tree 6 2
Logistic Model Tree 5 2
M5 Tree 3 1
Random Forest 2 3
Random Tree 4 4
REP Tree 2 3

Locally Weighted Learning∗ 3 0
AdaBoost M1∗ 2 2
Additive Regression∗ 1 2
Attribute Selected∗ 2 0
Bagging∗ 1 2
Classification via Regression∗ 0 0
LogitBoost∗ 4 4
MultiClass Classifier∗ 3 0
Random Committee∗ 0 1
Random Subspace∗ 0 2

Voting+ 1 0
Stacking+ 0 0

by following paths that only use active hyperparameters.
At each node in this traversal, the probability of the corre-
sponding hyperparameter is computed according to its 1-D
estimator, and the individual probabilities are combined on
a pass back up to the root of the tree. Note that this means
that TPE assumes independence for hyperparameters that
do not appear together along any path from the tree’s root
to one of its leaves.

4. AUTO-WEKA
To demonstrate the feasibility of an automatic approach

to solving the CASH problem, we built a tool, Auto-WEKA,
that solves this problem for all classification algorithms and
feature selectors/evaluators implemented in the standard
WEKA package [14]. Note that while we have focused on
classification algorithms in WEKA, there is no obstacle to
extending our approach to other settings.
Table 1 provides a list of all 39 WEKA classification algo-

rithms. Of these models, 27 are considered ‘base’ classifiers
(which can be used independently), 10 of the remaining clas-
sifiers are meta methods (which take a single base classifier
and its parameters as an input), and the final 2 ensemble

Table 2: Feature Search/Evaluator methods in Auto-
WEKA. ∗ indicates search methods, which require
one feature evaluator that is used to determine the
importance of a feature.

Feature Method Categorical Numeric

Best First∗ 1 1
Greedy Stepwise∗ 3 2
Ranker∗ 0 1

CFS Subset Eval 2 0
Pearson Correlation Eval 0 0
Gain Ratio Eval 0 0
Info Gain Eval 2 0
1-R Eval 1 2
Principal Components Eval 2 2
RELIEF Eval 1 2
Symmetrical Uncertainty Eval 1 0

classifiers can take any number of base classifiers as input.
We allowed the meta-methods to use any base classifier with
any hyperparameter settings, and allowed the 2 ensemble
methods to use up to five of the 27 base classifiers, again
with any hyperparameter settings. Not all classifiers are ap-
plicable on all datasets (e.g., due to a classifier’s inability to
handle missing data). For a given dataset, our Auto-WEKA
implementation automatically only considers the subset of
applicable classifiers.
Table 2 provides a list of WEKA’s 3 feature search methods,

as well its 8 feature evaluators, and their respective number
of subparameters (up to 5 for search; up to 4 for evaluators).
To perform feature selection, a search method is combined
with a feature evaluator, and the subparameters of both need
to be instantiated. Feature selection is run as a preprocessing
phase before building any classifier.
The algorithms in Table 1 and 2 have a wide variety of

hyperparameters, which take values from continuous inter-
vals, from ranges of integers, and from other discrete sets.
We associated either a uniform or log uniform prior with
each numerical parameter, depending on its semantics. For
example, we set a log uniform prior for the ridge regression
penalty, and a uniform prior for the maximum depth for a
tree in a random forest. Auto-WEKA works with continuous
hyperparameter values directly up to the precision of the ma-
chine; nevertheless, to give a sense of the size of the space we
studied, we note that discretizing hyperparameter domains
to a maximum of 10 values each gives rise to over 1047 hyper-
parameter settings. We emphasize that this space is much
larger than a simple union of the base learners’ hyperparam-
eter spaces (whose size is roughly 108), since the ensemble
methods allow up to 5 independent base learners, giving rise
to a space with roughly (108)5 = 1040 elements. Feature
selection gives rise to another independent decision between
roughly 106 choices, and several parameters on the meta and
ensemble level contribute another order of magnitude to the
total size of AutoWEKA’s hyperparameter space.
Auto-WEKA can be understood as a single learning al-

gorithm with a highly conditional hyperparameter space.
As depicted in Figure 1, Auto-WEKA has two top-level
Boolean parameters. The first is is_base, which selects
among single base classifiers and ensemble or meta-classifiers.
If is_base is true, then the parameter base determines
which of the 27 base classifiers are to be used. If is_base is
false, then class indicates either an ensemble or a meta-
classifier. If class is a meta-classifier, then the parameter
meta_base is chosen to be one of the 27 base classifiers.
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. . .

is_base

base class

iterations
percentage
use_resampling

iterations
percentage
out_of_bag_err

AdaBoostM1 Bagging

meta_base

num_classes

. . .

