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ABSTRACT

We propose a new method for finding potential regulatory
relationships between pairs of genes from microarray time
series data and apply it to expression data for cell-cycle re-
lated genes in yeast. We compare our algorithm, dubbed
the event method, with the earlier correlation method and
the edge detection method by Filkov et al. When tested
on known transcriptional regulation genes, all three meth-
ods are able to find similar numbers of true positives. The
results indicate that our algorithm is able to identify true
positive pairs that are different from those found by the two
other methods. We also compare the correlation and the
event methods using synthetic data and find that typically,
the event method obtains better results.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences

1. INTRODUCTION

A genetic regulatory network is a system in which proteins
and genes bind to each other and act as complex input-
output system for controlling cellular functions. For a nor-
mal cell life cycle to take place, a cell needs to have in place
a correctly working regulatory network for control. Many of
the known regulators that control mRNA levels work at the
level of transcription (other control mechanisms, not consid-
ered here, are based on post-transcriptional modifications).
Many of these regulators are components of protein com-
plexes that regulate the transcription of other genes. In-
sights into the nature and function of various pathways in
the network are of interest to many researchers, as these
are the key to a better understanding of many important
biological problems.

In order to study the regulatory network, it is necessary
to have a means to measure the gene expression at different
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time points, so that one can observe and infer which genes
are being regulated by looking at their expression levels. Un-
til the development of cDNA microarrays researchers could
perform experiments only on a limited number of genes at
a time, even though these genes are part of a large network.
Microarray technology allows researchers to study gene ex-
pression on a large scale; but it also poses new challenges, as
one must now find ways to sort through and extract useful
information from the massive amounts of data.

Before one can determine the overall regulatory network
structure, it is important to identify genes that have direct
regulatory relationships. Due to the complex nature of the
network, even this is not an easy task. In fact, there are
many different variables associated with protein expression
besides the mRNA levels, which means that cDNA microar-
ray data alone does not present the researchers with a com-
plete picture. However, although it may be incomplete, this
data still contains a significant amount of information per-
taining to the cellular protein levels, and can thus provide
researchers with useful and interesting information that can
help them focus their research efforts.

The problem addressed in this paper is that of determinat-
ing which pairs of genes have direct regulatory interactions
given a large number of gene expression profiles obtained
from microarray data. We propose a new method called
the Event Method for finding potential regulatory pairs from
gene expression data and evaluate it against previous meth-
ods using real and synthetic data sets.

The remainder of this paper is organized as follows. In
Section 2, we give a brief overview of the existing algorithms
for solving the problem of finding gene regulation pairs. In
Section 3, we present a detailed explanation of our algo-
rithm. In Section 4, we discuss the experimental results of
our algorithm using real and synthetic data sets. Finally, in
the concluding Section 5 we provide a brief summary of our
results and indicate some directions for future work.

2. PRIOR WORK

There are a number of previous approaches for extracting
regulation information from microarray data. These include
methods ranging from simple correlation analysis and clus-
tering to the application of Bayesian networks.

The first is the correlation method, which tests whether
two variables share a significant linear relationship with each
other by their Pearson correlation coefficient. The correla-
tion method has been used heavily as the basis of many clus-



tering analyses, as it is very useful in determining whether
two variables have a strong global similarity. With microar-
ray time series data, one would expect those genes with reg-
ulatory relationships to exhibit globally similar gene expres-
sion profiles, which could be tested using the correlation
method. However, while this method is good at determin-
ing genes that share global similarity, it does not take into
account the fact that it often takes time for the regulator
gene product to exert its influence on its target gene. More-
over, the correlation method strongly favours global similar-
ity over more localized similarities arising from conditional
regulatory relationships.

The second method is the edge detection method by Filkov
et al. [3], who focused on improving the local edge detec-
tion ability compared to other methods, such as correlation.
The edge detection method scans through each gene expres-
sion curve to determine where major changes in expression
level (edges) occur, and removes spurious edges from con-
sideration. To produce a score, the edge detection method
sums up the number of edges in two gene expression curves
that share the same direction and are within reasonable dis-
tances of each other. Gene pairs that are likely to have an
activation relationship are given high scores. In calculating
the score, the method also makes sure that those edges that
are farther apart would get lower scores. The edge detec-
tion method in its current form can only determine potential
activation relationships.

