
98 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

review articles

P ROBLEMS ARE INTRACTABLE when they “can be solved,
but not fast enough for the solution to be usable.”13
NP-complete problems are commonly said to be
intractable; however, the reality is more complex. All
known algorithms for solving NP-complete problems
require exponential time in the worst case; however,
these algorithms nevertheless solve many problems
of practical importance astoundingly quickly, and are
hence relied upon in a broad range of applications.
The propositional satisfiability problem (SAT)
serves as a good example. One of the most popular
approaches for the formal verification of hardware and
software relies on general-purpose SAT solvers and
SAT encodings, typically with hundreds of thousands
of variables. These instances can often be solved in

seconds, even though the same solvers
can be stymied by handcrafted instanc-
es involving only hundreds of variables.

Clearly, we could benefit from a
more nuanced understanding of al-
gorithm behavior than is offered by
asymptotic, worst-case analysis. Our
work asks the question most relevant
to an end user: “How hard is it to solve
a given family of problem instances, us-
ing the best available methods?” For-
mal, complexity-theoretic analysis
of this question seems hopeless: the
best available algorithms are highly
complex (and, in some cases, only
available in compiled form), and in-
stance distributions representative of
practical applications are heteroge-
neous and richly structured. For this
reason, we turn to statistical, rather
than combinatorial, analysis.

The main claim of this article is that
rigorous statistical methods can char-
acterize algorithm runtime with high
levels of confidence. More specifical-
ly, this article surveys over a decade of
research showing how to build empiri-
cal hardness models (EHMs) that, given
a new problem instance, estimate the
runtime of an algorithm in low-order
polynomial time.14,16,18,21,26–29,32,33,39,40
We have shown that it is possible to
build quite accurate models for differ-
ent NP-complete problems (we have
studied SAT, combinatorial auction
winner determination, mixed integer
programming, and the traveling sales-
man problem), distributions of prob-

Understanding
the Empirical
Hardness of
NP-Complete
Problems

DOI:10.1145/2594413.2594424

Using machine learning to predict
algorithm runtime.

BY KEVIN LEYTON-BROWN, HOLGER H. HOOS,
FRANK HUTTER, AND LIN XU

 key insights
 Rigorous statistical methods can

characterize algorithm runtime with
high levels of confidence.

 The resulting models can be analyzed
to gain insight into what makes
problems hard, even in settings
where theoretical analysis cannot
get traction.

 Accurately predicting runtime has
many practical applications, such
as selecting the best candidate from
an algorithm portfolio, making
benchmark distributions harder,
and finding parameter settings that
optimize an algorithm's performance.

http://dx.doi.org/10.1145/2594413.2594424

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 99

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 E
U

G
E

N
E

 K
O

S
T

S
O

V

lem instances (we have considered
dozens), and solvers (again, dozens).
We have robustly found that even very
succinct EHMs can achieve high accu-
racies, meaning they describe simple
relationships between instance char-
acteristics and algorithm runtime.a
This makes our approach important
even for theoretically inclined com-
puter scientists who prefer proofs
to experimental findings: EHMs can
uncover new, simple relationships
between instance characteristics and
runtime, and thereby catalyze new
theoretical work.

The focus of this article is on ways
that EHMs contribute to our under-
standing of NP-complete problems;
however, they are also useful in a va-
riety of practical applications. Most
straightforwardly, they can aid the
distribution of problem instances
across a cluster, or predict how long
a run will take to complete. More
interestingly, they can be used to
combine a set of high-variance algo-
rithms into an “algorithm portfolio”
that outperforms its constituents;
be leveraged to automatically make
benchmark distributions more chal-
lenging; and aid in the configuration
(or “tuning”) of highly parameterized
algorithms for good performance on
given instance distributions. More
detailed explanations of these appli-
cations appear in sidebars through-
out this article.

Phase Transitions in
Uniform-Random 3-SAT
We begin by describing the most widely
known relationship between a char-
acteristic of fixed-size random SAT
instances and solver runtime. (Af-
ter this, we consider more realistic
instances of SAT and other NP-hard
problems.) Let p(c, v) denote the prob-
ability that a satisfiable 3-SAT for-

a We do not survey the literature on algorithm
performance prediction here; instead we fo-
cus on our own work. For extensive discus-
sions of related work, please see Hutter et al.21
and Leyton-Brown et al.29

mulab will be generated by uniformly
sampling c clauses of three variables
each from a set of v variables, negating
each with probability 0.5. In the early
1990s, researchers discovered that
when v is held constant, p(c, v) exhib-
its a “phase transition” as c/v crosses
a critical value of about 4.26.8,31 Intui-
tively, instances with few clauses are
underconstrained and thus almost
always satisfiable, while those with
many clauses are overconstrained and
almost always unsatisfiable. The inter-
esting fact is that, for all fixed values
of v so far tested, the phase transition

b A SAT formula F is solved by deciding whether
there exists an assignment of its variables un-
der which F evaluates to true. A subclass of par-
ticular importance is 3-SAT. A 3-SAT instance
is a conjunction of clauses, each of which is a
disjunction of three variables or their nega-
tions. For example, (v1 ∨¬ v2 ∨ v4) ∧ (¬v1 ∨¬v3
∨ v4) is a simple formula with v = 4 variables and
c = 2 clauses that has several satisfying assign-
ments (for example, [v1, v2, v3, v4] = [true, true,
false, false]).

point at which p(c, v) is exactly 0.5, ap-
pears to coincide with a runtime peak
even for the SAT solvers that perform
best on these instances. This finding
thus links an algorithm-independent
property of an instance (c/v) with al-
gorithm-specific runtime in a way that
has proven robust across solvers.

