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Abstract

We investigate the design and implementation of a par-

allel workflow environment targeted towards the finan-

cial industry. The system performs real-time correlation

analysis and clustering to identify trends within stream-

ing high-frequency intra-day trading data. Our system

utilizes state-of-the-art methods to optimize the delivery

of computationally-expensive real-time stock market data

analysis, with direct applications in automated/algorithmic

trading as well as knowledge discovery in high-throughput

electronic exchanges. This paper describes the design of

the system including the key online parallel algorithms for

robust correlation calculation and clique-based clustering

using stochastic local search. We evaluate the performance

and scalability of the system, followed by a preliminary

analysis of the results using data from the Toronto Stock

Exchange.

1. Introduction

Due to the recent shift away from traditional (physi-

cal) stock markets to electronic markets (partially or com-

pletely), the ability to perform real-time computational

analysis has become a major focus for many financial in-

stitutions. The evidence is a growing number of high-

throughput electronic exchanges offering real-time, low-

latency data feeds. The result is an electronic trading envi-

ronment where in order to out-compete, you not only need

to out-smart, but you also need to out-compute. It is already

accepted in the industry that both computational speed and

computational intelligence are critical components for any
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successful financial trading platform [8, 1]. A strict require-

ment for such a system is that the underlying algorithms

and mathematical models must be able to process and an-

alyze thousands of high-frequency, multi-dimensional and

inhomogeneous time series, in real-time and in an online

fashion. Unfortunately, like in other real-world problems,

the issue of data processing and analysis becomes increas-

ingly complex as the size and frequency of data increases.

As a result, many new challenges and opportunities exist for

applications of parallel computing in the finance industry.

This work builds on a long list of recent research that

examines the stock market network as a complex sys-

tem [17, 2, 3, 4, 26, 20]. A stock market network, often

referred to as a market graph, is a model in which stocks

are nodes, and links between nodes represent a relationship

between the stocks. Previous research on stock market net-

works have focused on historical data; in this context the

edges represent the cross-correlation of the two stocks’ log

daily price return over a given time period. The exact con-

figuration and topology of this type of market graph reflects

the complex interactions within the stock market network

over the time period in which the data was collected. In-

stead of representing interaction patterns spanning several

years, our approach considers the dynamics involved with

the intra-day evolution of the market graph. The topology

of this graph, which we call the dynamic intra-day market

graph, is only a snapshot of the stock market at a specific

moment — it evolves over time. Valuable information can

be extracted from a market graph at any given point in time,

and further computational analysis can be employed to find

clusters or “cliques” of stocks that exhibit highly correlated

trading patterns. A clique is a fully connected set of vertices

in an undirected graph, i.e., between any two vertices in the

set there exists an edge. A clique is maximal if and only

if it cannot be expanded by adding another vertex from the

given graph, and a maximum clique is the maximal clique(s)



Figure 1. A graph with maximum clique size

of 4.

with greatest cardinality. The problem of finding a maxi-

mum clique in a graph, also known as MAX-CLIQUE, is a

well-known NP-hard combinatorial optimization problem.

Figure 1 shows a small graph with 10 vertices and maxi-

mum clique size of 4 (vertices {3,4,5,6}).

While existing market graph studies involving long-term

historical data focus on price-price interaction patterns, our

method utilizes newly available high-frequency intra-day

data to compute short-term technical indicators. Similar to

existing approaches, we are looking for cliques of stocks

with highly correlated trading activity, but instead we define

“trading activity” to be the value of a user-defined technical

indicator. Using this data, our system is able to compute

and analyze the real-time evolution of the dynamic intra-

day market graph.

Given the dynamic, online nature of the intra-day market

graph, the challenge was to design a system with two key

properties:

• The system must be able to operate on a real-time flow

of data and thus the algorithms in the system must be

online and attempt to minimize the calculation for each

of the steps.

• The system must be able to scale to the size of the input

data for the computationally-intensive methods such as

correlation and clique-finding, and obtain high quality

solutions in a reasonable amount of time.

The Toronto Stock Exchange (TSX), for example, is a rela-

tively small exchange trading just under 2,000 securities,

averaging approximately 1,000,000 quotes and 200,000

trades per day. There are much larger exchanges, includ-

ing new electronic crossing networks (ECNs) which pro-

vide transparent access to multiple stock exchanges.