Voting Stacking

combination_rule (none)

base_1 base_2 base_5

true

false

≥1 ≥2 ≥5

feat_sel

feat_ser feat_eval

falsetrue

. . .
direction
non-improving nodes
lookup cache

fwd./bkwd.
conservative
threshold

Best FirstGreedy Stepwise

. . .
num neighbours
weight by distance
...

missing as separate
include locally predictive

RELIEFCFS Subset

. . .

true

(none)

Figure 1: Auto-WEKA’s top-level parameters. Top:
is_base controls Auto-WEKA’s classification meth-
ods. The triangular items represent a parameter
that selects one of the 27 base classifiers, and adds
conditional classifier hyperparameters accordingly.
Bottom: feat_sel controls Auto-WEKA’s feature se-
lection methods.

In the event that class is an ensemble classifier, an addi-
tional parameter num_classes is an integer chosen from
{1, . . . , 5}. base_i variables are then selected according to
the value of num_classes, which again select which of the
27 base classifiers to use. For each of the different base
parameters, conditional hyperparameters for every model
are attached. Auto-WEKA’s second top-level Boolean pa-
rameter feat_sel determines whether to apply one of the
feature selection methods. If feat_sel is false, then Auto-
WEKA passes the unmodified dataset to the classifier. If
it is true, then feat_search selects the choice of feature
search method, and feat_eval selects the choice of feature
evaluator. This results in a very wide tree that captures
all the hierarchical nature of the model hyperparameters,
and allows the creation of a single hyperparameter optimiza-
tion problem with four hierarchical layers of a total of 786
parameters.
Auto-WEKA is agnostic to the choice of optimizer, so we

implemented variants leveraging SMAC and TPE, respec-
tively.2 We defined two Auto-WEKA variants, based on
SMAC and TPE, respectively. Both of these Auto-WEKA
versions are available to the public at www.cs.ubc.ca/labs/
beta/Projects/autoweka; we are committed to supporting
their widespread practical adoption. Both TPE and SMAC
have their own parameters that influence their performance
(such as TPE’s choice of the γ-quantile indicating ‘good’
or ‘bad’ performance, or the parameters of SMAC’s ran-
dom forest model). In Auto-Weka, we used the defaults for
these meta-hyperparameters, as set by the authors. (Fur-
ther, small improvements may be obtainable by optimizing
these meta-hyperparameters, but a separate process with
a meta-training/validation set split would be required to
guard against over-fitting, and we did not attempt this).
Finally, both TPE and SMAC are randomized algorithms,
and thus produce different results based on the random seed
provided. As demonstrated in [17], this allows for trivial

2We thank the authors of TPE for giving us access to their
implementation.

Table 3: Datasets Used; Num. Discr.. and Num.
Cont. refer to the number of discrete and continuous
attributes of elements in the dataset, respectively.

Name Num Num Num Num Num
Discr. Cont. Classes Training Test

Dexter 20 000 0 2 420 180
GermanCredit 13 7 2 700 300
Dorothea 100 000 0 2 805 345
Yeast 0 8 10 1 038 446
Amazon 10 000 0 49 1 050 450
Secom 0 591 2 1 096 471
Semeion 256 0 10 1 115 478
Car 6 0 4 1 209 519
Madelon 500 0 2 1 820 780
KR-vs-KP 37 0 2 2 237 959
Abalone 1 7 28 2 923 1 254
Wine Quality 0 11 11 3 425 1 469
Waveform 0 40 3 3 500 1 500
Gisette 5 000 0 2 4 900 2 100
Convex 0 784 2 8 000 50 000

CIFAR-10-Small 3 072 0 10 10 000 10 000
MNIST Basic 0 784 10 12 000 50 000
Rot. MNIST + BI 0 784 10 12 000 50 000
Shuttle 9 0 7 43 500 14 500
KDD09-Appentency 190 40 2 35 000 15 000
CIFAR-10 3 072 0 10 50 000 10 000

yet effective parallelization of the optimization process via
simply performing k independent runs of the optimization
method in parallel and selecting the result of the run with
the lowest cross-validation error.3 We ran Auto-WEKA with
4 such parallel jobs, thereby simulating runs on a standard
multicore desktop machine.