The third approach is the usage of Bayesian networks [9,
4, 1]. A Bayesian network is a graphical representation of
conditional independence in a multivariate probability dis-
tribution. For gene regulatory network inference, the di-
rected acyclic graph of a Bayesian network represents the
structure of the gene regulatory network, while the set of
parameters for the graph represents the statistical hypoth-
esis behind the network. Gene X regulates gene Y if and
only if there is a direct edge from X to Y in the graph. In
order to construct the Bayesian network, one needs to learn
the network using the observed data. However, this can be
computationally hard, especially if the temporal aspects of
the gene expression data are taken into account.

3. THE EVENT METHOD

The correlation and edge detection methods can be de-
scribed as the opposite ends of a spectrum: the correlation
method focuses on the global match of two profiles, while
the edge detection method focuses on strong local matches.
Also, the correlation method cannot make use of the tem-
poral evidence in the data, and neither method takes into
account the directionality of regulation. While one may be
able to accommodate these factors with Bayesian networks,
the associated computational costs can be very high. Thus,
we feel the need to develop a more balanced method that
can detect both global and local similarity features and take
temporal issues into account. We also want our method
to accomplish this in a computationally efficient way. The
event method that we describe in this section is designed to
meet these criteria.

There are two types of regulation at the level of trans-
scription—activation and inhibition. In the activation pro-
cess, the product of gene A affects the transcription process
of gene B such that the production rate for gene B increases.
Conversely, the inhibition process involves gene A’s product
decreasing the production of gene B. Activation or inhibi-

tion can take place through the regulator directly binding to
the targeted gene or by binding another regulator and thus
controlling it indirectly.

If one is hypothesizing that gene A activates gene B, one
would expect to see in their data a rise in A followed by
a corresponding rise in B, and a fall in A followed by a
fall in B. The expectation would be reversed for inhibi-
tion. One would also expect to observe a certain amount
of time delay between two corresponding events. The al-
gorithm tracks these directional changes, dubbed ”events,”
by calculating the slope of the expression profile at each
time interval. These events signify the state of the gene ex-
pression at an instant—whether there is an increase in the
expression, or decrease, or neither. Thus, depending on the
slope value, the algorithm marks each event as rising (R),
constant (C), or falling (F), resulting in a string of events.
Under ideal circumstances, if the hypothesis of A activating
B were correct, each event in A should be matched with a
corresponding event in B.

To perform the matching of corresponding events while
taking noise and temporal issues into account, we perform
a sequence alignment of the event strings and obtain a nu-
merical score that reflects the likelihood of A and B hav-
ing a regulatory relationship. Also, since we do not know
beforehand whether A or B should be hypothesized as the
regulator, we evaluate both hypotheses by performing the al-
gorithm in both directions and choosing the higher-scoring
result. For inhibitory regulation relationships, we first com-
plement the event string of the gene hypothesized to be in-
hibited by changing each R to F, and vice versa, while C
remains unchanged. Then, we perform the alignment and
scoring steps as explained above. Because the inhibitor gene
is exerting its influence on the inhibited gene, the time delay
relationship between the two remains unchanged.

To illustrate the main stages of the algorithm, Figure 1
outlines the process for YGL207W and YDR224C, two genes
from the yeast gene expression data obtained from the alpha
factor arrest experiment [8]. These genes are known to have
an activation relationship in transcription regulation.

3.1 Conversion of Data into Events

In order to compare two gene expression curves, we first
convert the raw data to a string of events. An event at
a specific time interval represents the directional change of
the gene expression curve at that instant. The conversion
process involves the following steps.

1. Before calculating the slope at each time point, we first
perform smoothing and filtering on the raw data to
remove any significant noise present in the curve that
may lead to erroneous interpretations. Smoothing is
performed by a sliding window method in which at
every time point, the data points within the specified
window are averaged, so that small irregularities may
be removed. The algorithm increases smoothing win-
dow sizes, w, until it finds one where the event strings
obtained with w and w + 1 are equal to each other, or
until w = Wmaz, Wwhere Wmae is the maximum allowed
window size.

2. Next, we calculate the slope at each time point based
on the smoothed data.

3. Finally, the slope values are converted into events. The
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Figure 1: Outline of the Event Method. Expression curves for two yeast genes YGL207W and YDR224C
(both before and after smoothing shown) are converted into event strings, which are then aligned and scored.

slope values to be classified as constant (C) are deter-
mined based on a threshold parameter 6 that specifies
the percentage of the data points for the gene that are
to be classified as constant. The boundary slope val-
ues that result in this percentage of constant events
are then used to classify all segments of the given ex-
pression profile: segments with slope greater than the
higher boundary are classified as R, those with slope
between the boundaries as C, and the rest as F.

