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P ROBLEMS ARE INTRACTABLE when they “can be solved, 
but not fast enough for the solution to be usable.”13 
NP-complete problems are commonly said to be 
intractable; however, the reality is more complex. All 
known algorithms for solving NP-complete problems 
require exponential time in the worst case; however, 
these algorithms nevertheless solve many problems 
of practical importance astoundingly quickly, and are 
hence relied upon in a broad range of applications. 
The propositional satisfiability problem (SAT) 
serves as a good example. One of the most popular 
approaches for the formal verification of hardware and 
software relies on general-purpose SAT solvers and 
SAT encodings, typically with hundreds of thousands 
of variables. These instances can often be solved in 

seconds, even though the same solvers 
can be stymied by handcrafted instanc-
es involving only hundreds of variables.

Clearly, we could benefit from a 
more nuanced understanding of al-
gorithm behavior than is offered by 
asymptotic, worst-case analysis. Our 
work asks the question most relevant 
to an end user: “How hard is it to solve 
a given family of problem instances, us-
ing the best available methods?” For-
mal, complexity-theoretic analysis 
of this question seems hopeless: the 
best available algorithms are highly 
complex (and, in some cases, only 
available in compiled form), and in-
stance distributions representative of 
practical applications are heteroge-
neous and richly structured. For this 
reason, we turn to statistical, rather 
than combinatorial, analysis.

The main claim of this article is that 
rigorous statistical methods can char-
acterize algorithm runtime with high 
levels of confidence. More specifical-
ly, this article surveys over a decade of 
research showing how to build empiri-
cal hardness models (EHMs) that, given 
a new problem instance, estimate the 
runtime of an algorithm in low-order 
polynomial time.14,16,18,21,26–29,32,33,39,40 
We have shown that it is possible to 
build quite accurate models for differ-
ent NP-complete problems (we have 
studied SAT, combinatorial auction 
winner determination, mixed integer 
programming, and the traveling sales-
man problem), distributions of prob-
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lem instances (we have considered 
dozens), and solvers (again, dozens). 
We have robustly found that even very 
succinct EHMs can achieve high accu-
racies, meaning they describe simple 
relationships between instance char-
acteristics and algorithm runtime.a 
This makes our approach important 
even for theoretically inclined com-
puter scientists who prefer proofs 
to experimental findings: EHMs can 
uncover new, simple relationships 
between instance characteristics and 
runtime, and thereby catalyze new 
theoretical work.

The focus of this article is on ways 
that EHMs contribute to our under-
standing of NP-complete problems; 
however, they are also useful in a va-
riety of practical applications. Most 
straightforwardly, they can aid the 
distribution of problem instances 
across a cluster, or predict how long 
a run will take to complete. More 
interestingly, they can be used to 
combine a set of high-variance algo-
rithms into an “algorithm portfolio” 
that outperforms its constituents; 
be leveraged to automatically make 
benchmark distributions more chal-
lenging; and aid in the configuration 
(or “tuning”) of highly parameterized 
algorithms for good performance on 
given instance distributions. More 
detailed explanations of these appli-
cations appear in sidebars through-
out this article.

Phase Transitions in 
Uniform-Random 3-SAT
We begin by describing the most widely 
known relationship between a char-
acteristic of fixed-size random SAT 
instances and solver runtime. (Af-
ter this, we consider more realistic 
instances of SAT and other NP-hard 
problems.) Let p(c, v) denote the prob-
ability that a satisfiable 3-SAT for-

a We do not survey the literature on algorithm 
performance prediction here; instead we fo-
cus on our own work. For extensive discus-
sions of related work, please see Hutter et al.21 
and Leyton-Brown et al.29

mulab will be generated by uniformly 
sampling c clauses of three variables 
each from a set of v variables, negating 
each with probability 0.5. In the early 
1990s, researchers discovered that 
when v is held constant, p(c, v) exhib-
its a “phase transition” as c/v crosses 
a critical value of about 4.26.8,31 Intui-
tively, instances with few clauses are 
underconstrained and thus almost 
always satisfiable, while those with 
many clauses are overconstrained and 
almost always unsatisfiable. The inter-
esting fact is that, for all fixed values 
of v so far tested, the phase transition 

b A SAT formula F is solved by deciding whether 
there exists an assignment of its variables un-
der which F evaluates to true. A subclass of par-
ticular importance is 3-SAT. A 3-SAT instance 
is a conjunction of clauses, each of which is a 
disjunction of three variables or their nega-
tions. For example, (v1 ∨¬ v2 ∨ v4) ∧ (¬v1 ∨¬v3 
∨ v4) is a simple formula with v = 4 variables and 
c = 2 clauses that has several satisfying assign-
ments (for example, [v1, v2, v3, v4] = [true, true, 
false, false]).

point at which p(c, v) is exactly 0.5, ap-
pears to coincide with a runtime peak 
even for the SAT solvers that perform 
best on these instances. This finding 
thus links an algorithm-independent 
property of an instance (c/v) with al-
gorithm-specific runtime in a way that 
has proven robust across solvers.