In order to update the intra-day market graph in real-

time, we investigated the use of two algorithms for per-

forming the compute intensive phases of the workflow. To

detect correlations between stocks, we use a robust correla-

tion technique called the Maronna method [18] because of

its ability to produce higher quality solutions and its itera-

tive nature that make it well suited for online computation.

Although previous work had investigated its scalability as

an offline algorithm [6], its use in an online setting has not

been investigated. To find cliques we use a state-of-the-

art stochastic local search algorithm called Phased Local

Search (PLS) [23]. To make it applicable in our system,

we extended PLS such that it works on online data and in

parallel on a number of processors. We also modified the al-

gorithm to find sets of cliques rather than a single maximum

clique.

This paper makes the following contributions. It intro-

duces and presents a solution for the parallel real-time com-

putation of intra-day market graphs to aid in the analysis of

stock market data. In solving this problem we adapted two

offline algorithms, the Maronna method and Phased Local

Search, and investigated their scalability with respect to the

response time of the system. We constructed a prototype

workflow environment to experiment with these algorithms

in an online setting that allows for the dynamic adjustment

of different controls, such as thresholding and accuracy, as

well as the addition of visualization clients for viewing re-

sults.

The remainder of this paper is structured as follows. Sec-

tion 2 presents a general overview of the system. In Sec-

tion 3 we describe the time series data used in the correla-

tion analysis. Section 4 describes our online implementa-

tion of the Maronna method. Section 5 describes our par-

allel online clique-based clustering approach, and discusses

how it can be effectively used as an “embarrassing paral-

lel” algorithm. In Section 6 we evaluate the system with

respect to its response time and validate its ability to dis-

cover patterns and trends in high-frequency stock market

data. Finally in Section 7 we present our conclusions.

2. Overview of the System

Time Symbol Bid Ask Bid Ask

Price Price Size Size

13:23:01 AE.DB 161.506 173.804 454 104

13:23:01 RGL 31.502 23.603 303 13

13:23:02 RIM 103.305 104.505 135 65

13:23:03 TRP 37.509 38.009 429 829

Table 1. Sample time-ordered quote data for

four stocks.

Our system uses streaming quote data to construct the

dynamic intra-day market graph. Each time-stamped quote

specifies, among other things, the current best bid and ask
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price for a given stock. The bid price is the highest price

someone is willing to pay for a stock, and the ask price

is the lowest price someone is willing to sell a stock. An

example of quote data is shown in Table 1. In order to
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Figure 2. Example of a market graph and
clique structure.

create a network model representation, we correlate a user-

defined technical indicator (e.g., rate of change in the price

of a stock). Details on how technical indicators are used by

the system to create a similarity measure is given in Sec-

tion 3. The values of a particular technical indicator give

a time series for each stock. The time series between all

pairs of stocks are correlated, resulting in a completely con-

nected market graph. Thresholding is then used to filter out

edges with low correlation, and finally PLS identifies max-

imal cliques in the resulting market graph. An example of

this process for five stocks is illustrated in Figure 2.

2.1. Design of the System

Data

Collector

Filter

Accumulator

Robust

Correlation

Clique-base

Clustering

Results

Analysis

Server

Stock Analysis Pipeline

Data

Figure 3. Multistage stock analysis pipeline.

As shown in Figure 3, the system architecture is a multi-

stage pipeline. It is comprised of the following five stages.

The data collector is the initial stage that receives stock

quotes from an Internet feed, file or database. The filter

and accumulator stage receives unfiltered data items from

the data collector (e.g., a single quote), performs any re-

quired filtering of the data (e.g., interpolation for missing

data) and calculates the technical indicator samples. After

the indicator values are sent to the correlation stage, all

pair-wise correlation coefficients are computed and sent to

the clustering stage. The correlation and clustering stages

are the most computationally intensive stages; further detail

on each are presented in Sections 4 and 5, respectively. The

final stage, the results analysis server, receives the set of

clusters (maximal cliques) and packages the data into XML,

which is then transmitted to an external visualization client.

2.2. Details of the Design
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Figure 4. Process structure of the pipeline.