For each gene expression curve, this process results in a
string of event characters. For our experiments, we chose to
perform smoothing with w = 3 and 6 = 0.2. These two val-
ues were chosen empirically, as they gave the highest number
of true positive results when tested on biological data sets.
The event strings for YGL207W and YDR224C are shown
in Figure 1.

3.2 Alignment of Event Strings

Now that we have the event strings, we need to determine
whether the order of the events indicate a possible regula-
tory relationship by finding the best match between the two
strings while taking the noise and time delays into account.
This problem can be approached similarly to the problem of
biological sequence alignment; given the two event strings,
we can efficiently determine their best alignment according
to a suitably defined scoring function (see below) using a
modified version of the Needleman-Wunsch algorithm for
global sequence alignment [7] that takes into account the
time delays between aligned event characters. We also need
to ensure that there is no negative time delay—if the work-
ing hypothesis is that gene A activates gene B, events in
A must always occur before their counterparts in B. The
alignment result of YGL207W and YDR224C, our running
example, is shown in Figure 1.

3.3 Scoring Matrix

Our scoring function is based on a scoring scheme for indi-
vidual event characters. We capture this scheme in a scoring

Table 1: Scoring Matrix for the Event Method (0 <
SAI) <1, N=0,0<a<1l0<8<1,dT = time
delay between two events. If dT is negative, the
match is assigned co as penalty, since such matching
is not allowed.)

. I R [ ¢ | F |
R | 5(dT) 0 —B(dT)
C 0 0 0
F || —BS(dT) 0 aS(dT)

matrix that takes into account the time delay between the
two events being compared, as shown in Table 1. This ma-
trix is a form of similarity matrix used to evaluate how well
two gene expression profiles match our working hypothesis.
The weights of the matches, S(dT'), are functions of the time
delay dT. As dT between the two events increases, their
score is decreased in a linear fashion. This is to emphasize
the fact that if two events are too far apart from each other,
it is unlikely that they reflect a regulatory relationship. A
linear time delay penalty was chosen over an exponential
penalty after evaluating both schemes empirically.

Just as in protein sequence alignments, different event
matches have different weights. In our algorithm, the R-
R matches are assigned higher weights than the F-F event
matches. This is signified by the constant o (0 < a < 1),
that is multiplied to S(dT’) for F-F matches. Our data
comes from cellular mRNA levels. While corresponding in-
creases in mRNA levels of two genes are good indicators
of a potential regulatory relationship, this may not be true
for decreases in mRNA levels, because the latter may reflect
other factors, such as different half-lives of different mRNAs.
Thus, it appears reasonable to assign more weight to R-R
matches. Any event that is matched with C is assigned the
neutral score of 0. Constant events define regions of uncer-
tainty. They could be due to any number of reasons, from
simple noise to saturation of cellular mRNA or other fac-
tors. Thus, as they cannot aid in determining the potential
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Figure 2: Two pairs of gene expression profiles
that score differently in the correlation and the
event methods. (a)YBLO03C and YBLOO2W score
high in both methods, as they are almost identi-
cal. (b)YGL207W and YDR224C score high in the
event method, but relatively low in the correlation
method because of the temporal lag between the
corresponding events.

regulatory relationship of the genes being compared, they
are assigned neutral scores. Finally, if there is a R-F mis-
match, a penalty specified by —8 (0 < 8 < 1) is multiplied
to S(dT).

This scoring matrix allows us to control the behaviour of
our algorithm in a detailed and meaningful way. The pa-
rameters associated with the scoring matrix can be changed
as necessary according to the details of the data that are be-
ing analyzed by the algorithm. For our experiments, values
of a = 0.7 and 8 = 0.3 were used.

3.4 Comparison with Existing Methods

While the correlation method is good at detecting the
global similarity between two sequences, time delays can
reduce its effectiveness for finding gene regulatory relation-
ships. An example for this limitation is shown in Figure 2.

The edge detection method strongly focuses on the lo-
cal matches between two gene expression curves. While it
is important to identify genes with a high degree of local
similarity in the respective expression profiles, this bias has
the undesirable effect of ignoring weaker but still significant
profile similarities. Consider the expression profiles for genes
YGL207W and YER111C shown in Figure 3; these genes are
known to have an activation relationship with each other.
While both correlation and the event method assign high
scores to the pair, the edge detection scores it rather low
because of an insufficient number of edges matched.

% y /”‘ \
a8 f \
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Figure 3: The edges found by the edge detec-

tion method in the profiles of genes YGL207W and
YER111C (bold lines). Only the edges marked A
and B can be matched with each other.