Figure 1 (left) shows this relationship
using real data. The dotted line shows
p(c, v) for uniform-random 3-SAT in-
stances with v = 400, while the solid line
shows the mean runtime of march _
hi,11 one of the best SAT solvers for
uniform-random 3-SAT, on the same
instances. We do indeed observe both
a phase transition and a hardness spike
at the phase transition point. Howev-
er, there is more to the story. Figure 1
(right) plots raw runtime data (on a log
scale) for march _ hi, with each point
corresponding to a single (random)
3-SAT formula. We can now see that the
c/v ratio does not suffice to fully explain
march _ hi’s empirical behavior on
these instances: there is still substan-

review articles

100 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

learning algorithm to identify the most
useful ones. Our only requirement is
that the features be computable in
low-order polynomial time; in some
applications, we also restrict ourselves
to features that are quadratic time or
faster. For the SAT domain, we defined
138 features summarized as:

 ˲ Problem size measures c and v, plus
nonlinear combinations we expected to
be important, like c/v and c/v − 4.26;

 ˲ Syntactic properties of the in-
stance (proximity to Horn clauses, bal-
ance of positive and negative literals,
and so on);

 ˲ Constraint graph statistics. We
considered three graphs: nodes for
variables and edges representing
shared constraints (clauses); nodes for
clauses and edges representing shared
variables with opposite polarity; nodes
for both clauses and variables, and
edges representing the occurrence of
a variable in a given clause. For each
graph, we computed various statistics
based on node degrees, path lengths
and clustering, among others;

 ˲ A measure of the integrality of
the optimal solution to the linear pro-
gramming relaxation of the given SAT
instance—specifically, the distance
between this solution and the nearest
(feasible or infeasible) integral point;

 ˲ Knuth’s estimate of search tree
size;25 and,

 ˲ Probing features computed by
running bounded-length trajectories
of local search and tree search algo-
rithms and extracting statistics from

tial variation at each point along the x
axis—over two orders of magnitude at
the “hard” phase transition point. The
runtime pattern also depends on satisfi-
ability status: hard instances are scarcer
and runtime variation is greater among
satisfiable instances than among unsat-
isfiable instances. One reason for this is
that on satisfiable instances the solver
can stop as soon as it encounters a satis-
fying assignment, whereas for unsatisfi-
able instances a solver must prove that
no satisfying assignment exists any-
where in the search tree.

A Case Study on
Uniform-Random 3-SAT
We now ask whether we can better un-
derstand the relationship between in-
stance structure and solver runtime by
considering instance features beyond
just c/v. We will then use a machine
learning technique to infer a relation-
ship between these features and run-
time. Formally, we start with a set I of
instances, a vector xi of feature values
for each i ∈ I, and a runtime observa-
tion yi for each i ∈ I, obtained by run-
ning a given algorithm on i. Our goal
will be to identify a mapping f : x → y
that predicts yi as accurately as pos-
sible, given xi. We call such a mapping
an EHM.c Observe that we have just

c It is sometimes useful to build EHMs that pre-
dict a probability distribution over runtimes
rather than a single runtime; see Hutter et al.21
For simplicity, here we discuss only the predic-
tion of mean runtime.

described a supervised learning prob-
lem, and more specifically a regression
problem. There are many different re-
gression algorithms that one could use
to solve this problem, and indeed, over
the years we have considered about a
dozen alternatives. Later in this article
we will advocate for a relatively sophis-
ticated learning paradigm (random for-
ests of regression trees), but we begin
by discussing a very simple approach:
quadratic ridge regression.5 This meth-
od performs linear regression based on
the given features and their pairwise
products, and penalizes increases in
feature coefficients (the “ridge”). We
elaborate this method in two ways.
First, we transform the response vari-
able by taking its (base-10) logarithm;
this better allows runtimes, which vary
by orders of magnitude, to be described
by a linear model. Second, we reduce
the set of features by performing for-
ward selection: we start with an empty
set and iteratively add the feature that
(myopically) most improves predic-
tion. The result is simpler, more robust
models that are less prone to numerical
problems. Overall, we have found that
even simple learning algorithms like
this one usually suffice to build strong
EHMs; more important is identifying a
good set of instance features.

Instance features. It can be difficult
to identify features that correlate as
strongly with instance hardness as c/v.
We therefore advocate including all fea-
tures that show some promise of being
predictive, and relying on the machine-

Figure 1. Runtime of march_hi on uniform-random 3-SAT instances with v = 400 and variable c/v ratio. Left: mean runtime, along with
p(c, v); right: per-instance runtimes, colored by satisfiability status. Runtimes were measured with an accuracy of 0.01s, leading to the
discretization effects visible near the bottom of the figure. Every point represents one SAT instance.

3.26 3.76 4.26 4.76 5.26

10–2

100

102

Clauses to variables ratio

m
ar

ch
_h

i m
ea

n
 r

u
n

ti
m

e
[C

P
U

 s
ec

]

3.26 3.76 4.26 4.76 5.26
−1

−0.5

0

0.5

1

p
(c

,v
)

3.26 3.76 4.26 4.76 5.26

Clauses to variables ratio

m
ar

ch
_h

i m
ea

n
 r

u
n

ti
m

e
[C

P
U

 s
ec

]

10–2

100

102

review articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 101

these probes (for example, number
of steps before reaching a local mini-
mum in local search or amount of unit
propagation performed in tree search).

Model Performance
Let us now investigate the models we
can build using these techniques for
uniform-random 3-SAT. We consider
two sets of instances: one in which
the c/v ratio varies around the phase
transition point, and another in which
it is fixed at c/v = 4.26. The first set of
instances is less challenging, as we al-
ready know the c/v ratio suffices to ex-
plain much of the runtime variation.
However, this set is still useful as a san-
ity check to ensure our methods dis-
cover the importance of the c/v feature,
and to investigate what additional fea-
tures turn out to be useful. The second
set contains fixed-size instances in the
hard c/v = 4.26 region: any patterns we
can find here are interesting since we
cannot distinguish instances based on
their c/v ratio. In both cases (as with all
other empirical results we have shown)
we randomly partitioned our data into
a “training set” we used to build the
EHM and a disjoint “test set” we used
solely to evaluate the performance of
the EHM, thereby assessing the accu-
racy of a model’s predictions beyond
the data used for constructing it.

Figure 2 shows the results of our in-
vestigation, giving true versus predict-
ed march _ hi runtimes, with every
point in the figure corresponding to a
different test-set problem instance.
Overall, the points cluster around the

diagonal in both plots, meaning the
predictions are reasonably accurate.
(Indeed, these results are better than
they appear to the eye, as a greater
density of points falls closer to the di-
agonal.) Observe that prediction ac-
curacy was considerably better for
unsatisfiable instances than for satis-
fiable instances. Root mean squared
error (RMSE) is a numerical measure
of a model’s accuracy; the two models
achieved RMSEs of 0.31 and 0.56, re-
spectively. A model that consistently
mispredicted runtimes by a factor of 10
would have achieved an RMSE of 1.0.