Message-passing in the system is implemented in MPI,

including the correlation and clique-finding stages which

are parallelized using a manager-worker architecture. The

overall process structure of the system is shown in Figure 4

where the two middle stages may contain an arbitrary num-

ber of workers. As a batch of quotes enter the system,

the manager routine activates workers to perform a paral-

lel correlation calculation. Upon completion, the results are

passed onto the the clique-finding stage which in turn acti-

vates workers to search for cliques. The system can perform

load-balancing between stages to avoid any one stage from

becoming a bottleneck. This is accomplished by either ad-

justing the work load or increasing the number of workers

allocated to the middle two stages, thus minimize the effect

of these two stages on performance (as measured by the re-

sponse time of the system).

The control process shown in Figure 4 uses an intra-

communicator to send messages to the leader group, which

is composed of one process from each stage of the pipeline.
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The control process accepts socket connections from an ex-

ternal client, allowing it to initialize the system as well as

to dynamically update control parameters. The parameters

that can be dynamically updated include:

• threshold value, which sets the threshold for the corre-

lation values above which the correlation between two

stocks induces an edge in the graph;

• batch sizes, sets the amount of data to accumulate be-

fore sending the data onto the next stage;

• parameters for correlation and clique-finding that can

adjust the balance between the quality of the solution

and the length of execution time;

3. Similarity Measures

Deciding on an appropriate measure for correlation is a

difficult problem which depends on many factors, such as

the time scale on which patterns are sought, how and by

whom the results are to be interpreted, and the number and

variety of stocks included in the analysis. Different similar-

ity functions will produce vastly different market graphs. In

previous market graph research [17, 2, 3, 4], which model

the long-term (historical) market graph, the standard mea-

sure is the log return Ri = log(Pi(t)) − log(Pi(t − 1)),
where Pi(t) is the closing price of stock i at time t (where

time is measured in days). Clearly this exact measure can-

not be used on intra-day data, as it would result in only a

single data sample. Even if Ri was evaluated using Pi(t)
as the price after each trade, the number of trades within

a day for most stocks are too few to justify a statistically

significant correlation.

Fortunately, the rapid advancement of electronic stock

markets has enabled real-time access to high-frequency

intra-day quote data. Using this newly available data, our

system constructs a dynamic intra-day market graph whose

edge weights correspond to the correlation coefficients be-

tween pairs of evenly spaced technical indicator time se-

ries. Our use of short-term technical indicators is motivated

by Dempster et al., who use genetic programming to con-

struct an optimal portfolio of short-term technical indicators

for use within their automated trading system [9, 11, 10].

For simplicity, we experimented with three basic indica-

tors: the Quote Frequency Simple Moving Average (QF-

SMA), Quote Volume Simple Moving Average (QMSMA)

and the Quote Midprice Rate of Change (QMROC). The

quote midprice is a close approximation of the true price,

while other measurements such as the spread (difference

between bid/ask), quote frequency and arrival times are all

closely linked with liquidity and volatility. These higher-

frequency time series represent alternative views of the

underlying market microstructure, from which potentially

economical information can be extracted [5, 26, 15, 19].

Due to the sporadic nature of the data, if the approach

described above is applied to a set of stocks, the sam-

ple points will not be evenly aligned in time. Since stan-

dard correlation-based analysis assumes homogenous time

series, we transform the raw inhomogeneous time series

into a homogenous one through interpolation and aggrega-

tion [8, 25]. It has also been suggested that patterns span-

ning multiple time scales are somehow connected to the

emergent behaviour of the heterogenous investors (agents)

participating in the market [16]. Other work suggests that

the temporal irregularity of these time series should be con-

sidered a feature of the system, rather than a problem which

needs to be eliminated [1]. But how can we compute and

analyze such correlations across inhomogeneous time se-

ries? This is the question we wish to address by treating the

presence of new data samples (e.g., quotes) as events; that

is, we sample the data stream at a regular interval, but do

not use interpolation or aggregation to homogenize the time

series. This approach, however, also presents challenges of

its own, raising questions such as “How can such patterns

be interpreted?”, or “What does it mean for these events to

be correlated?”.