4. EXPERIMENTAL RESULTS

In order to assess our algorithm against existing methods,
we conducted an empirical comparative performance analy-
sis of the three methods—the correlation method, the edge
detection method, and the event method, on various sets of
real-world and synthetic data.

4.1 Spellman’s Data Sets

Spellman et al. [8] sought to build a comprehensive cata-
logue of cell cycle-regulated genes in the yeastSaccharomyces
cerevisiae. They performed a series of microarray experi-
ments in which they took mRNA level measurements for all
yeast genes at regular time intervals. They then combined
their results with those by Cho et al. [2] to produce a more
comprehensive collection of data. The test samples were
synchronized so that all the cells would be at the same stage
in their cell cycle. Three different methods were employed
to arrest the cells at the same stage: alpha-factor arrest,
elutriation, and arrest of CDC15 and CDC28 temperature-
sensitive mutants. The reported expression levels are the
log ratios of the test sample expression by control sample
expression level measurements.

Because Spellman’s data sets contained expression profiles
for all open reading frames in the yeast genome, numbering
over 6000, it was necessary to find a subset of these genes
in order to reduce the search space. Filkov et al. [3] cre-
ated a subset of 888 known transcriptional regulation pairs,
including 647 activations and 241 inhibitions. We used the
alpha-factor and CDC28 data sets for our experiment. After
filtering out all genes with a significant number of missing
data points from these data sets, we analyzed the known
regulation subsets using the three algorithms.

From the 888 known regulation pairs, the number of dis-
tinct genes that could be analyzed was 348 for alpha data
set and 458 for CDC28 data set. This means that there
are over 120,000 possible pairs that can be formed in the
alpha data set, and over 200,000 pairs in the CDC28 data
set. In the context of our evaluation, every pair of genes
that occurs in the list of 888 known pairs is a true positive.
‘We should note that because only the event method takes
directionality into account, we had to compensate for this
when comparing with the other two methods, lowering the
number of possible pairs by half. Figures 4 shows how many
true positives were found by the three methods in their top-
k candidates, where k varies from 0 to 10,000. All three
methods performed comparably.

Table 2 shows the degree of overlap between the pairs
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Figure 4: True Positive Distributions for Top-k (0 < k < 10,000)

Table 2: Overlapping Results Among Three Meth-
ods (All Results / True Positive Results)

| Methods | Alpha | CDC28 ]
Event + Correlation | 3367 /11 | 2916 / 9
Event + Edge 2081 /0 | 3362 / 0
Correlation + Edge | 1989 /0 | 2252 / 0

returned by the three algorithms, when looking at the top-
10,000 rankings by each method. No more than 1/3 of
the results returned by any two methods overlap with each
other, indicating that the event method finds significantly
different pairs from the other two methods. Table 2 also
shows the number of overlapping true positive pairs when
looking at the top-10,000 rankings by each method. It is
evident that there is very little overlap, if at all.

The event method produced the list of potential inhibitory
regulations as well, but as the other two methods are not
designed to find inhibitions, they could not be compared to
each other. Using the same parameters as above, the event
method found 27 true positive inhibitory relationships in the
alpha data set, and 17 in the CDC28 data set within the top-
10,000 ranking pairs. Using different parameters produced
better results, but lowered the number of true positive acti-
vations it found.

There were a few significant problems associated with the
obtained results that made the analysis inconclusive. First,
because of the poor resolution of the data, many pairs of
genes showed almost identical expression curves, making a
more detailed analysis difficult. If most of these pairs with
strong similarities were in fact regulatory pairs or at least
be involved in similar pathways, one could assign strong
confidence to using these methods for analyzing the data.
However, when the high-ranking pairs returned by the three
methods were compared against the yeast gene databases,
this was not always the case. While many pairs shared
common promoters or were components of the same pro-
tein complex, others were unrelated genes with no obvious
relationship.

The edge detection method posed another serious prob-
lem. The program, kindly provided by its original authors,
had difficulty in finding significant edges in many gene pro-
files, thereby giving zero score to a high portion of the genes.
Even for those genes that received nonzero scores, the num-
ber of edges that were found per gene was extremely low,
which casts doubt on the significance of the scores.

4.2 Synthetic Data Sets

Because of the limitations of Spellman’s data sets, we used
additional synthetic data sets for a more detailed evalua-
tion of the algorithms. Four data sets were designed to test
specific features of the three algorithms. In our experiment,
each data set consisted of curves designed to show regulatory
relationship and randomly produced curves. The regulatory
curves, named gene;, where 0 <= i <= 10, were produced
in such a way that gene; and gene;+1 would differ with re-
spect to the factors listed below. For example, with curves
produced to test for constant time delay, gene;+1 would be
a time-shifted version of gene;. Our synthetic data sets take
the following factors into consideration:

1. Constant Time Delay: The time delays between cor-
responding changes in two curves are always constant.
A signal curve gene;y1 is generated by time shifting
gene; by a fixed amount.