We used the variable ratio instance
set to verify that the model recognizes
the importance of the c/v feature; sim-
ilarly, we would like to identify other
informative features. We cannot do
this simply by examining a scatter-
plot, nor by looking at the coefficients
of the model itself: because many of
our features are strongly correlated,
important features can have small co-
efficients and unimportant features
can have big coefficients. Instead, we
identify new models that use only a
small number of uncorrelated fea-
tures by applying the same forward se-
lection method described previously,
but terminating much earlier, when
the benefit from adding new features
begins to taper off. Then (following
Friedman10) we quantify the impor-
tance of each feature in these new
models by measuring the loss in RMSE
incurred by omitting it, and scaling
these values to give the most impor-
tant feature receives a score of 100.

Table 1 demonstrates that the model
indeed identified c/v (and the variant
|c/v − 4.26|) as an important feature;
recall that our quadratic regression
has access to all pairwise products of
features. Other features were also im-
portant, in particular, SAPS _ Best-
Solution _ Mean, the average num-
ber of satisfied clauses achieved by
short runs of the local search proce-
dure SAPS.20 This is interesting, as one
might not have expected the perfor-
mance of a local search algorithm to
be informative about the performance
of a tree search algorithm.

For the fixed-ratio data, c/v was
constant, and we therefore see a dif-
ferent picture among important fea-
tures (Table 2). Again, local search
probing features figured prominently
(GSAT _ BestSolution _ Mean gives
the average number of satisfied claus-
es achieved by short runs of GSAT36).
Another important feature was
CG _ entropy. It gives the entropy
across node degrees in the “constraint
graph” in which nodes correspond to
clauses and edges indicate that a pair

Figure 2. Actual vs. predicted runtimes for march_hi on uniform-random 3-SAT. Each dot represents a test instance not used to train the
model; perfect predictions would fall along the diagonal. Left: c/v ∈ [3.26, 5.26]; Right: c/v = 4.26.

10–2

100

102

10–2

100

102

Actual runtime [CPU sec]

P
re

d
ic

te
d

 r
u

n
ti

m
e

[C
P

U
 s

ec
]

Satisfiable

Unsatisfiable

10–2 100 102

Actual runtime [CPU sec]

P
re

d
ic

te
d

 r
u

n
ti

m
e

[C
P

U
 s

ec
]

Satisfiable

Unsatisfiable

10–2 100 102

Table 1. Feature importance, c/v ∈ [3.26,
5.26].

Feature Score

c⁄v – 4:26 × SAPS_BestSolution_Mean 100

c⁄v × SAPS_BestSolution_Mean 19

GSAT_BestSolution_CoeffVar
× SAPS_BestStep_CoeffVar

19

SAPS_BestStep_CoeffVar × CG_entropy 18

review articles

102 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

ratio instance sets. Clearly, hierarchi-
cal hardness models can only outper-
form regular EHMs if our classifier is
able to accurately predict satisfiabil-
ity status. In the variable-ratio case,
a natural baseline is a classifier that
predicts satisfiability for instances
with c/v < 4.26, and unsatisfiability
otherwise. This classifier achieved an
accuracy of 96%, underlining the pre-
dictive power of the c/v feature. Our
classifier further increased this ac-
curacy to 98% (halving the error rate).
Unlike the baseline, our classifier also
applies in the fixed-ratio case, where it
achieved accuracy of 86%.

We found this result surprising
enough that we investigated it in more
depth.39 We considered instances of
varying size, from 100 variables (solv-
able in milliseconds) to 600 variables
(solvable in a day; about the largest in-
stances we could solve practically). We
focused on instances generated at the
phase transition point, because they
pose the hardest prediction problem:
the probability of generating satisfi-
able instances at this point is 50%, and
in practice, our data sets were indeed
very evenly balanced between satis-
fiable and unsatisfiable instances.
Our aims were to investigate whether
prediction accuracy appeared to fall
to that of random guessing on larger
problems, and if not, to give an eas-
ily comprehensible model that could
serve as a starting point for theoreti-
cal analysis. In doing so we restricted
our models in three ways that each re-
duced predictive accuracy, but allowed

of clauses share one or more variables
of opposite sign. We have repeated this
analysis for other SAT solvers (for ex-
ample, kcnfs and satz) and obtained
the same qualitative results: runtime is
predictable with high accuracy, small
models suffice for good performance,
and local-search and constraint-graph
features are important.33

We have already observed that sat-
isfiable and unsatisfiable instances
exhibit very different distributions of
algorithm runtimes. We thus consid-
ered the problem of building EHMs
only for satisfiable or for unsatisfi-
able instances. (We call these “con-
ditional models” as they depend on
knowing the satisfiability of a given
instance.) We found that conditional
EHMs were more accurate than un-
conditional EHMs; more interesting-
ly, single-feature conditional models
turned out to be sufficient for pre-
dicting runtime with high accuracy.
For satisfiable instances, this feature
was GSAT _ BestSolution _ Mean,
whereas for unsatisfiable instances,
it was Knuth _ Mean. We can explain
these findings as follows. Since local

search algorithms apply heuristics to
find a solution as quickly as possible,
the reliability with which such an al-
gorithm is able to make quick prog-
ress is informative about the speed
at which a complete algorithm will
be able to find a solution. Tree search
algorithms must rule out every node
in the tree to prove unsatisfiability;
thus, an estimate of this tree size is
the most important feature in the un-
satisfiable case.