There is, however, an obvious trade-off in the frequency

at which data is sampled. Sampling more frequently brings

the analysis closer to ‘real time’. The problem is that

for stocks with infrequent quote updates, interpolation pro-

duces a stream of constant values, causing the correlation

analysis to produce spurious results. On the other hand, if

we increase the sampling window to say one minute, the

number of constant values decreases, but the result/solution

response time also increases. The issue of how to deal

with inhomogeneous, high-frequency stock market data is

an open problem in high-frequency finance [22, 8, 1], and

thus there are no obvious answers to these questions. By

providing a framework such as the one proposed in this pa-

per, we offer a novel tool for investors and market analysts

to interactively explore this new and interesting information

space.

4. Correlation Calculation

Calculating the correlation between a collection of ran-

dom variables is a standard technique used to determine

the strength of a linear relationship between variables.

It is widely used in finance for portfolio optimization,

derivatives pricing, risk management and pairs/spread trad-

ing [22]. A correlation matrix records the correlation coef-

ficients between all pairs of variables, in our case stocks in

the exchange. Unfortunately, correlation matrices are very

sensitive to the presence of outliers in the data. As a result,

robust techniques have been developed to produce estimates
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of the correlation. These robust methods require more com-

putation and are not widely used because of their compu-

tational requirements. In this paper we use a robust tech-

nique called the Maronna method [18]. The computational

time complexity of the Maronna method is O(np2) for p
variables and n data samples. However, as shown in [6],

it can be easily parallelized and scales to large numbers of

processors. Scalability tests were performed on a gene ex-

pression dataset with 6068 variables and synthetic datasets

with 10,000 variables. The 6068 variable correlation ma-

trix was calculated in 15.5 seconds using 128 processors

(3GHz Xeons). In our case, as we show in Section 6, the

correlation matrix for the data from the Toronto stock ex-

change, which trades just under 2000 stocks, can be calcu-

lated in less than 4 seconds using 18 processors. Details on

the Maronna Method and its parallelization are described

in [18].

The Maronna method can be structured into an embar-

rassing parallel algorithm where each pair-wise correla-

tion coefficient can be calculated independently. We use a

manager-worker architecture; the manager assigns to each

worker processes a batch of jobs to compute, where a job

corresponds to calculating a single correlation coefficient.

Upon completion the worker sends back the batch of results

and subsequently asks for another batch. This continues un-

til the correlation computation is complete. The pair-wise

correlation calculation is an iterative process where it is pos-

sible to specify the accuracy of the correlation as well as

limit the number of iterations. Experiments from our pre-

vious work show that the number of iterations required to

reach a given accuracy depends on the outliers in the data.

Each iteration reduces the effect the outlier has on the coef-

ficient value. The accuracy and number of iterations provide

controls that can be used reduce the computation time, of-

fering a flexible trade-off between the quality of the results

and response time.

As mentioned, this use of the Maronna method differs

from our previous work in that it is online rather than of-

fline. Thus, as stock updates flow into the system the corre-

lation values need to be constantly updated. We restructured

the algorithm for the Maronna method to allow us to in-

dependently re-compute the correlation value between any

two stocks. Thus, as a stock quote update enters the sys-

tem we can re-compute the correlation coefficient ρij by

calling ρij = maronna correlation(X ,Y ,n,ǫ,limit) where X
and Y are the data columns for stock i and j respectively,

and n is the number of samples in X and Y . The param-

eter ǫ is the precision at which the iteration of the correla-

tion of two variables stop, while limit specifies the max-

imum number of iterations. Each time a new quote is re-

ceived for stock i, its correlation coefficients with all other

stocks need to be updated; that is, we need to compute ρij

for all j ∈ {1, ..., p} \ {i} where S = {s1, . . . , sp} de-

notes the set of all stocks. It is not efficient to perform this

calculation on a per-update basis; instead, it is preferable

to define a time window where the accumulator stage col-

lects the stock updates into a batch that is then forwarded to

the Maronna stage. The Maronna stage then broadcasts the

updated samples to the workers and the processor farm is

started. A manager process dispatches correlation tasks to

workers which perform the independent correlation compu-

tation and return the result. In a given time window, k, there

will be a set of stocks S∗

k ⊆ S corresponding to the stocks

that received at least one quote update within that window.