Figure 1 (left) shows this relationship 
using real data. The dotted line shows 
p(c, v) for uniform-random 3-SAT in-
stances with v = 400, while the solid line 
shows the mean runtime of march _
hi,11 one of the best SAT solvers for 
uniform-random 3-SAT, on the same 
instances. We do indeed observe both 
a phase transition and a hardness spike 
at the phase transition point. Howev-
er, there is more to the story. Figure 1 
(right) plots raw runtime data (on a log 
scale) for march _ hi, with each point 
corresponding to a single (random) 
3-SAT formula. We can now see that the 
c/v ratio does not suffice to fully explain 
march _ hi’s empirical behavior on 
these instances: there is still substan-
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learning algorithm to identify the most 
useful ones. Our only requirement is 
that the features be computable in 
low-order polynomial time; in some 
applications, we also restrict ourselves 
to features that are quadratic time or 
faster. For the SAT domain, we defined 
138 features summarized as:

 ˲ Problem size measures c and v, plus 
nonlinear combinations we expected to 
be important, like c/v and c/v − 4.26;

 ˲ Syntactic properties of the in-
stance (proximity to Horn clauses, bal-
ance of positive and negative literals, 
and so on);

 ˲ Constraint graph statistics. We 
considered three graphs: nodes for 
variables and edges representing 
shared constraints (clauses); nodes for 
clauses and edges representing shared 
variables with opposite polarity; nodes 
for both clauses and variables, and 
edges representing the occurrence of 
a variable in a given clause. For each 
graph, we computed various statistics 
based on node degrees, path lengths 
and clustering, among others;

 ˲ A measure of the integrality of 
the optimal solution to the linear pro-
gramming relaxation of the given SAT 
instance—specifically, the distance 
between this solution and the nearest 
(feasible or infeasible) integral point;

 ˲ Knuth’s estimate of search tree 
size;25 and,

 ˲ Probing features computed by 
running bounded-length trajectories 
of local search and tree search algo-
rithms and extracting statistics from 

tial variation at each point along the x 
axis—over two orders of magnitude at 
the “hard” phase transition point. The 
runtime pattern also depends on satisfi-
ability status: hard instances are scarcer 
and runtime variation is greater among 
satisfiable instances than among unsat-
isfiable instances. One reason for this is 
that on satisfiable instances the solver 
can stop as soon as it encounters a satis-
fying assignment, whereas for unsatisfi-
able instances a solver must prove that 
no satisfying assignment exists any-
where in the search tree.

A Case Study on  
Uniform-Random 3-SAT
We now ask whether we can better un-
derstand the relationship between in-
stance structure and solver runtime by 
considering instance features beyond 
just c/v. We will then use a machine 
learning technique to infer a relation-
ship between these features and run-
time. Formally, we start with a set I of 
instances, a vector xi of feature values 
for each i ∈ I, and a runtime observa-
tion yi for each i ∈ I, obtained by run-
ning a given algorithm on i. Our goal 
will be to identify a mapping f : x → y 
that predicts yi as accurately as pos-
sible, given xi. We call such a mapping 
an EHM.c Observe that we have just 

c It is sometimes useful to build EHMs that pre-
dict a probability distribution over runtimes 
rather than a single runtime; see Hutter et al.21 
For simplicity, here we discuss only the predic-
tion of mean runtime.

described a supervised learning prob-
lem, and more specifically a regression 
problem. There are many different re-
gression algorithms that one could use 
to solve this problem, and indeed, over 
the years we have considered about a 
dozen alternatives. Later in this article 
we will advocate for a relatively sophis-
ticated learning paradigm (random for-
ests of regression trees), but we begin 
by discussing a very simple approach: 
quadratic ridge regression.5 This meth-
od performs linear regression based on 
the given features and their pairwise 
products, and penalizes increases in 
feature coefficients (the “ridge”). We 
elaborate this method in two ways. 
First, we transform the response vari-
able by taking its (base-10) logarithm; 
this better allows runtimes, which vary 
by orders of magnitude, to be described 
by a linear model. Second, we reduce 
the set of features by performing for-
ward selection: we start with an empty 
set and iteratively add the feature that 
(myopically) most improves predic-
tion. The result is simpler, more robust 
models that are less prone to numerical 
problems. Overall, we have found that 
even simple learning algorithms like 
this one usually suffice to build strong 
EHMs; more important is identifying a 
good set of instance features.