Predicting Satisfiability Status
These observations led us to a new
idea: building a classifier that directly
predicts satisfiability status, and then
leveraging conditional EHMs based
on this prediction. There are two rea-
sons to be skeptical about this ap-
proach. First, conditional EHMs can
make very inaccurate predictions on
instances with the “wrong” satisfi-
ability status, so it is not clear that
we would obtain improved accuracy
overall. Second, and more fundamen-
tally, it may seem doubtful that we
could accurately predict satisfiabil-
ity status—that would correspond to
guessing whether an instance is solv-
able without actually solving it! De-
spite this reservation, and applying
sophisticated statistical techniques to
mitigate the potential cost of mispre-
dictions (see Xu et al.38), we did build
hierarchical hardness models for uni-
form random 3-SAT instances. These
models achieved (relatively modest)
improvements in predictive accuracy
on both the fixed-ratio and variable-

Figure 3. Left: Classification accuracies for our simple decision tree on uniform-random 3-SAT instances at the phase transition with
varying numbers of variables. The tree was trained only on 100-variable data. Right: The decision tree. Predictive accuracies for instances
falling into the three regions were between 60% and 70% (region A); about 50% (region B); and between 70% and 80% (region C).

100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

Instance size

C
la

ss
ifi

ca
ti

on
 a

cc
u

ra
cy

LPSLACK_coeff_variation
>=0.00466585

SAT [A]

SAT [B] UNSAT [C]

Yes No

Yes No

POSNEG_ratio_var_mean
>= 0.164963

Table 2. Feature importance, c/v = 4.26.

Feature Score

GSAT_BestSolution_Mean2 100

GSAT_BestSolution_Mean 88

SAPS_BestSolution_CoeffVar
 × SAPS_AvgImprove_Mean

33

SAPS_BestStep_CoeffVar × CG_Entropy 22

review articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 103

us to better answer these questions.
First, we permitted ourselves to train
our classifier only on the 100-variable
instances. Second, we considered only
decision trees7 having at most two de-
cision nodes. (We obtained these mod-
els by a standard decision tree learning
procedure: greedily choosing a feature
that best partitioned the training data
into satisfiable and unsatisfiable in-
stances, and recursively splitting the
resulting partitions.) Finally, we omit-
ted all probing features. Although
probing (for example, local-search) fea-
tures were very useful for prediction,
they were disproportionately effective
on small instances and hence would
have complicated our study of scaling
behavior. Also, because we aimed to ob-
tain easily comprehensible models, we
were disinclined to use features based
on complex, heuristic algorithms.

Given all of these restrictions, we
were astonished to observe predictive
accuracies consistently above 65%, and
apparently independent of problem
size (see Figure 3, left; statistical testing
showed no evidence that accuracy falls
with problem size). Indeed, our first
two restrictions appear to have come
at low cost, decreasing accuracies by
only about 5%. (Furthermore, after lift-
ing these restrictions, we still found no
evidence that accuracy was affected by
problem size.) Hence, the reader may
be interested in understanding our
two-feature model in more detail; we
hope it will serve as a starting point for
new theoretical analysis of finite-size
SAT instances at the phase transition.
The model is given in Figure 3 (Right).
LPSLACK _ coeff _ variation is
based on solving a linear program-
ming relaxation of an integer program
representation of SAT instances. For
each variable i with LP solution value Si
∈ [0, 1], LPSLACKi is defined as min{1
− Si, Si}: the deviation of Si from inte-
grality. LPSLACK _ coeff _ varia-
tion is then the coefficient of variation
(the standard deviation divided by the
mean) of the vector LPSLACK. The ith
element of the vector POSNEG _ ra-
tio _ var _ mean is the average ratio
of positive and negative occurrences of
each variable. For each variable i with
Pi positive occurrences and Ni negative
occurrences, POSNEG _ ratio _ vari
is defined as |0.5 − Pi / (Pi + Ni)|. POS-
NEG _ ratio _ var _ mean is then

the average over elements of the vector
POSNEG _ ratio _ var. Finally, re-
call that our model was trained on con-
stant-size instances; we normalized
the LPSLACK _ coeff _ variation
and POSNEG _ ratio _ var _ mean
features to have mean 0 and standard
deviation 1 on this training set. To eval-
uate the model on a given instance of
a different size, we randomly sampled
many new instances of that size to com-
pute new normalization factors, which
we then applied to the given instance.

Beyond Uniform-Random 3-SAT
Our original motivation involved
studying real problems faced by a
practitioner, problems that are very
unlikely to have uniform random
structure. Thus, it is important to
demonstrate that EHMs work reliably
for a wide range of more realistic in-
stance distributions, and that they are
not limited to SAT. In short, they do,
and they are not. By now, we have built
EHMs for four different NP-complete
problems: SAT14,16,21,33,38,40 the combina-
torial auction winner determination
problem (WDP),28,29 mixed integer pro-
gramming (MIP, a standard encoding
for problems with both discrete and

continuous variables),14,19,21 and the
traveling salesman problem (TSP).21
Observe that we have considered both
optimization and decision problems,
and that these problems involve dis-
crete variables, continuous variables,
and combinations of the two. For each
problem, we derived a new set of in-
stance features. This was not trivial,
but not terribly difficult either; in all
cases we used problem size measures,
syntactic properties, and probing fea-
tures. Extending what we know now to
a new domain would probably entail a
few days of work. In our publications
and other technical work (for example,
submissions to SAT competitions) we
have considered more than 30 instance
distributions. These include sophisti-
cated random generators (for example,
SAT reductions from graph coloring
and factoring; combinatorial auction
benchmarks based on economic mod-
els); instance sets from public bench-
marks and competitions (for example,
MIPLIB; the SAT competition); and
sets of instances derived from practi-
cal applications (for example, SAT-en-
coded instances from software verifi-
cation and bounded model checking;
industrial MIP instances ranging from

There currently exists no “best” SAT solver; different solvers perform well on different
families of instances, and performance differences between them are typically very
large. The effectiveness of EHMs suggests a straightforward solution to the algorithm
selection problem:35 given a new problem instance, predict the runtime of several SAT
solvers, and then run the one predicted to be fastest. This approach27 forms the core of
SATzilla32,33,40 a portfolio-based algorithm selector for SAT.

SATzilla first participated in the 2003 SAT Competition (http://www.
satcompetition.org), and placed second and third in several categories. We have since
extensively improved the approach, allowing randomized and local search algorithms
as component solvers; introducing the idea of presolvers that are run for a short, fixed
time before the selected solver; adding the ability to optimize for complex scoring
functions; and automating the construction of the selector (for example, pre-solver
selection; component solver selection) given data. Leveraging these improvements,
and benefiting from the continued improvement of the component solvers upon which
it draws, SATzilla led the field in the 2007 and 2009 SAT Competitions, winning five
medals each time.