5. EVALUATING AUTO-WEKA
We now describe an experimental study of the performance

that can be achieved by Auto-WEKA on various datasets. Af-
ter specifying our experiment environment, we demonstrate
the importance of addressing the algorithm selection and
CASH problems, and establish baselines for them (Section
5.2). We evaluate Auto-WEKA’s ability to search its enor-
mous hyperparameter space effectively to find algorithms
and hyperparameters with low cross-validation error (Section
5.3). Then, we analyze its test performance and address con-
cerns regarding overfitting (Section 5.4). Finally, we provide
a synopsis of the classifiers and feature search/evaluators
Auto-WEKA chose in our experiments (Section 5.5).

5.1 Experimental setup
We evaluated Auto-WEKA on 21 prominent benchmark

datasets (see Table 3): 15 sets from the UCI repository [12];
the ‘convex’, ‘MNIST basic’ and ‘rotated MNIST with back-
ground images’ tasks used in [5]; the appentency task from
the KDD Cup ’09; and two versions of the CIFAR-10 im-
age classification task [20] (CIFAR-10-Small is a subset of
CIFAR-10, where only the first 10 000 training data points
are used rather than the full 50 000.) For datasets with a
predefined training/test split, we used that split. Otherwise,
we randomly split the dataset into 70% training and 30%
test data. We withheld the test data from all optimization
method; it was only used once in an offline analysis stage
to evaluate the models found by the various optimization
3Other, more sophisticated methods for the parallelization of
Bayesian optimization exist [17, 4, 11, 29], but to date, there
is no empirical evidence that these methods outperform the
simple approach we use here when the cost of evaluating
hyperparameter configurations varies across the space.
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methods. We denote datasets with at least 10 000 training
data points as ‘large’ and all others as ‘small’.
All of our experiments were run on Linux machines with

Intel Xeon X5650 six-core processors, running at 2.66GHz.
We enforced a RAM limit of 3GB for classification; if training
a classifier ever exceeded this memory limit, the classifier job
was terminated, returning a misclassification rate of 100%.
An additional 1GB of RAM was allocated for the SMBO
method. We chose these limits to be reasonably close to the
resource limitations faced by a typical user of machine learn-
ing algorithms. We also limited the training time for each
evaluation of a learning algorithm on each fold, to ensure that
the optimization method had a chance to explore the search
space. Once this training budget for a fold is consumed,
Auto-WEKA sends an interrupt to the learning algorithm
to terminate as soon as possible, and the (partially) trained
model is then evaluated on the validation set to determine
the error estimate of the fold. This timeout was set to 150
minutes for classification and 15 minutes for feature search
and evaluation in our experiments.4 For each dataset, we
ran Auto-WEKA with each hyperparameter optimization
algorithm with a total time budget of 30 hours. For each
method, we performed 25 runs of this process with different
random seeds and then—in order to simulate parallelization
on a typical workstation—used bootstrap sampling to re-
peatedly select 4 random runs and report the performance
of the one with best cross-validation performance.
In early experiments, we observed a few cases in which

Auto-WEKA’s SMBO method picked hyperparameters that
had excellent training performance, but turned out to general-
ize poorly. To enable Auto-WEKA to detect such overfitting,
we partitioned its training set into two subsets: 70% for use
inside the SMBO method, and 30% of validation data that
we only used after the SMBO method finished.