Instance features. It can be difficult 
to identify features that correlate as 
strongly with instance hardness as c/v. 
We therefore advocate including all fea-
tures that show some promise of being 
predictive, and relying on the machine-

Figure 1. Runtime of march_hi on uniform-random 3-SAT instances with v = 400 and variable c/v ratio. Left: mean runtime, along with 
p(c, v); right: per-instance runtimes, colored by satisfiability status. Runtimes were measured with an accuracy of 0.01s, leading to the 
discretization effects visible near the bottom of the figure. Every point represents one SAT instance.
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these probes (for example, number 
of steps before reaching a local mini-
mum in local search or amount of unit 
propagation performed in tree search).

Model Performance
Let us now investigate the models we 
can build using these techniques for 
uniform-random 3-SAT. We consider 
two sets of instances: one in which 
the c/v ratio varies around the phase 
transition point, and another in which 
it is fixed at c/v = 4.26. The first set of 
instances is less challenging, as we al-
ready know the c/v ratio suffices to ex-
plain much of the runtime variation. 
However, this set is still useful as a san-
ity check to ensure our methods dis-
cover the importance of the c/v feature, 
and to investigate what additional fea-
tures turn out to be useful. The second 
set contains fixed-size instances in the 
hard c/v = 4.26 region: any patterns we 
can find here are interesting since we 
cannot distinguish instances based on 
their c/v ratio. In both cases (as with all 
other empirical results we have shown) 
we randomly partitioned our data into 
a “training set” we used to build the 
EHM and a disjoint “test set” we used 
solely to evaluate the performance of 
the EHM, thereby assessing the accu-
racy of a model’s predictions beyond 
the data used for constructing it.

Figure 2 shows the results of our in-
vestigation, giving true versus predict-
ed march _ hi runtimes, with every 
point in the figure corresponding to a 
different test-set problem instance. 
Overall, the points cluster around the 

diagonal in both plots, meaning the 
predictions are reasonably accurate. 
(Indeed, these results are better than 
they appear to the eye, as a greater 
density of points falls closer to the di-
agonal.) Observe that prediction ac-
curacy was considerably better for 
unsatisfiable instances than for satis-
fiable instances. Root mean squared 
error (RMSE) is a numerical measure 
of a model’s accuracy; the two models 
achieved RMSEs of 0.31 and 0.56, re-
spectively. A model that consistently 
mispredicted runtimes by a factor of 10 
would have achieved an RMSE of 1.0.

We used the variable ratio instance 
set to verify that the model recognizes 
the importance of the c/v feature; sim-
ilarly, we would like to identify other 
informative features. We cannot do 
this simply by examining a scatter-
plot, nor by looking at the coefficients 
of the model itself: because many of 
our features are strongly correlated, 
important features can have small co-
efficients and unimportant features 
can have big coefficients. Instead, we 
identify new models that use only a 
small number of uncorrelated fea-
tures by applying the same forward se-
lection method described previously, 
but terminating much earlier, when 
the benefit from adding new features 
begins to taper off. Then (following 
Friedman10) we quantify the impor-
tance of each feature in these new 
models by measuring the loss in RMSE 
incurred by omitting it, and scaling 
these values to give the most impor-
tant feature receives a score of 100. 

Table 1 demonstrates that the model 
indeed identified c/v (and the variant 
|c/v − 4.26|) as an important feature; 
recall that our quadratic regression 
has access to all pairwise products of 
features. Other features were also im-
portant, in particular, SAPS _ Best-
Solution _ Mean, the average num-
ber of satisfied clauses achieved by 
short runs of the local search proce-
dure SAPS.20 This is interesting, as one 
might not have expected the perfor-
mance of a local search algorithm to 
be informative about the performance 
of a tree search algorithm.

For the fixed-ratio data, c/v was 
constant, and we therefore see a dif-
ferent picture among important fea-
tures (Table 2). Again, local search 
probing features figured prominently 
(GSAT _ BestSolution _ Mean gives 
the average number of satisfied claus-
es achieved by short runs of GSAT36). 
Another important feature was 
CG _ entropy. It gives the entropy 
across node degrees in the “constraint 
graph” in which nodes correspond to 
clauses and edges indicate that a pair 

Figure 2. Actual vs. predicted runtimes for march_hi on uniform-random 3-SAT. Each dot represents a test instance not used to train the 
model; perfect predictions would fall along the diagonal. Left: c/v ∈ [3.26, 5.26]; Right: c/v = 4.26.
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Table 1. Feature importance, c/v ∈ [3.26, 
5.26].