If m = |S∗

k |, then the number of updates to the p × p cor-

relation matrix is p(p − 1)/2 − (p − m)(p − m − 1)/2 =
mp − m(m − 1)/2. Notice that as m, the batch size, in-

creases there is less wasted computation, since the coeffi-

cients between the stocks within a batch are calculated only

once. Thus, there is a trade-off between having a small

batch size that results in some wasted calculation but faster

response time versus larger batch sizes over larger time win-

dows that give a slower response time.

5. Clique-based Clustering

Clustering of the market graph is done by finding a large

set of maximal cliques using Phased Local Search (PLS),

a state-of-the-art Stochastic Local Search (SLS) algorithm

for finding maximum cliques in unweighted graphs [23].

Stochastic local search is one of the most prominent and

widely used approaches for solving computationally diffi-

cult combinatorial problems [14]. It is based on the gen-

eral idea of iteratively expanding or improving a current

candidate solution by means of small modifications, using

randomized decisions to avoid or overcome stagnation of

the search in locally optimal solutions. The PLS algorithm

has been shown to achieve state-of-the-art performance on

a broad range of MAX-CLIQUE problems. It is derived

from DLS-MC [24], an earlier SLS algorithm for MAX-

CLIQUE. Both algorithms alternate between phases of it-

erative improvement, where suitable vertices are added to

the current clique, and plateau search, where vertices in

the current clique are swapped out and replaced by other

vertices; furthermore, dynamic vertex penalties are used to

achieve effective search diversification, which prevents the

search from stagnating in locally maximal, but sub-optimal

cliques. Unlike DLS-MC, PLS has no parameters that con-

trol the behaviour of the search process.

For use in the context of our system, we have modified

PLS in two respects: Firstly, we have parallelized the search

process using the simple, yet effective multiple indepen-

dent runs approach and modified it to work on a dynami-

cally changing input graph. This is motivated by the need

to analyze the rapidly changing market graph as efficiently

as possible. Secondly, we have altered the algorithm to not
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only find one maximum clique, but a set of maximal cliques.

This allows us to find a potentially large number of clusters

of correlated stocks, each of which may be of interest to an

analyst using our system. In the following, we describe each

of these modifications in more details. For further informa-

tion on the PLS algorithm and these new modifications, we

refer to the literature [23, 25].

5.1. Parallel PLS

One of the big advantages of SLS algorithms over other

approaches for solving hard combinatorial problems is the

fact that in principle, they can be parallelized very easily

by simply performing a number of runs independently in

parallel. Obviously, this parallelization strategy makes no

sense for deterministic search algorithms (unless they are

initialized at carefully chosen starting points). For random-

ized algorithms, it is well-known that the effectiveness of

parallelization by means of multiple independent runs de-

pends on the respective run-time distributions (RTDs) [14].

RTDs capture the distribution of time needed by a random-

ized search algorithm, such as PLS, to reach (or exceed) a

specific solution quality (here: clique size) when applied to

a given problem instance. It has been shown analytically

that by performing multiple independent runs on p proces-

sors, a parallelization speedup of p is achieved if, and only

if, the RTD for the given algorithm and problem instance

is an exponential distribution, i.e., has a cumulative distri-

bution function of the form f(x) = 1 − eλx [27]. Many

high-performance SLS algorithms, including PLS, tend to

exhibit approximately exponential RTDs when applied to

hard problem instances [14]. Therefore, close-to-optimal

parallelization speedup can be achieved by performing mul-

tiple independent runs of the algorithm.

In a realistic setting, where the market graph changes dy-

namically in response to real-time stock data and user inter-

action, maximum clique sizes will not be known a priori.

Therefore, we run each PLS process for the same amount

of time and subsequently determine which of them have

achieved the largest clique size. During the initial search

phase the probability of finding an optimal solution within

each given time unit is significantly reduced, which lim-

its the number of processors for which close-to optimal

speedup can be obtained. However, this effect is much less

pronounced for hard than for easy problem instances, and

for the latter, the efficiency of the clique finding algorithm is

clearly much less critical. It should be noted that more com-

plex parallelization strategies could be applied to PLS, in-

cluding cooperative schemes in which the search processes

running on the individual processors share information [7],

for example in the form of vertices that have been found to

belong to large cliques or frequently encountered subopti-

mal cliques.