5.2 Baseline Methods
Auto-WEKA aims to aid non-expert users of machine

learning techniques. A natural approach that such a user
might take is to perform 10-fold cross validation on the train-
ing set for each technique with unmodified hyperparameters,
and select the classifier with the smallest average misclas-
sification error across folds. We will refer to this method
applied to the set of 39 WEKA classifiers as Ex-Def ; it is the
best choice that can be made among the 39 WEKA classifiers
(with their default hyperparameters) based on exhaustive
cross-validation. However, another (unfortunately) common
approach for classifier selection is simply to choose based on
popularity or intuitive appeal, without any empirical con-
sideration of alternatives. For each dataset, the second and
third columns in Table 4 present the best and worst “ora-
cle performance” of the 39 default classifiers when prepared
given all the training data and evaluated on the test set. We
observe that the gap between the best and worst classifier
was huge, e.g. misclassification rates of 4.93% vs 99.24%
on the Dorothea dataset. Even when the set of classifiers
was restricted to a few popular ones (we considered neural
networks, random forests, SVMs, AdaBoost, C4.5 decision
trees, logistic regression, and KNN), this gap still exceeded
20% on 14 out of the 21 datasets. Furthermore, there was

4In preliminary experiments, only few models exceeded this
timeout for the datasets studied here. [28] presents a promis-
ing approach for using runtime predictions in the expected
improvement calculation to automatically drive the search
away from excessively expensive models. We plan to incor-
porate this approach into future versions of Auto-WEKA.

no single method that achieved good performance across
all datasets: every method was at least 22% worse than
the best for at least one data set. This suggests that some
form of algorithm selection is essential for achieving good
performance. We note that the oracle best performance for
Ex-Def provides a lower bound on the classification error
that can be achieved via any method that performs only al-
gorithm selection from the 39 WEKA classifiers with default
hyperparameter settings).
More experienced users of machine learning algorithms

would not only select between a fixed set of default algo-
rithms, but would also consider different hyperparameter
settings—for example by performing a grid search over the
hyperparameter space of a single classifier (as, e.g., imple-
mented in WEKA).5 Since different learning algorithms per-
form well for different problems, users would optimally also
want to consider different hyperparameter settings for more
than one learning algorithm. Therefore, a stronger base-
line we will use is an approach that—in addition to the 39
WEKA default classifiers—considers various hyperparam-
eter settings for all of WEKA’s 27 base classifiers. More
precisely, this baseline performs an exhaustive search over
a grid of hyperparameter settings for each of these 27 base
classifiers (plus the 39 WEKA default classifiers), discretiz-
ing numeric parameters into three points. We refer to this
baseline as grid search and note that—as an optimization
approach in the joint space of algorithms and hyperparam-
eter settings—it is a simple CASH algorithm. However, it
is quite expensive, requiring more than 10 000 CPU hours
on each of Gisette, Convex, MNIST, Rot MNIST + BI, and
both CIFAR variants, rendering it infeasible to use in most
practical applications. (In contrast, we gave Auto-WEKA
only 120 CPU hours.)
Table 4 (columns 4 and 5) shows the best and worst “oracle

performance” on the test set across the classifiers evaluated
by grid search. Comparing these performances to the de-
fault performance obtained using Ex-Def, we note that in
most cases, even WEKA’s best default algorithm could be
improved by selecting better hyperparameter settings, some-
times rather substantially: e.g., in the CIFAR-10 small task,
grid search offered a 13% reduction in error over Ex-Def.
It has been demonstrated in previous work that, holding

the overall time budget constant, grid search is outperformed
by random search over the hyperparameter space [5]. Our
final baseline, random search, implements such a method,
picking algorithms and hyperparameters sampled at random,
and computes their performance on the 10 cross-validation
folds until it exhausts its time budget. For each dataset,
we first used 750 CPU hours to compute the cross-validation
performance of randomly sampled combinations of algorithms
and hyperparameters. We then simulated runs of random
search by sampling combinations without replacement from
these results that consumed 120 CPU hours and returning
the sampled combination with the best performance.

5.3 Results for Cross-Validation Performance
With 786 hierarchical hyperparameters, Auto-WEKA’s

combined algorithm / hyperparameter space is very complex.
We now study how effectively SMAC and TPE searched this
space to optimize 10-fold cross-validation performance, and
compare their performance to that of Ex-Def, grid search
and random search. The middle portion of Table 4 reports
our main results. First, we note that grid search over the
5See WEKA’s CVParameterSelection class;
weka.wikispaces.com/Optimizing+parameters.
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Table 4: Performance on both 10-fold cross-validation and test data. Ex-Def and Grid Search are deterministic.
Random search had a time budget of 120 CPU hours. For SMAC and TPE, we performed 25 runs of 30
hours each. We report results as mean error rate across 100 000 bootstrap samples simulating 4 parallel runs.
We determined test error rates by training the selected model/hyperparameters on the entire 70% training
data and computing accuracy on the previously unused 30% test data. Boldface indicates the lowest error
within a block of comparable methods that was statistically significant. SC denotes correlation coefficients
(see Section 5.4).