Feature Score

c⁄v – 4:26 × SAPS_BestSolution_Mean 100

c⁄v × SAPS_BestSolution_Mean 19

GSAT_BestSolution_CoeffVar  
× SAPS_BestStep_CoeffVar

19

SAPS_BestStep_CoeffVar × CG_entropy 18
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ratio instance sets. Clearly, hierarchi-
cal hardness models can only outper-
form regular EHMs if our classifier is 
able to accurately predict satisfiabil-
ity status. In the variable-ratio case, 
a natural baseline is a classifier that 
predicts satisfiability for instances 
with c/v < 4.26, and unsatisfiability 
otherwise. This classifier achieved an 
accuracy of 96%, underlining the pre-
dictive power of the c/v feature. Our 
classifier further increased this ac-
curacy to 98% (halving the error rate). 
Unlike the baseline, our classifier also 
applies in the fixed-ratio case, where it 
achieved accuracy of 86%.

We found this result surprising 
enough that we investigated it in more 
depth.39 We considered instances of 
varying size, from 100 variables (solv-
able in milliseconds) to 600 variables 
(solvable in a day; about the largest in-
stances we could solve practically). We 
focused on instances generated at the 
phase transition point, because they 
pose the hardest prediction problem: 
the probability of generating satisfi-
able instances at this point is 50%, and 
in practice, our data sets were indeed 
very evenly balanced between satis-
fiable and unsatisfiable instances. 
Our aims were to investigate whether 
prediction accuracy appeared to fall 
to that of random guessing on larger 
problems, and if not, to give an eas-
ily comprehensible model that could 
serve as a starting point for theoreti-
cal analysis. In doing so we restricted 
our models in three ways that each re-
duced predictive accuracy, but allowed 

of clauses share one or more variables 
of opposite sign. We have repeated this 
analysis for other SAT solvers (for ex-
ample, kcnfs and satz) and obtained 
the same qualitative results: runtime is 
predictable with high accuracy, small 
models suffice for good performance, 
and local-search and constraint-graph 
features are important.33

We have already observed that sat-
isfiable and unsatisfiable instances 
exhibit very different distributions of 
algorithm runtimes. We thus consid-
ered the problem of building EHMs 
only for satisfiable or for unsatisfi-
able instances. (We call these “con-
ditional models” as they depend on 
knowing the satisfiability of a given 
instance.) We found that conditional 
EHMs were more accurate than un-
conditional EHMs; more interesting-
ly, single-feature conditional models 
turned out to be sufficient for pre-
dicting runtime with high accuracy. 
For satisfiable instances, this feature 
was GSAT _ BestSolution _ Mean, 
whereas for unsatisfiable instances, 
it was Knuth _ Mean. We can explain 
these findings as follows. Since local 

search algorithms apply heuristics to 
find a solution as quickly as possible, 
the reliability with which such an al-
gorithm is able to make quick prog-
ress is informative about the speed 
at which a complete algorithm will 
be able to find a solution. Tree search 
algorithms must rule out every node 
in the tree to prove unsatisfiability; 
thus, an estimate of this tree size is 
the most important feature in the un-
satisfiable case.

Predicting Satisfiability Status
These observations led us to a new 
idea: building a classifier that directly 
predicts satisfiability status, and then 
leveraging conditional EHMs based 
on this prediction. There are two rea-
sons to be skeptical about this ap-
proach. First, conditional EHMs can 
make very inaccurate predictions on 
instances with the “wrong” satisfi-
ability status, so it is not clear that 
we would obtain improved accuracy 
overall. Second, and more fundamen-
tally, it may seem doubtful that we 
could accurately predict satisfiabil-
ity status—that would correspond to 
guessing whether an instance is solv-
able without actually solving it! De-
spite this reservation, and applying 
sophisticated statistical techniques to 
mitigate the potential cost of mispre-
dictions (see Xu et al.38), we did build 
hierarchical hardness models for uni-
form random 3-SAT instances. These 
models achieved (relatively modest) 
improvements in predictive accuracy 
on both the fixed-ratio and variable-

Figure 3. Left: Classification accuracies for our simple decision tree on uniform-random 3-SAT instances at the phase transition with  
varying numbers of variables. The tree was trained only on 100-variable data. Right: The decision tree. Predictive accuracies for instances 
falling into the three regions were between 60% and 70% (region A); about 50% (region B); and between 70% and 80% (region C).
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Feature Score

GSAT_BestSolution_Mean2 100
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33

SAPS_BestStep_CoeffVar × CG_Entropy 22
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us to better answer these questions. 
First, we permitted ourselves to train 
our classifier only on the 100-variable 
instances. Second, we considered only 
decision trees7 having at most two de-
cision nodes. (We obtained these mod-
els by a standard decision tree learning 
procedure: greedily choosing a feature 
that best partitioned the training data 
into satisfiable and unsatisfiable in-
stances, and recursively splitting the 
resulting partitions.) Finally, we omit-
ted all probing features. Although 
probing (for example, local-search) fea-
tures were very useful for prediction, 
they were disproportionately effective 
on small instances and hence would 
have complicated our study of scaling 
behavior. Also, because we aimed to ob-
tain easily comprehensible models, we 
were disinclined to use features based 
on complex, heuristic algorithms.