5.2. Online PLS

As a consequence of the frequent changes of the stock

data monitored by our system, the market graph analyzed by

PLS is subject to dynamic modifications. In response to any

such modification, we need to solve the clique finding prob-

lem for the new graph before further changes may invalidate

the new solutions. In principle, the scalable parallelization

of PLS allows us to address this challenge in a very sim-

ple manner, namely by solving the problem instance arising

from each modification of the market graph by performing

parallel PLS on sufficiently many processors. Furthermore,

SLS algorithms such as PLS have a desirable ‘anytime prop-

erty’, in that at any point during the search they can return

the best candidate solution found so far. Therefore, even

if parallel PLS has not found a maximum clique before the

market graph changes, it can produce a meaningful subop-

timal solution.

However, this simple scheme for solving online clique

finding problems does not take into account that in many

cases, the changes occurring with each update of the mar-

ket graph are fairly small. It has been previously shown for

other combinatorial problems subject to dynamic changes

over time that SLS algorithms often work best in finding

solutions to the corresponding series of related problem in-

stances when not forced to restart the search process after

each change (see, e.g., [13]). Instead, it is beneficial to con-

tinue the search across changes in the input data with as

little disruption as possible. This approach is known as tra-

jectory continuation (TC) and can be easily applied to most

SLS algorithms; in the case of PLS, it works as follows.

When the input graph changes, first the data structures rep-

resenting the graph are updated. Next, the sets of vertices

used in the iterative improvement and plateau phases are ad-

justed to accurately reflect the effects of added or removed

edges. Finally, the current (working) clique and the best

(saved) clique found so far are repaired if they have become

invalid as a result of edge removals; this is done by deleting

vertices incident to the missing edges until the remaining

set of vertices is fully connected again. To illustrate the

performance improvements achieved by the use of trajec-

tory continuation, we evaluated PLS with and without tra-

jectory continuation on several dynamic graph series based

on a previously studied data set of 6556 stocks [3]. Table 2

shows the cumulated number of search steps (vertex selec-

tions) required by PLS to find maximum cliques at all stages

in each of three series of graphs; the add and remove series

represent successive graphs in which the number of edges

is monotone increasing and decreasing, respectively, while

the mixed series is a random ordering of the add and re-

move series. As shown in the table, trajectory continuation

improves the search performance on all three series, with

an average speedup of 101%. Speedup on the mixed series
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series # stages # search steps % speedup

no TC TC

add 10 14,099 6,151 129

remove 10 10,865 5,937 83

mixed 20 29,735 15,425 92

Table 2. Performance differences between

PLS without and with trajectory continuation
on dynamic market graph series.

was slightly lower at 92%, which represents a more real-life

scenario (where edges are both added and removed between

successive stages). Although the speedup afforded by the

online adaptation is not overwhelming, when operating in a

highly time-constrained environment, every bit of speedup

counts.

5.3. Recording sets of maximal cliques

Our final modification to the PLS algorithm is motivated

by the fact that in our clique-based analysis of the market

graph, we are interested in finding not just a single maxi-

mum clique, but a large and diverse set of maximal cliques.

As a first way of addressing this goal, we modified on-

line parallel PLS to record the set of all maximal cliques

encountered since the initialization of the search process

or last change in the graph. Currently, the sets of maxi-

mal cliques collected by parallel online PLS are combined

into the so-called 1-clique graph (an instance of a k-clique

graph), whose vertices corresponds to the stocks involved in

at least one maximal clique and whose edges are precisely

those found in the set of maximal cliques [12]. We have a

simple visualization client that can be used to explore this

graph. The clique data collected by our algorithm contains

additional useful information that can be extracted by fur-

ther analysis. For example, we have now started analyzing

the clique overlap structure, which has been shown to ex-

hibit small-world scaling properties [21].

6. Evaluation

The current system was tested on a dataset consisting of

the Trade and Quote (TAQ) data from the Toronto Stock

Exchange (TSX) for March of 2005. We choose different

days and different times within those days as well as testing

on synthetic data to ensure the correctness of the techniques.