Dataset
Oracle Perf. (%) 10-Fold C.V. Performance (%) Test Performance (%) SC

Ex-Def Grid Search Ex-Def Grid
Search

Rand.
Search

Auto-WEKA Ex-Def Grid
Search

Rand.
Search

Auto-WEKA TPE SMAC
Best Worst Best Worst TPE SMAC TPE SMAC

Dexter 7.78 52.78 3.89 63.33 10.20 5.07 10.60 9.83 5.66 8.89 5.00 9.18 8.89 7.49 0.82 0.25
GermanCredit 26.00 38.00 25.00 68.00 22.45 20.20 20.15 21.26 17.87 27.33 26.67 29.03 27.54 28.24 0.31 0.20
Dorothea 4.93 99.24 4.64 99.24 6.03 6.73 8.11 6.81 5.62 6.96 5.80 5.22 6.15 6.21 0.95 0.40
Yeast 40.00 68.99 36.85 69.89 39.43 39.71 38.74 35.01 35.51 40.45 42.47 43.15 40.10 40.67 0.36 0.49
Amazon 28.44 99.33 17.56 99.33 43.94 36.88 59.85 50.26 47.34 28.44 20.00 41.11 36.59 33.99 0.92 0.97
Secom 7.87 14.26 7.66 92.13 6.25 6.12 5.24 6.21 5.24 8.09 8.09 8.03 8.10 8.01 -0.10 -0.56
Semeion 8.18 92.45 5.24 92.45 6.52 4.86 6.06 6.76 4.78 8.18 6.29 6.10 8.26 5.08 0.84 0.73
Car 0.77 29.15 0.00 46.14 2.71 0.83 0.53 0.91 0.61 0.77 0.97 0.01 0.18 0.40 0.12 0.75
Madelon 17.05 50.26 17.05 62.69 25.98 26.46 27.95 24.25 20.70 21.38 21.15 24.29 21.56 21.12 0.44 0.43
KR-vs-KP 0.31 48.96 0.21 51.04 0.89 0.64 0.63 0.43 0.30 0.31 1.15 0.58 0.54 0.31 0.22 0.32
Abalone 73.18 84.04 72.15 92.90 73.33 72.15 72.03 72.14 71.71 73.18 73.42 74.88 72.94 73.51 0.15 0.10
Wine Quality 36.35 60.99 32.88 99.39 38.94 35.23 35.36 35.98 34.65 37.51 34.06 34.41 33.56 33.95 0.73 0.85
Waveform 14.27 68.80 13.47 68.80 12.73 12.45 12.43 12.55 11.92 14.40 14.66 14.27 14.23 14.42 0.36 0.26
Gisette 2.52 50.91 1.81 51.23 3.62 2.59 4.84 3.55 2.43 2.81 2.40 4.62 3.94 2.24 0.69 0.79
Convex 25.96 50.00 19.94 71.49 28.68 22.36 33.31 28.56 25.93 25.96 23.45 31.20 25.59 23.17 0.98 0.84

CIFAR-10-Small 65.91 90.00 52.16 90.36 66.59 53.64 67.33 58.41 58.84 65.91 56.94 66.12 57.01 56.87 0.93 0.80
MNIST Basic 5.19 88.75 2.58 88.75 5.12 2.51 5.05 10.02 3.75 5.19 2.64 5.05 12.28 3.64 1.00 0.87
Rot. MNIST + BI 63.14 88.88 55.34 93.01 66.15 56.01 68.62 73.09 57.86 63.14 57.59 66.40 70.20 57.04 0.50 0.95
Shuttle 0.0138 20.8414 0.0069 89.8207 0.0328 0.0361 0.0345 0.0251 0.0224 0.0138 0.0414 0.0157 0.0145 0.0130 0.60 0.73
KDD09-Appentency 1.7400 6.9733 1.6332 54.2400 1.8776 1.8735 1.7510 1.8776 1.7038 1.7405 1.7400 1.7400 1.7381 1.7358 0.89 1.00
CIFAR-10 64.27 90.00 55.27 90.00 65.54 54.04 69.46 67.73 62.36 64.27 63.13 69.72 66.01 61.15 0.33 0.69