Given all of these restrictions, we 
were astonished to observe predictive 
accuracies consistently above 65%, and 
apparently independent of problem 
size (see Figure 3, left; statistical testing 
showed no evidence that accuracy falls 
with problem size). Indeed, our first 
two restrictions appear to have come 
at low cost, decreasing accuracies by 
only about 5%. (Furthermore, after lift-
ing these restrictions, we still found no 
evidence that accuracy was affected by 
problem size.) Hence, the reader may 
be interested in understanding our 
two-feature model in more detail; we 
hope it will serve as a starting point for 
new theoretical analysis of finite-size 
SAT instances at the phase transition. 
The model is given in Figure 3 (Right). 
LPSLACK _ coeff _ variation is 
based on solving a linear program-
ming relaxation of an integer program 
representation of SAT instances. For 
each variable i with LP solution value Si 
∈ [0, 1], LPSLACKi is defined as min{1 
− Si, Si}: the deviation of Si from inte-
grality. LPSLACK _ coeff _ varia-
tion is then the coefficient of variation 
(the standard deviation divided by the 
mean) of the vector LPSLACK. The ith 
element of the vector POSNEG _ ra-
tio _ var _ mean is the average ratio 
of positive and negative occurrences of 
each variable. For each variable i with 
Pi positive occurrences and Ni negative 
occurrences, POSNEG _ ratio _ vari 
is defined as |0.5 − Pi / (Pi + Ni)|. POS-
NEG _ ratio _ var _ mean is then 

the average over elements of the vector 
POSNEG _ ratio _ var. Finally, re-
call that our model was trained on con-
stant-size instances; we normalized 
the LPSLACK _ coeff _ variation 
and POSNEG _ ratio _ var _ mean 
features to have mean 0 and standard 
deviation 1 on this training set. To eval-
uate the model on a given instance of 
a different size, we randomly sampled 
many new instances of that size to com-
pute new normalization factors, which 
we then applied to the given instance.

Beyond Uniform-Random 3-SAT
Our original motivation involved 
studying real problems faced by a 
practitioner, problems that are very 
unlikely to have uniform random 
structure. Thus, it is important to 
demonstrate that EHMs work reliably 
for a wide range of more realistic in-
stance distributions, and that they are 
not limited to SAT. In short, they do, 
and they are not. By now, we have built 
EHMs for four different NP-complete 
problems: SAT14,16,21,33,38,40 the combina-
torial auction winner determination 
problem (WDP),28,29 mixed integer pro-
gramming (MIP, a standard encoding 
for problems with both discrete and 

continuous variables),14,19,21 and the 
traveling salesman problem (TSP).21 
Observe that we have considered both 
optimization and decision problems, 
and that these problems involve dis-
crete variables, continuous variables, 
and combinations of the two. For each 
problem, we derived a new set of in-
stance features. This was not trivial, 
but not terribly difficult either; in all 
cases we used problem size measures, 
syntactic properties, and probing fea-
tures. Extending what we know now to 
a new domain would probably entail a 
few days of work. In our publications 
and other technical work (for example, 
submissions to SAT competitions) we 
have considered more than 30 instance 
distributions. These include sophisti-
cated random generators (for example, 
SAT reductions from graph coloring 
and factoring; combinatorial auction 
benchmarks based on economic mod-
els); instance sets from public bench-
marks and competitions (for example, 
MIPLIB; the SAT competition); and 
sets of instances derived from practi-
cal applications (for example, SAT-en-
coded instances from software verifi-
cation and bounded model checking; 
industrial MIP instances ranging from 

There currently exists no “best” SAT solver; different solvers perform well on different 
families of instances, and performance differences between them are typically very 
large. The effectiveness of EHMs suggests a straightforward solution to the algorithm 
selection problem:35 given a new problem instance, predict the runtime of several SAT 
solvers, and then run the one predicted to be fastest. This approach27 forms the core of 
SATzilla32,33,40 a portfolio-based algorithm selector for SAT.

SATzilla first participated in the 2003 SAT Competition (http://www.
satcompetition.org), and placed second and third in several categories. We have since 
extensively improved the approach, allowing randomized and local search algorithms 
as component solvers; introducing the idea of presolvers that are run for a short, fixed 
time before the selected solver; adding the ability to optimize for complex scoring 
functions; and automating the construction of the selector (for example, pre-solver 
selection; component solver selection) given data. Leveraging these improvements, 
and benefiting from the continued improvement of the component solvers upon which 
it draws, SATzilla led the field in the 2007 and 2009 SAT Competitions, winning five 
medals each time.