We evaluate two different aspects of the system. First,

in Section 6.1 and 6.2, we provide evidence to demonstrate

the type of trends that we obtained from running our system

and collecting results. Second, we evaluate the response

time of the system, the time required for the system to react

to changes in the input.

We note here that the task of evaluating a system com-

posed of many interacting components significantly in-

creases the parameter space, thus making a thorough empir-

ical analysis much more complicated. Therefore, we have

chosen to focus our evaluation on highlighting the perfor-

mance of the system as a whole, since individual perfor-

mance and scalability results for Maronna and PLS are doc-

umented in their respective publications [6, 25]. Further-

more, a concise performance evaluation is heavily depen-

dent on the underlying hardware configuration, and thus we

provide only basic proof-of-concept results demonstrating

the capability of such a system.

6.1. Homogeneous Time Series

Interpreting homogenous time series correlations is a rel-

atively easy task. Determining the cause of the correlation

is another question altogether (and hence out of the scope

of this paper). As discussed in Section 3, applying standard

time series analysis to high-frequency data presents many

challenges, e.g., the presence of a many consecutive con-

stant values. For example, we found that correlating metrics

using a sampling frequency of less than 10 seconds often re-

sulted in an entire set of constant values, which gave rise to

an undefined correlation coefficient (since standard devia-

tions of zero occur). Our original hypothesis was that using

high-frequency data would eliminate this problem, but we

see now that while the frequency of the input data has in-

creased, much of the data is repetitive, resulting in little or

no change in the underlying time series. As a result, we

have a small but representative set of examples illustrating

the type of patterns we wish to extract from the intra-day

market graph. For this analysis we did not perform any

backtesting over a number of days; instead, we extracted a

single day of trading data which we calculated as a ’normal’

day on the TSX1. Figure 5 shows five stocks with correlated

QFSMA indicators calculated using a 1 minute sampling in-

terval with a sample queue size of 100. The stocks, exclud-

ing Cognos, are loosely related in the sense they fall within

the resource/mining sector. All pair-wise correlation coeffi-

cients for these time series are between 0.9 and 1.0. While

at first glance these values may seem surprisingly high, the

reason is that Maronna down-weights samples which ap-

pear to be outliers and would normally decrease the value

of the correlation coefficient. Notice how the indicator val-

ues appear highly correlated for some time, and then they all

suddenly drop to a very weak signal — this type of activity

could represent the situation when all the stocks were si-

multaneously correcting (reversing a recent gain/loss). The

detection of such correlated activity could be a valuable tool

1We did this by calculating averages for volume, price volatility and

number of quotes over the entire month (March 2005), and then chose the

day showing the least deviation from these averages (March 22)
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for momentum traders who rely on the ability to predict

short-term movements. Figure 6 shows stocks which ex-
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hibit correlated QVSMA indicators using a 30 second sam-

pling interval. The resulting time series for Cambior and

PlacerDome (gold mining companies) are positively corre-

lated with ρ = 0.84. TLC Vision is also found to be posi-

tively correlated with Cambior (ρ = 0.95) and PlacerDome

(ρ = 0.80), although the magnitude of change in the indica-

tor series is noticeably less (which may indicate a spurious

result due to noise). Weston Foods, on the other hand, ex-

hibits a QVSMA indicator series which is highly negatively

correlated to all three stocks, with an average correlation

coefficient of ρ = −0.82.

6.2. Inhomogeneous Time Series

Analyzing correlated behaviour from inhomogeneous

time series is difficult because of the potential variations in

frequencies between the time series. For example, consider

a scenario where a stock si has a price pattern over time

window ti defined by P (si), which is activated each day

at a particular time, in response to daily news relevant to

the company. Now consider another stock sj with a price

pattern over time window tj defined by P (sj); the time

windows ti and tj can vary significantly, and as such the

correlated price movements will not be detected by tradi-

tional time series correlation methods. How exactly to ex-

tract meaningful economic information from such results is

another question, and better left to our target users with ex-

perience in short-term trading.
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Figure 7. Correlated event-based QMROC
patterns

Figure 7 shows three stocks exhibiting correlated event-

based patterns using the QMROC indicator. The three

stocks are Otelco (wireless telecom services), Rogers Com-

munications, and Spectrum Signals (software developer).