hyperparameters of all base-classifiers yielded better results
than Ex-Def in 17/21 cases, which underlines the importance
of not only choosing the right algorithm but of also setting
its hyperparameters well. However, we note that we gave
grid search a very large time budget (often in excess 10 000
CPU hours for each dataset, in total more than 10 CPU
years), meaning that it would often be infeasible to use in
practice. In contrast, we gave each of the other methods
only 4× 30 CPU hours per dataset; nevertheless, they still
yielded substantially better performance than grid search,
outperforming it in 14/21 cases. Random search outperforms
grid search in 9/21 cases, highlighting that even exhaustive
grid search with a large time budget is not always the right
thing to do. Comparing the two Auto-WEKA variants,
SMAC outperforms TPE in 19/21 cases. We note that
sometimes Auto-WEKA’s performance improvements over
the baselines were substantial, with relative reductions of
the cross-validation error rate exceeding 10% in 6/21 cases.

5.4 Results for Test Performance
The results just shown demonstrate that Auto-WEKA is

effective at optimizing its given objective function; however,
this is not sufficient to allow us to conclude that it fits models
that generalize well. As the number of hyperparameters of a
machine learning algorithm grows, so does its potential for
overfitting. The use of cross-validation substantially increases
Auto-WEKA’s robustness against overfitting, but since its
hyperparameter space is much larger than that of standard
classification algorithms, it is important to carefully study
whether (and to what extent) overfitting poses a problem.

To evaluate generalization, we determined a combination
of algorithm and hyperparameter settings Aλ by running
Auto-WEKA as before (cross-validating on the training set),
trained Aλ on the entire training set, and then evaluated
the resulting model on the test set. The right portion of Ta-
ble 4 reports the test performance obtained with all methods.
Broadly speaking, similar trends held as for cross-validation

performance: Auto-WEKA outperforms the baselines, with
grid search and random search performing better than Ex-Def.
However, the performance differences were less pronounced:
grid search only yields better results than Ex-Def in 15/21
cases, and random search in turn outperforms grid search in
7/21 cases. Auto-WEKA outperforms the baselines in 15/21
cases. Notably, on 12 of the 13 largest datasets, Auto-WEKA
outperforms our baselines; we attribute this to the fact that
the risk of overfitting decreases with dataset size. Sometimes,
Auto-WEKA’s performance improvements over the other
methods were substantial, with relative reductions of the
test error rate exceeding 16% in 3/21 cases. Comparing the
different Auto-WEKA variants, SMAC outperformed TPE
in 14 cases, and TPE performed better than SMAC in 7. We
note that the differences in error rate between SMAC and
TPE were typically small, but in the 3 cases with a substan-
tial gap, SMAC produced models with lower classification
error. Finally, we note that the CASH problem can also be
solved by sophisticated methods based on principles other
than Bayesian optimization. In particular, we also evaluated
the irace package [22], given the same CPU time as Auto-
WEKA. SMAC performed better than irace in 18/21 cases
with respect to cross-validation performance. As above, the
performance differences were less pronounced for test perfor-
mance, but SMAC still performed better in 13/21 cases; for
the largest sets, where cross-validation performance is more
correlated with test set performance, SMAC outperformed
irace in 11/13 cases.
As mentioned earlier, Auto-WEKA only used 70% of its

training set during the optimization of cross-validation per-
formance, reserving the remaining 30% for assessing the risk
of overfitting. At any point in time, Auto-WEKA’s SMBO
method keeps track of its incumbent (the hyperparameter
configuration with the lowest cross-validation error rate seen
so far). After its SMBO procedure has finished, Auto-WEKA
extracts a trajectory of these incumbents from it and com-
putes their generalization performance on the withheld 30%
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Figure 2: Distribution of chosen classifiers across
the small and large datasets, aggregated across TPE,
and SMAC, ranked on their frequency of being se-
lected. Meta-methods are marked by a ∗ suffix, en-
semble methods by a + suffix.
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Figure 3: Left: distribution of chosen base classifiers
for the two most frequently selected meta-methods:
AdaBoostM1 and random subspace. Right: distribu-
tion of chosen feature search and evaluator methods.
Both plots are aggregated across TPE and SMAC,
ranked on their frequency of being selected; None
indicates that no feature selection was performed.