More recently, our design of SATzilla evolved from selection based on runtime
predictions (EHMs) to a cost-sensitive classification approach that directly selects the
best-performing solver without predicting runtime.41 In the 2012 SAT Challenge (http://
baldur.iti.kit.edu/SAT-Challenge-2012), SATzilla was eligible to enter four categories;
it placed first in three of these and second in the fourth. Overall, SATzilla’s success
demonstrates the effectiveness of automated, statistical methods for combining
existing solvers—including “uncompetitive” solvers with poor average performance.
Except for the instance features used by our models, our approach is entirely general,
and is likely to work well for other problems with high runtime variation. All of our
software is publicly available; see http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

Application 1. Algorithm
Selection (SATzilla)

review articles

104 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

we now prefer random forests of regres-
sion trees,6 particularly when the in-
stance distribution is heterogeneous.
We briefly describe this model class
for completeness, but refer readers to
the literature for details.6,7 Regression
trees are very similar to decision trees
(which we used here for predicting sat-
isfiability status). However, as a classi-
fication method, decision trees asso-
ciate categorical labels with each leaf
(for example, “satisfiable,” “unsatisfi-
able”), while regression trees associate
a real-valued prediction with each leaf.
Random forests report an average over
the predictions made by each of an en-
semble of regression trees; these trees
are made to differ by randomizing the
training process.

Figure 4 illustrates the results of
our broader experience with EHMs by
highlighting three different solvers,
each from a different domain. In each
case we give plots for both quadratic
ridge regression and random forests
to show the impact of the learning al-
gorithm. First (column 1), we consid-
ered the prominent SAT solver, Minisat
2.09, running on a very heterogeneous
mix of instances from the interna-
tional SAT competition. Whereas the
competition subdivides instances into
categories (“industrial/application,”
“handmade/crafted,” and “random”),
we merged all instances together.
Likely because of the heterogeneity of
the resulting set, quadratic regression
performed relatively poorly here. Ran-
dom forests yielded much more reli-
able estimates; notably, they can parti-
tion the feature space into qualitatively
different parts, and they never predict
runtimes larger or smaller than the
extrema observed in the training data.
However, observe that even the less
accurate quadratic regression models
were usually accurate enough to differ-
entiate between fast and slow runs in
this domain; see the sidebar on SATzil-
la. Second (column 2), we studied the
performance of the leading complete
TSP solver, Concorde,2 on a widely used
suite of rather homogeneous, random-
ly generated TSP instances.23 We again
see good performance, now for both
quadratic regression and random for-
ests. Third (columns 3 and 4), to show
the effect of changing only the instance
distribution, we consider one solver on
two different distributions. IBM ILOG

machine job allocation to wildlife con-
servation planning; TSP instances rep-
resenting drilling circuit boards and
traveling between real cities). We have
also studied more than 50 state-of-the-
art solvers, both open source projects
and proprietary tools developed by
industry. Our solvers were both deter-
ministic and randomized, and both
complete (that is, guaranteed to find a
solution if one exists) and incomplete.
In many cases, we only had access to an
executable of the solver, and in no case

did we make use of knowledge about a
solver’s inner workings. As mentioned
earlier, we have also gone beyond qua-
dratic basis function regression to
study more than a dozen other statis-
tical modeling techniques, including
lasso regression, multivariate adap-
tive regression splines, support vector
machine regression, neural networks,
Gaussian processes, regression trees
and random forests (see Leyton-Brown
et al.29 and Hutter et al.21). We omit the
details here, but state the conclusion:

Imagine that each time the designer of a heuristic algorithm faced a choice about a
given design element, she simply encoded it as a free parameter of a single solver. In the
end, her problem of designing a good algorithm for a given problem domain would be
reduced to the stochastic optimization problem of finding a configuration that achieved
good performance.12,14,24

We have applied automated methods for solving this problem to identify novel
algorithm configurations that have yielded orders of magnitude speedups in a broad
range of domains, including SAT-based formal verification,15 MIP solving,17 and
automated planning.37 One state-of-the-art method for solving this problem is based on
EHMs: sequential model-based algorithm configuration (SMAC)19 iterates between using
an EHM to select promising configurations to explore next, executing the algorithm
with these configurations, and updating the model with the resulting information.
SMAC is freely available; please see http://aclib.net/SMAC. EHMs can also be used to
select configurations on a per-instance basis.16

Application 3. Algorithm
Configuration

Realistic, hard benchmark distributions are important because they are used as an
objective measure of success in algorithm development. However, it can sometimes be
just as difficult to find new, hard benchmarks as it is to find new strategies for solving
previously hard benchmarks. To fill this gap, EHMs can be used to automatically adjust
existing instance generators so they produce instances that are harder for a given set of
algorithms.26,29

We start with an instance generator that has parameters p. Such generators are
often simply used with default parameter settings; however, to search for harder
instances we instead sample each parameter’s value uniformly from a fixed range.
Call the resulting distribution over instances D. Our goal is to sample from a new
distribution D′ over the same instances that weights instances by their hardness for a
given algorithm A. (Think of A as having the best average runtime among all algorithms
in a given set, or as being a SATzilla-style selector among such algorithms.) We can
do this via a form of importance sampling. We construct an EHM for A on D using
our standard instance features f; for an instance x, call this model’s prediction Hf (x).
We would like to generate a large set of instances from D, weight each instance x in
proportion to Hf (x), and then sample a single instance from the set in proportion to
the weights. This approach works, but requires a very large number of samples when
hard instances are rare in D. To improve performance, we learn a quadratic EHM Hp
that uses only the generator parameters p as features. We can then sample instances x
in proportion to D(x) ∙ Hp (x) rather than sampling from D (by sampling directly from
polynomial function Hp, and then running the instance generator with the resulting
parameters), and then weight each sampled instance x by Hf (x) / Hp (x). Hp thus guides
our search towards harder instances without biasing the weights. In experiments with
the Combinatorial Auction Test Suite30 this approach increased the mean hardness
of generated instances by up to a factor of 100,26,29 and often created instances much
harder than we had ever observed using the generators’ default parameters.