More recently, our design of SATzilla evolved from selection based on runtime 
predictions (EHMs) to a cost-sensitive classification approach that directly selects the 
best-performing solver without predicting runtime.41 In the 2012 SAT Challenge (http://
baldur.iti.kit.edu/SAT-Challenge-2012), SATzilla was eligible to enter four categories; 
it placed first in three of these and second in the fourth. Overall, SATzilla’s success 
demonstrates the effectiveness of automated, statistical methods for combining 
existing solvers—including “uncompetitive” solvers with poor average performance. 
Except for the instance features used by our models, our approach is entirely general, 
and is likely to work well for other problems with high runtime variation. All of our 
software is publicly available; see http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

Application 1. Algorithm 
Selection (SATzilla)
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we now prefer random forests of regres-
sion trees,6 particularly when the in-
stance distribution is heterogeneous. 
We briefly describe this model class 
for completeness, but refer readers to 
the literature for details.6,7 Regression 
trees are very similar to decision trees 
(which we used here for predicting sat-
isfiability status). However, as a classi-
fication method, decision trees asso-
ciate categorical labels with each leaf 
(for example, “satisfiable,” “unsatisfi-
able”), while regression trees associate 
a real-valued prediction with each leaf. 
Random forests report an average over 
the predictions made by each of an en-
semble of regression trees; these trees 
are made to differ by randomizing the 
training process.

Figure 4 illustrates the results of 
our broader experience with EHMs by 
highlighting three different solvers, 
each from a different domain. In each 
case we give plots for both quadratic 
ridge regression and random forests 
to show the impact of the learning al-
gorithm. First (column 1), we consid-
ered the prominent SAT solver, Minisat 
2.09, running on a very heterogeneous 
mix of instances from the interna-
tional SAT competition. Whereas the 
competition subdivides instances into 
categories (“industrial/application,” 
“handmade/crafted,” and “random”), 
we merged all instances together. 
Likely because of the heterogeneity of 
the resulting set, quadratic regression 
performed relatively poorly here. Ran-
dom forests yielded much more reli-
able estimates; notably, they can parti-
tion the feature space into qualitatively 
different parts, and they never predict 
runtimes larger or smaller than the 
extrema observed in the training data. 
However, observe that even the less 
accurate quadratic regression models 
were usually accurate enough to differ-
entiate between fast and slow runs in 
this domain; see the sidebar on SATzil-
la. Second (column 2), we studied the 
performance of the leading complete 
TSP solver, Concorde,2 on a widely used 
suite of rather homogeneous, random-
ly generated TSP instances.23 We again 
see good performance, now for both 
quadratic regression and random for-
ests. Third (columns 3 and 4), to show 
the effect of changing only the instance 
distribution, we consider one solver on 
two different distributions. IBM ILOG 

machine job allocation to wildlife con-
servation planning; TSP instances rep-
resenting drilling circuit boards and 
traveling between real cities). We have 
also studied more than 50 state-of-the-
art solvers, both open source projects 
and proprietary tools developed by 
industry. Our solvers were both deter-
ministic and randomized, and both 
complete (that is, guaranteed to find a 
solution if one exists) and incomplete. 
In many cases, we only had access to an 
executable of the solver, and in no case 

did we make use of knowledge about a 
solver’s inner workings. As mentioned 
earlier, we have also gone beyond qua-
dratic basis function regression to 
study more than a dozen other statis-
tical modeling techniques, including 
lasso regression, multivariate adap-
tive regression splines, support vector 
machine regression, neural networks, 
Gaussian processes, regression trees 
and random forests (see Leyton-Brown 
et al.29 and Hutter et al.21). We omit the 
details here, but state the conclusion: 

Imagine that each time the designer of a heuristic algorithm faced a choice about a 
given design element, she simply encoded it as a free parameter of a single solver. In the 
end, her problem of designing a good algorithm for a given problem domain would be 
reduced to the stochastic optimization problem of finding a configuration that achieved 
good performance.12,14,24

We have applied automated methods for solving this problem to identify novel 
algorithm configurations that have yielded orders of magnitude speedups in a broad 
range of domains, including SAT-based formal verification,15 MIP solving,17 and 
automated planning.37 One state-of-the-art method for solving this problem is based on 
EHMs: sequential model-based algorithm configuration (SMAC)19 iterates between using 
an EHM to select promising configurations to explore next, executing the algorithm 
with these configurations, and updating the model with the resulting information. 
SMAC is freely available; please see http://aclib.net/SMAC. EHMs can also be used to 
select configurations on a per-instance basis.16