2. Irregular Time Delay: The time delays between corre-
sponding changes in two curves are variable. A signal
curve geneit1 is generated by time shifting gene; by a
randomly chosen amount.

3. Partial Matching: Only a section of the two curves can
be matched, and the rest of the curves are filled with
random edges. A signal curve gene;+1 is generated by
randomly changing gene; within a specified range.

4. Differential Weighting of Events: The two curves gene;
and gene;41 share major, matching rising edges, but
the rest of the curves are filled with random edges.
This is to test for differential weighting, where rising
edges are weighed more than falling edges.

To evaluate how the algorithms perform with the syn-
thetic data sets, we counted the number of true positive
pairs that they found. In this case, we need to account for
the fact that pairing gene, with gene,4,, where r is rela-
tively small, should be considered as better matches than
pairing gene, with a random curve. Thus, we specified a
range parameter r so that for gene,, a match with any of
geney_, through gene,y, would qualify as a true positive
pairing. We generated and tested five sets of data for each
category, then averaged the total number of true positives
found. Each data set contained 11 signal curves and 11 ran-
dom curves. The range for true positive classification was



Table 3: Average Number of True Positives from
Synthetic Data Sets (r = 2)

| Data Set | Correlation | Event ]
Constant Time Delay 31.6 39.8
Irregular Time Delay 27.2 33.8
Partial Matching 44.6 40.6
Differential Weighting 36.2 45.0

set at 2. Unfortunately, we could not compare the perfor-
mance of the event method to that of the edge detection
method, as the implementation of the method that we had
available was unable to produce non-zero scores in most of
the synthetic data pairs that we tested.

The results listed in Table 4 show that except for the Par-
tial Matching sets, the event method was superior to the
correlation method. We should note that the advantage en-
joyed by the correlation method was diminished when time
delay was introduced to the Partial Matching data sets.

5. CONCLUSIONSAND FUTURE WORK

We presented a new algorithm, called the event method,
that can find potential activation and inhibition pairs from
gene expression data. The event method is based on some
key features of gene expression, such as time delays and
asymmetry between rising and falling edges. It is compu-
tationally efficient. The method is shown to perform com-
parably to the correlation and edge detection methods in
finding true positive regulation pairs from Spellman’s yeast
data sets, and outperforms correlation on our synthetic data
sets. More results from this study can be found in [6].

In light of the limitations of the data used in our exper-
iments, it would be interesting to consider other types of
higher-quality time-series data. Also, integrating the mi-
croarray data with other types of a priori knowledge would
help narrowing down the search space. Creating a more real-
istic synthetic data set for testing the algorithms should also
prove to be interesting. An ideal synthetic data set would
come from an artificial regulatory network that incorporates
as many features of the real one as possible so that it would
be a reliable indicator of how the algorithms would perform
with good, high-quality data. Such a network would con-
sider the reaction kinetics of various pathways, the effect
of polymerization necessary for proteins to become active,
formation of protein complexes etc. [5, 10].

It would be desirable to study the effects of changing
the number of event types on the performance of the event
method. We used three event types in our experiments, but
one could increase this number so that the event strings
would represent the gene expression profiles in more detail.
The effects of the algorithm’s parameters on its performance
should be further investigated. While we did some empirical
tests in choosing the parameters we used, the quality of the
data we were working with here may have prevented us from
gaining more insight into the behaviour of the algorithm as
the parameters change. Finally, it is possible that by using
a local alignment algorithm instead of the global alignment
method used here, the performance of the event method
could be improved by focussing it more on local changes in
the gene expression profiles that may reflect complex, con-
ditional regulatory relationships.

Once we are left with potential regulatory pairs, it would

be prudent to remove any spurious pairings from the ranked
list. One possible approach is to perform transitive closure
removal: If there is a regulatory relationship between genes
A and B, and B and C, any high scores between genes A
and C may be due to the fact that they are related through
gene B only. Removing such pairs would allow more po-
tential candidates to be placed in the rankings. Ultimately,
methods for combining the ranked pairings into hypotheses
on larger fragments of the underlying regulatory network
should be studied. Transitive closure removal may help in
this context, as it would result in clusters of genes that are
connected by regulatory relationships.
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