The average correlation coefficient of these time series is

0.52; while not convincingly high, a quick glance a the chart

shows a clear co-movement in the indicator values. Figure 8

shows the same data points when they are shown in their

correct time series order. It is difficult to discern a relation-

ship between those same stocks.

6.3. System flexibility and scalability

Our current testing environment is a small compute clus-

ter comprised of 14 dual Intel Xeon 3.06GHz CPU’s with

2GB RAM, and another small cluster with 6 dual Intel Xeon

2.0GHz CPU’s with 4GB RAM. We tested the scalability

and throughput of the system by varying the number of pro-

cessors and measuring the time delay through the pipeline.
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Figure 9 shows the result of executing the system with 5, 10

and 18 processors on Maronna and PLS. We do not include

the processors executing the single processes correspond-

ing to the first two stages, the last stage and the control

process. The response time increases at the beginning of

each run because as the input queue for each stock fills, the

size of the samples for correlation increases. Eventually the

queues fill, after which the sample sizes remain constant. A

communication protocol was established between the two

stages so that they can be overlapped onto the same proces-

sors. This is possible because when one task is executing,

the other need not be, thus guaranteeing that only one of

the two tasks be utilizing the system resources at any given

time. For example, when Maronna is computing correla-

tion values, PLS is waiting to receive these updated values;

then when the correlation task is complete, PLS find cliques

Number of Avg. response time Speedup

Processors (seconds) (w.r.t. 5)

5 14.49 1

10 6.83 2.12

18 3.74 3.87

Table 3. Speedup for workflow environment

with 2000 stocks and batch size 2000.

while Maronna waits for new batches of data. The number

of iterations PLS performs between each successive check

is adaptive with respect to the data input frequency; i.e. if

data is coming in fast and Maronna is continuously com-

puting, then PLS does less work since the relevance of the

results degrade with time. However, if the data rate is slow

and Maronna has no work to perform, then PLS can uti-

lize the spare compute resources and continue to refine the

clique results. Table 3 shows the speedup results of the aver-

Number of Response time statistics (seconds)

Processors avg med stddev var

5 14.49 14.55 0.69 0.48

10 6.83 6.85 0.32 0.10

18 3.74 3.73 0.23 0.054

Table 4. Response time statistics for varying

processor configurations.

age response times for each of the series shown in Figure 9.

Table 4 reports several response time statistics for various

processor configurations. It is worth noting that the stan-

dard deviation (stddev) and variance (var) of the response

times decrease when more CPU’s are used, a result of the

inherent load-balancing mechanism of the task farm archi-

tecture.

7. Conclusion

In this paper we have explored the design and proto-

type implementation of a highly parallel workflow envi-

ronment capable of correlating and clustering time series

data streams of a large portfolio of stocks with minimum

response time. The system we propose, which is fully dis-

tributed and can run almost anywhere on any architecture, is

built using MPI, an open-source and platform-independent

API for high-performance message-passing applications.

First we introduced the individual components of the

system, and describe how they interact in order to process

the high-frequency data stream. We then introduced the
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concept of the dynamic intra-day market graph, which uti-

lizes a real-time correlation matrix to model the evolving

interaction patterns between stocks. The correlation matrix

is dynamically updated using an online parallel implemen-

tation of Maronna, a powerful correlation method robust to

outliers and noisy data — a key feature for dealing with spo-

radic, highly-irregular time series. Finally, we presented an

online parallel clique-finding algorithm which finds within

a dynamic input graph, a large set of maximal cliques rep-

resenting subsets of highly correlated stocks.

The need for high-performance computing in the finance

industry is clear; the question is how to best approach the

problem. We believe the best solution lies in developing

scalable, online algorithms that are able to meet the de-

manding computational requirements imposed by the spo-

radic and unpredictable nature of high-frequency stock mar-

ket data. To this end, we have proposed an approach which

emphasizes a real-time market-wide analysis, along with

a flexible system design which enables easy interchang-

ing of computational components, thus creating a power-

ful framework for designing, testing and evaluating novel

applications in high-frequency finance. With potential ap-

plications ranging from automated trading systems to ex-

ploratory knowledge discovery, our system empowers its

users with a deeper insight into the complex underlying net-

work structure of the stock market.
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