Application 3. Algorithm 
Configuration

Realistic, hard benchmark distributions are important because they are used as an 
objective measure of success in algorithm development. However, it can sometimes be 
just as difficult to find new, hard benchmarks as it is to find new strategies for solving 
previously hard benchmarks. To fill this gap, EHMs can be used to automatically adjust 
existing instance generators so they produce instances that are harder for a given set of 
algorithms.26,29

We start with an instance generator that has parameters p. Such generators are 
often simply used with default parameter settings; however, to search for harder 
instances we instead sample each parameter’s value uniformly from a fixed range. 
Call the resulting distribution over instances D. Our goal is to sample from a new 
distribution D′ over the same instances that weights instances by their hardness for a 
given algorithm A. (Think of A as having the best average runtime among all algorithms 
in a given set, or as being a SATzilla-style selector among such algorithms.) We can 
do this via a form of importance sampling. We construct an EHM for A on D using 
our standard instance features f; for an instance x, call this model’s prediction Hf (x). 
We would like to generate a large set of instances from D, weight each instance x in 
proportion to Hf (x), and then sample a single instance from the set in proportion to 
the weights. This approach works, but requires a very large number of samples when 
hard instances are rare in D. To improve performance, we learn a quadratic EHM Hp 
that uses only the generator parameters p as features. We can then sample instances x 
in proportion to D(x) ∙ Hp (x) rather than sampling from D (by sampling directly from 
polynomial function Hp, and then running the instance generator with the resulting 
parameters), and then weight each sampled instance x by Hf (x) / Hp (x). Hp thus guides 
our search towards harder instances without biasing the weights. In experiments with 
the Combinatorial Auction Test Suite30 this approach increased the mean hardness 
of generated instances by up to a factor of 100,26,29 and often created instances much 
harder than we had ever observed using the generators’ default parameters.

Application 2. Generating 
Hard Benchmarks
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CPLEX22 is the most widely used com-
mercial MIP solver. BIGMIX is a highly 
heterogenous mix of publicly available 
mixed integer programming prob-
lems. As with the mix of SAT instances 
in our first benchmark, linear regres-
sion struggled with predictions for 
some types of instances and occasion-
ally made catastrophic mispredictions. 
Again, random forests performed 
much more robustly. RCW models the 
dispersal and territory establishment 
of the redcockaded woodpecker con-
ditional on decisions about which par-
cels of land to protect.1 The runtime of 
CPLEX for this domain was surprising-
ly predictable; random forests yielded 
among the best EHM performance we 
have ever observed.

Beyond Single Algorithms
Unlike average-case complexity re-
sults that characterize the inherent 
complexity of a computational prob-
lem, EHMs always describe the perfor-
mance of a given algorithm. In some 
sense this is an inherent limitation: a 
statistical approach cannot summarize 
the performance of algorithms that 
have not yet been invented. However, 
there is a useful way in which we can 
relax the single-algorithm restriction: 

we can build a model that describes a 
space of existing algorithms.

More specifically, most state-of-the-
art algorithms for hard combinatorial 
problems offer a range of algorithm 
parameters in order to enable users 
to customize or tune the algorithm’s 
behavior. We define “parameters” very 
broadly, as encompassing any argu-
ment passed to a solver that changes 
its behavior (and, thus, its runtime) 
but not the nature of the solution it re-
turns. Parameters can thus be contin-
uous, categorical, ordinal, or Boolean, 
and can even be conditional on val-
ues taken by other parameters. More 
importantly, categorical and Boolean 
parameters can be used to represent 
very abstract decisions—effectively 
selecting among unrelated blocks of 
code—and can thereby open up vast 
algorithm design spaces. For example, 
IBM ILOG CPLEX exposes 76 param-
eters (45 categorical, six Boolean, 18 
integer, and seven real-valued);17 a 
fairly coarse discretization of these pa-
rameters yields over 1047 different al-
gorithm instantiations with vastly dif-
ferent performance profiles. We call 
such an instantiation of all parameters 
of a given algorithm to specific values 
a configuration. The second example 

of a parameterized solver we use here 
is the SAT solver SPEAR,4 which ex-
poses 26 parameters (seven categori-
cal, three Boolean, four integer, and 12 
real-valued), giving rise to over 1017 dif-
ferent algorithm instantiations.

We now consider generalizing 
EHMs to describe such parameterized 
algorithms. In principle, this is not 
much of a change: we consider mod-
els that map from a joint space of con-
figurations and instance features to 
runtime predictions. The question is 
how well such an approach can work. 
Before we can give an answer, we need 
to decide how to evaluate our meth-
ods. We could test on the same con-
figurations that we used to train the 
EHM but on new problem instances, 
on new configurations but on previ-
ously seen instances, or on combina-
tions of previously unseen configura-
tions and instances.