Application 2. Generating
Hard Benchmarks

review articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 105

CPLEX22 is the most widely used com-
mercial MIP solver. BIGMIX is a highly
heterogenous mix of publicly available
mixed integer programming prob-
lems. As with the mix of SAT instances
in our first benchmark, linear regres-
sion struggled with predictions for
some types of instances and occasion-
ally made catastrophic mispredictions.
Again, random forests performed
much more robustly. RCW models the
dispersal and territory establishment
of the redcockaded woodpecker con-
ditional on decisions about which par-
cels of land to protect.1 The runtime of
CPLEX for this domain was surprising-
ly predictable; random forests yielded
among the best EHM performance we
have ever observed.

Beyond Single Algorithms
Unlike average-case complexity re-
sults that characterize the inherent
complexity of a computational prob-
lem, EHMs always describe the perfor-
mance of a given algorithm. In some
sense this is an inherent limitation: a
statistical approach cannot summarize
the performance of algorithms that
have not yet been invented. However,
there is a useful way in which we can
relax the single-algorithm restriction:

we can build a model that describes a
space of existing algorithms.

More specifically, most state-of-the-
art algorithms for hard combinatorial
problems offer a range of algorithm
parameters in order to enable users
to customize or tune the algorithm’s
behavior. We define “parameters” very
broadly, as encompassing any argu-
ment passed to a solver that changes
its behavior (and, thus, its runtime)
but not the nature of the solution it re-
turns. Parameters can thus be contin-
uous, categorical, ordinal, or Boolean,
and can even be conditional on val-
ues taken by other parameters. More
importantly, categorical and Boolean
parameters can be used to represent
very abstract decisions—effectively
selecting among unrelated blocks of
code—and can thereby open up vast
algorithm design spaces. For example,
IBM ILOG CPLEX exposes 76 param-
eters (45 categorical, six Boolean, 18
integer, and seven real-valued);17 a
fairly coarse discretization of these pa-
rameters yields over 1047 different al-
gorithm instantiations with vastly dif-
ferent performance profiles. We call
such an instantiation of all parameters
of a given algorithm to specific values
a configuration. The second example

of a parameterized solver we use here
is the SAT solver SPEAR,4 which ex-
poses 26 parameters (seven categori-
cal, three Boolean, four integer, and 12
real-valued), giving rise to over 1017 dif-
ferent algorithm instantiations.

We now consider generalizing
EHMs to describe such parameterized
algorithms. In principle, this is not
much of a change: we consider mod-
els that map from a joint space of con-
figurations and instance features to
runtime predictions. The question is
how well such an approach can work.
Before we can give an answer, we need
to decide how to evaluate our meth-
ods. We could test on the same con-
figurations that we used to train the
EHM but on new problem instances,
on new configurations but on previ-
ously seen instances, or on combina-
tions of previously unseen configura-
tions and instances.

The third case is the hardest; it is
the only setting for which we show re-
sults here. Figure 5 illustrates some
representative results in this setting,
focusing on random forest models.
The first row shows scatterplots like
those presented earlier, with each
point representing a run of a ran-
domly selected, previously unseen

Figure 4. Visual comparison of models for runtime predictions on unseen instances. In each plot, the x-axis denotes true runtime and the
y-axis runtime as predicted by the respective model. Predictions above 3,000 or below 0.001 are denoted by a blue x.

10–2

10–2 10–1 100 101 102 103

10–1

100

101

102

103

Minisat 2.0-COMPETITON

R
id

g
e

re
g

re
ss

io
n

R
an

d
om

 F
or

es
t

RMSE=0.95

Concorde-RUE

RMSE=0.41

CPLEX-BIGMIX

RMSE=1.1

CPLEX-RCW

RMSE=0.20

RMSE=0.55 RMSE=0.45 RMSE=0.72 RMSE=0.03

10–2

10–2 10–1 100 101 102 103

10–1

100

101

102

103

10–2

10–2 10–1 100 101 102 103 101 102 103

10–1

100

101

102

103

103

102

101

10–2

10–2 10–1 100 101 102 103

10–1

100

101

102

103

10–2

10–2 10–1 100 101 102 103

10–1

100

101

102

103

10–2

10–2 10–1 100 101 102 103 101 102 103

10–1

100

101

102

103

103

102

101

review articles

106 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

than the different CPLEX configura-
tions differ in performance (see Row
2). As a result, instance hardness
dominated runtimes and the model
focused on the (more important) fea-
ture space, at the expense of failing to
capture some of the performance dif-
ference between configurations. Sec-
ond, on RCW most of the (randomly
sampled) CPLEX configurations
solved very few instances; we record-
ed such failures as very long run-
times. The model was nevertheless
able to identify which configurations
were good and which instances were
easy. Finally, we consider predicting
the runtime of SPEAR on two sets of
formal verification instances: IBM
is a set of bounded model checking
instances,42 while SWV is a set of soft-
ware verification instances generated

configuration on a previously unseen
instance. We also provide a different
way of looking at the joint space of pa-
rameter configurations and instance
feature vectors. The second row shows
the true runtimes for each (configura-
tion, instance) pair, sorting configu-
rations by their average performance
and sorting instances by their aver-
age hardness. Thus, the picture gives
a snapshot of the runtime variation
across both instances and configura-
tions, and makes it possible to gauge
how much of this variation is due only
to differences between configurations
versus differences between instances.
Finally, the third row shows the pre-
dictions obtained from the EHM in
the same format as the second row.
This gives a way of visually comparing
model performance to ground truth;

ideally, the second and third rows
would look identical. (Indeed, when
the two figures closely resemble each
other, the EHM can serve as a surro-
gate for the original algorithm, mean-
ing that the EHM can be substituted
for the algorithm in an empirical anal-
ysis of the algorithm’s performance;
see Hutter et al.18)

The main takeaway from our ex-
periments is that our models were
able to achieve high accuracies (RM-
SEs around 0.5; qualitative similarity
between the second and third rows)
even on algorithm configurations that
were never examined during training.
The first column of Figure 5 concerns
runtime predictions for CPLEX on our
heterogeneous mix of MIP instances.
The instances in this benchmark dif-
fer greatly in hardness, much more

Figure 5. Visual comparison of models for runtime predictions on pairs of previously unseen test configurations and instances.