validation data. It then computes the Spearman rank coeffi-
cient between the sequence of training performances (eval-
uated by the SMBO method through cross-validation) and
this generalization performance. The rightmost columns in
Table 4 (labelled SC) show the average correlation coefficient
for each run of Auto-WEKA. We note a general trend: as the
absolute gap between cross-validation and test performance
grows, this correlation coefficient decreases. The German-
Credit dataset is a good example where Auto-WEKA can
signal that it only has low confidence in how well its chosen
hyperparameters will generalize. We do note, however, that
this weak signal has to be used with caution: there is no
guarantee that large correlation coefficients yield a small gap
and vice versa.

5.5 Classifiers Selected by Auto-WEKA
Figure 2 shows the distribution of classifiers chosen by

our two Auto-WEKA variants (aggregated across runs and
datasets - both TPE and SMAC produce similar results
when considered individually). We note that no single classi-
fier clearly dominated the others: the most frequently used
classifiers (random forests, the single layer perceptron, and

SVMs) were only selected in roughly 12% of all cases each,
and most classifiers were selected in at least a few percent
of the cases. Furthermore, the selected methods differed
considerably between the large and small datasets, demon-
strating the need for dataset-specific methods; for example,
the large datasets benefitted more from meta-methods than
the small ones. A more detailed investigation of the top two
meta-methods in Figure 3 (left) shows which base methods
were chosen. Note that AdaBoostM1 frequently used the
single layer perceptron on small datasets, but never on large
ones, while the REP tree was often chosen for large datasets.
In the random subspace, the two most prominent methods
were naive Bayes and the decision table. It is interesting
to note that these two methods, as well as the REP tree
frequently selected by AdaBoost, were not often selected as
base classifiers on their own. This underlines the importance
of searching Auto-WEKA’s entire parameter space instead of,
e.g., restricting one’s attention to a small number of favourite
base classifiers.
Figure 3 (right) provides a breakdown of the feature search

and evaluation methods Auto-WEKA selected. Overall,
it used these feature selection methods more often on the
smaller datasets than on the larger ones, and if it did use a
feature selection method it favored the ranker method. All
feature evaluators were used with roughly the same frequency
for small datasets; in contrast, if Auto-WEKA performed
feature selection for a large dataset it favored the information
gain evaluator. We note that Auto-WEKA’s data-dependent
choices (based on its internal cross-validation evaluation)
allow it to use feature selection as a regularization method
for small data sets, while at the same time using all features
to construct more complex trained models for large datasets.

6. CONCLUSION AND FUTURE WORK
In this work, we have shown that the daunting problem of

combined algorithm selection and hyperparameter optimiza-
tion (CASH) can be solved by a practical, fully automated
tool. This is made possible by recent Bayesian optimiza-
tion techniques that iteratively build models of the algo-
rithm/hyperparameter landscape and leverage these models
to identify new points in the space that deserve investiga-
tion. We built a tool, Auto-WEKA, that draws on the full
range of classification algorithms in WEKA and makes it
easy for non-experts to build high-quality classifiers for given
application scenarios. An extensive empirical comparison
on 21 prominent datasets showed that Auto-WEKA often
outperformed standard algorithm selection and hyperparam-
eter optimization methods, especially on large datasets. We
empirically compared two different optimizers for search-
ing Auto-WEKA’s 786-dimensional parameter space and
in the end recommend an Auto-WEKA variant based on
the Bayesian optimization method SMAC [15]. We have
written a freely downloadable software package to make
Auto-WEKA easy for end-users to access; it is available at
www.cs.ubc.ca/labs/beta/Projects/autoweka/.
We see several promising avenues for future work. First,

Auto-WEKA still shows larger improvements in cross-validation
performance than on test data, suggesting the investigation
of more sophisticated methods for detecting and avoiding
overfitting than our simple correlation-based approach. Sec-
ond, we see potential value in extending our current approach
to allow parameter sharing between classifiers used within
ensemble methods, likely increasing their chance of being
selected by Auto-WEKA. Finally, we could use our approach
as an inner loop for training ensembles of machine learning
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algorithms by iteratively adding algorithms with maximal
marginal contribution. (This idea is conceptually related to
the Hydra approach for constructing algorithm selectors [33].)
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