The third case is the hardest; it is 
the only setting for which we show re-
sults here. Figure 5 illustrates some 
representative results in this setting, 
focusing on random forest models. 
The first row shows scatterplots like 
those presented earlier, with each 
point representing a run of a ran-
domly selected, previously unseen 

Figure 4. Visual comparison of models for runtime predictions on unseen instances. In each plot, the x-axis denotes true runtime and the 
y-axis runtime as predicted by the respective model. Predictions above 3,000 or below 0.001 are denoted by a blue x.
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than the different CPLEX configura-
tions differ in performance (see Row 
2). As a result, instance hardness 
dominated runtimes and the model 
focused on the (more important) fea-
ture space, at the expense of failing to 
capture some of the performance dif-
ference between configurations. Sec-
ond, on RCW most of the (randomly 
sampled) CPLEX configurations 
solved very few instances; we record-
ed such failures as very long run-
times. The model was nevertheless 
able to identify which configurations 
were good and which instances were 
easy. Finally, we consider predicting 
the runtime of SPEAR on two sets of 
formal verification instances: IBM 
is a set of bounded model checking 
instances,42 while SWV is a set of soft-
ware verification instances generated 

configuration on a previously unseen 
instance. We also provide a different 
way of looking at the joint space of pa-
rameter configurations and instance 
feature vectors. The second row shows 
the true runtimes for each (configura-
tion, instance) pair, sorting configu-
rations by their average performance 
and sorting instances by their aver-
age hardness. Thus, the picture gives 
a snapshot of the runtime variation 
across both instances and configura-
tions, and makes it possible to gauge 
how much of this variation is due only 
to differences between configurations 
versus differences between instances. 
Finally, the third row shows the pre-
dictions obtained from the EHM in 
the same format as the second row. 
This gives a way of visually comparing 
model performance to ground truth; 

ideally, the second and third rows 
would look identical. (Indeed, when 
the two figures closely resemble each 
other, the EHM can serve as a surro-
gate for the original algorithm, mean-
ing that the EHM can be substituted 
for the algorithm in an empirical anal-
ysis of the algorithm’s performance; 
see Hutter et al.18)

The main takeaway from our ex-
periments is that our models were 
able to achieve high accuracies (RM-
SEs around 0.5; qualitative similarity 
between the second and third rows) 
even on algorithm configurations that 
were never examined during training. 
The first column of Figure 5 concerns 
runtime predictions for CPLEX on our 
heterogeneous mix of MIP instances. 
The instances in this benchmark dif-
fer greatly in hardness, much more 

Figure 5. Visual comparison of models for runtime predictions on pairs of previously unseen test configurations and instances. 

Row 1: In each plot, the x-axis denotes true runtime and the y-axis denotes runtime as predicted 
by the respective model. Each dot represents one combination of an instance and parameter 
configuration, both previously unseen during model training. 

Rows 2 and 3: Actual and predicted runtimes for each application domain. Each dot in the heat map 
represents the run of one parameter configuration on one instance; the grayscale value represents 
runtime on a log10 scale (darker means faster).
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with the Calysto static checker.3 For 
both of these instance distributions, 
the runtime of SPEAR with different 
configurations was predicted with a 
high degree of accuracy. Our random 
forest models accurately predicted 
the empirical hardness of instances, 
the empirical performance of config-
urations, and even captured ways in 
which the two interact.

Take-Away Messages
Statistical methods can character-
ize the difficulty of solving instances 
from a given distribution using the 
best available algorithms—even 
when those algorithms are extremely 
complex and traditional theoretical 
analysis is infeasible. Such EHMs 
are surprisingly effective in practice, 
across different hard combinatorial 
problems, real-world instance dis-
tributions, and state-of-the art solv-
ers. An analysis of these models can 
serve as a starting point for new theo-
retical investigations into complexity 
beyond the worst case, by identifying 
problem features that are predictive 
of hardness or that suffice to predict 
an objective function (for example, 
satisfiability status) directly. In the 
context of highly parameterized al-
gorithms that span a large space of 
possible algorithm designs, we have 
found that it is even possible to pre-
dict the runtime of previously untest-
ed algorithm designs on previously 
unseen instances. EHMs have proven 
useful in a variety of practical applica-
tions, including the automatic design 
of algorithm portfolios, the automat-
ic synthesis of hard benchmark dis-
tributions, and the automatic search 
for a performance-optimizing design 
in a large algorithm design space.  
We have written open source software 
for building EHMs, analyzing them, 
constructing algorithm portfolios,  
automatically configuring parameter-
ized algorithms, and more: see http://
www.cs.ubc.ca/labs/beta/Projects/EPMs/.
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