Row 1: In each plot, the x-axis denotes true runtime and the y-axis denotes runtime as predicted
by the respective model. Each dot represents one combination of an instance and parameter
configuration, both previously unseen during model training.

Rows 2 and 3: Actual and predicted runtimes for each application domain. Each dot in the heat map
represents the run of one parameter configuration on one instance; the grayscale value represents
runtime on a log10 scale (darker means faster).

10–2

10–2 10–1 100 101 102 103

10–1

100

101

102

103

10–2

10–2 10–1 100 101 102

10–1

100

101

102

103

10–2

10–2 10–1 100 101 102

10–1

100

101

102

103

10–2

10–2 10–1 100 101 102

10–1

100

101

102

103

T
ru

e
vs

. P
re

d
 R

u
n

ti
m

es

CPLEX-BIGMIX

RMSE = 0.54

CPLEX-RCW

RMSE = 0.49

SPEAR-IBM

RMSE=0.42

SPEAR-SWV

RMSE=0.45

co
n

fi
g

u
ra

ti
on

s

instances

easy hard

good

bad

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad−2
−1.5
−1
−0.5
0
0.5
1
1.5
2

−2
−1.5
−1
−0.5
0
0.5
1
1.5
2

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad −2
−1.5
−1
−0.5
0
0.5
1
1.5
2

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad −2
−1.5
−1
−0.5
0
0.5
1
1.5
2

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad −2
−1.5
−1
−0.5
0
0.5
1
1.5
2

2

1.5

1

0.5

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad

2

1.5

1

0.5

co
n

fi
g

u
ra

ti
on

s

instanceseasy hard

good

bad −2
−1.5
−1
−0.5
0
0.5
1
1.5
2

review articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 107

with the Calysto static checker.3 For
both of these instance distributions,
the runtime of SPEAR with different
configurations was predicted with a
high degree of accuracy. Our random
forest models accurately predicted
the empirical hardness of instances,
the empirical performance of config-
urations, and even captured ways in
which the two interact.

Take-Away Messages
Statistical methods can character-
ize the difficulty of solving instances
from a given distribution using the
best available algorithms—even
when those algorithms are extremely
complex and traditional theoretical
analysis is infeasible. Such EHMs
are surprisingly effective in practice,
across different hard combinatorial
problems, real-world instance dis-
tributions, and state-of-the art solv-
ers. An analysis of these models can
serve as a starting point for new theo-
retical investigations into complexity
beyond the worst case, by identifying
problem features that are predictive
of hardness or that suffice to predict
an objective function (for example,
satisfiability status) directly. In the
context of highly parameterized al-
gorithms that span a large space of
possible algorithm designs, we have
found that it is even possible to pre-
dict the runtime of previously untest-
ed algorithm designs on previously
unseen instances. EHMs have proven
useful in a variety of practical applica-
tions, including the automatic design
of algorithm portfolios, the automat-
ic synthesis of hard benchmark dis-
tributions, and the automatic search
for a performance-optimizing design
in a large algorithm design space.
We have written open source software
for building EHMs, analyzing them,
constructing algorithm portfolios,
automatically configuring parameter-
ized algorithms, and more: see http://
www.cs.ubc.ca/labs/beta/Projects/EPMs/.

Acknowledgments
Some work described in this article
was performed with additional coau-
thors: Eugene Nudelman and Yoav
Shoham made particularly sustained
contributions, and Galen Andrew,
Alex Devkar, and Jim McFadden also
deserve mention.

References
1. Ahmadizadeh, K., Dilkina, B., Gomes, C.P. and

Sabharwal, A. An empirical study of optimization for
maximizing diffusion in networks. In Proceedings for
Principles and Practice of Constraint Programming
(2010), 514–521.

2. Applegate, D.L. Bixby, R.E., Chvátal, V. and Cook, W.J.
The Traveling Salesman Problem: A Computational
Study. Princeton University Press, 2006.

3. Babić, D. and Hu, A.J. Structural abstraction of
software verification conditions. In Proceedings for
Computer Aided Verification (2007), 366–378.

4. Babić, D. and Hutter, F. Spear theorem prover. Solver
description. SAT 2007 Competition.

5. Bishop, C.M. Pattern Recognition and Machine
Learning. Springer, 2006.

6. Breiman, L. Random forests. Machine Learning 45, 1
(2001), 5–32.

7. Breiman, L., Friedman, J.H., Olshen, R. and Stone,
C.J. Classification and Regression Trees. Wadsworth,
Belmont, CA, 1984.

8. Cheeseman, P., Kanefsky, B. and Taylor, W.M. Where
the really hard problems are. In Proceedings
for International Joint Conference on Artificial
Intelligence (1991), 331–337.

9. Eén, N. and Sörensson, N. An extensible SAT-solver.
Theory and Applications of Satisfiability Testing
(2004), 502–518.

10. Friedman, J. Multivariate adaptive regression splines.
Annals of Statistics 19, 1 (1991), 1–141.

11. Heule, M. and Maaren, M.v. march_hi. Solver
description, SAT 2009 competition.

12. Hoos, H.H. Programming by optimization. Commun.
ACM 55, 2 (Feb. 2012), 70–80.

13. Hopcroft, J.E., Motwani, R. and Ullman, J.D.
Introduction to Automata Theory, Languages, and
Computation. Pearson Education, 2007.

14. Hutter, F. Automated Configuration of Algorithms
for Solving Hard Computational Problems.
Ph.D. thesis, University Of British Columbia,
Department of Computer Science, Vancouver,
Canada (Oct. 2009).

15. Hutter, F., Babić, D., Hoos, H.H. and Hu, A.J. Boosting
verification by automatic tuning of decision
procedures. In Proceedings for Conference on Formal
Methods in Computer-Aided Design (2007), 27–34.

16. Hutter, F., Hamadi, Y., Hoos, H.H., and Leyton-Brown,
K. Performance prediction and automated tuning
of randomized and parametric algorithms. In
Proceedings for Principles and Practice of Constraint
Programming (2006), 213–228.

17. Hutter, F, Hoos, H.H. and Leyton-Brown, K. Automated
configuration of mixed integer programming solvers. In
Proceedings for Integration of AI and OR Techniques
in Constraint Programming for Combinatorial
Optimization Problems (2010), 186–202.

18. Hutter, F, Hoos, H.H. and Leyton-Brown, K. Trade-offs
in the empirical evaluation of competing algorithm
designs. Annals of Mathematics and Artificial
Intelligence 60, (2010), 65–89.

19. Hutter, F, Hoos, H.H. and Leyton-Brown, K. Sequential
model-based optimization for general algorithm
configuration. In Proceedings for Learning and
Intelligent Optimization Conference (2011), 507–523.

20. Hutter, F, Tompkins, D.A.D. and Hoos, H.H. Scaling and
probabilistic smoothing: Efficient dynamic local search
for SAT. In Proceedings for Principles and Practice of
Constraint Programming (2002), 233–248.

21. Hutter, F., Xu, L., Hoos, H.H. and Leyton-Brown, K.
Algorithm runtime prediction: Methods and evaluation.
Artificial Intelligence J. 206 (Jan. 2014), 77–111).

22. IBM. CPLEX Optimizer, 2014. http://www-01.ibm.
com/software/commerce/optimization/cplex-
optimizer/.

23. Johnson, D.S. Random TSP generators for the
DIMACS TSP Challenge, 2011; http://dimacs.rutgers.
edu/Challenges/TSP/.

24. KhudaBukhsh, A., Xu, L., Hoos, H.H. and Leyton-Brown,
K. SATenstein: Automatically building local search
SAT sol vers from components. In Proceedings
for International Joint Conference on Artificial
Intelligence (2009), 517–524.

25. Knuth, D. Estimating the efficiency of backtrack
programs. Mathematics of Computation 29, 129
(1975), 121–136.

26. Leyton-Brown, K., Nudelman, E., Andrew, G.,
McFadden, J. and Shoham. Boosting as a metaphor
for algorithm design. In Proceedings for Principles and
Practice of Constraint Programming (2003), 899–903.

27. Leyton-Brown, K., Nudelman, E., Andrew, G.,
McFadden, J. and Shoham, Y. A portfolio approach to

algorithm selection. In Proceedings for International
Joint Conference on Artificial Intelligence (2003),
1542–1543.

28. Leyton-Brown, K., Nudelman, E. and Shoham, Y.
Learning the empirical hardness of optimization
problems: The case of combinatorial auctions. In
Proceedings for Principles and Practice of Constraint
Programming (2002), 556–572.

29. Leyton-Brown, K., Nudelman, E. and Shoham, Y.
Empirical hardness models: Methodology and a case
study on combinatorial auctions. Journal of the ACM
56, 4 (2009), 1–52.

30. Leyton-Brown, K., Pearson, M. and Shoham, Y.
Towards a universal test suite for combinatorial
auction algorithms. In Proceedings for ACM
Conference on Electronic Commerce (2000), 66–76.

31. Mitchell, D., Selman, B. and Levesque, H. Hard and
easy distributions of SAT problems. In Proceedings for
Conference on Artificial Intelligence (1992), 459–465.

32. Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes,
C., McFadden, J., Selman, B. and Shoham, Y. Satzilla
0.9. Solver description. SAT Competition, 2003.

33. Nudelman, E. Leyton-Brown, K., Hoos, H.H., Devkar, A.
and Shoham, Y. Understanding random SAT: Beyond
the clauses-to-variables ratio. In Proceedings for
Principles and Practice of Constraint Programming
(2004), 438–452.

34. Prasad, M.R., Biere, A. and Gupta, A. A survey of
recent advances in SAT-based formal verification.
International Journal on Software Tools for
Technology Transfer 7, 2 (2005), 156–173.

35. Rice, J.R. The algorithm selection problem. Advances
in Computers 15 (1976), 65–118.

36. Selman, B., Levesque, H.J. and Mitchell, D. A new
method for solving hard satisfiability problems. In
Proceedings for Conference on Artificial Intelligence
(1992), 440–446.

37. Vallati, M., Fawcett, C., Gerevini, A.E., Hoos, H.H. and
Saetti, A. Generating fast domain-optimized planners
by automatically configuring a generic parameterised
planner. In Proceedings for Automated Planning and
Scheduling Workshop on Planning and Learning (2011),
21–27.

38. Xu, L., Hoos, H.H. and Leyton-Brown, K. Hierarchical
hardness models for SAT. In Proceedings for
Principles and Practice of Constraint Programming
(2007), 696–711.

39. Xu, L., Hoos, H.H. and Leyton-Brown, K. Predicting
satisfiability at the phase transition. In Proceedings for
Conference on Artificial Intelligence (2012), 584–590.

40. Xu, L., Hutter, F., Hoos, H.H. and Leyton-Brown, K.
SATzilla: Portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research 32 (June
2008), 565–606.

41. Xu, L., Hutter, F., Hoos, H.H. and Leyton-Brown,
K. Evaluating component solver contributions to
portfolio-based algorithm selectors. In Proceedings
for Theory and Applications of Satisfiability Testing
(2012, 228–241.

42. Zarpas, E. Benchmarking SAT solvers for bounded
model checking. In Proceedings for Theory and
Applications of Satisfiability Testing (2005), 340–354.

Kevin Leyton-Brown (kevinlb@cs.ubc.ca) is an associate
professor in the Department of Computer Science at the
University of British Columbia, Canada.

Holger H. Hoos (hoos@cs.ubc.ca) is a professor in the
Department of Computer Science at the University of
British Columbia, Canada.

Frank Hutter is (fh@cs.uni-freiburg.de) Emmy Noether
Research Group Lead, Department of Computer Science,
at the University of Freiburg, Germany.

Lin Xu (xulin730@cs.ubc.ca) is a Ph.D. student in the
Department of Computer Science at the University of
British Columbia, Canada.

Copyright held by Owner/Author(s). Publication rights
licensed to ACM. $15.00.

