
AClib: A Benchmark Library for Algorithm
Configuration

Frank Hutter1(B), Manuel López-Ibáñez2, Chris Fawcett3, Marius Lindauer4,
Holger H. Hoos3, Kevin Leyton-Brown3, and Thomas Stützle2

1 Department of Computer Science, Freiburg University, Freiburg, Germany
fh@informatik.uni-freiburg.de

2 IRIDIA, Université Libre de Bruxelles, Brussel, Belgium
{manuel.lopez-ibanez,stuetzle}@ulb.ac.be

3 Department of Computer Science,
University of British Columbia, Vancouver, Canada

{fawcettc,hoos,kevinlb}@cs.ubc.ca
4 Institute of Computer Science, Potsdam University, Potsdam, Germany

manju@cs.uni-potsdam.de

1 Introduction

Modern solvers for hard computational problems often expose parameters that
permit customization for high performance on specific instance types. Since it
is tedious and time-consuming to manually optimize such highly parameterized
algorithms, recent work in the AI literature has developed automated approaches
for this algorithm configuration problem [1,3,10,11,13,16]. This line of work has
already led to improvements in the state of the art for solving a wide range of
problems, including propositional satisfiability (SAT) [2,7,12,20], mixed integer
programming (MIP) [9], timetabling [4], AI planning [6,21], answer set program-
ming (ASP) [18], bi-objective TSP [14], and bi-objective flowshop scheduling
problems [5].

As the field of algorithm configuration matures and the number of available
configuration procedures grows, so does a need for standardized problem defin-
itions, interfaces, and benchmarks. Such a benchmark library would encourage
reproducible research, facilitate the empirical evaluation of new and existing
configuration procedures, reduce obstacles faced by researchers new to the com-
munity, and allow an objective scientific evaluation of strengths and weaknesses
of different methods. We therefore introduce AClib (www.aclib.net), a library of
algorithm configuration benchmarks.

2 Design Criteria and Summary of Benchmarks

Instances of the algorithm configuration problem (called configuration scenarios)
comprise various components: a parameterized algorithm A (target algorithm) to
be configured, a distribution D of problem instances I (target instances) and a
performance metric m(θ, π) capturing A’s performance with parameter settings
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 36–40, 2014.
DOI: 10.1007/978-3-319-09584-4 4

www.aclib.net


AClib: A Benchmark Library for Algorithm Configuration 37

θ ∈ Θ on instances π ∈ I. The objective is then to find a configuration θ∗ that
minimizes a statistic (often the mean) of m across instances sampled from D. In
practice, we typically have a finite set of instances from distribution D, which
is partitioned into disjoint training and test sets in order to obtain an unbiased
estimate of generalization performance for the configuration selected.

Table 1 summarizes the benchmarks we selected for AClib 1.0. One of our
design criteria was to achieve diversity across the following dimensions:

Table 1. Overview of algorithm configuration benchmarks in AClib.

Problem Solvers #Scenarios #Parameters #Instances Citation

Runtime Quality

SAT 12 different solvers 126 0 2–270 500–2064 [7,8,10]

MIP CPLEX 4 4 76 100–2000 [9]

ASP Clasp 3 0 85 480–3133 [18]

AI Planning LPG & Fast Downward 20 0 45–66 60–559 [6,21]

Time-tabling CTT 1 1 7–18 24 [4]

TSP ACOTSP, ACOTSP-VAR 0 2 11–28 50–100 [15]

bTSP MOACO 0 1 16 60 [14]

Machine Learning AutoWEKA 0 21 768 10 (CV folds) [19]

– Target problems: decision and optimization problems, as well as machine
learning;

– Algorithm types: stochastic local search (SLS), tree search, machine learn-
ing;

– Number of parameters: from 2 (in some SLS solvers) to 768 (in Auto-
WEKA [19]);

– Parameter types: from purely continuous (several SLS algorithms) to mixed
discrete/continuous with occasional conditional parameters (most algorithms)
to massively conditional spaces (SATenstein [12] and Auto-WEKA [19]);

– Different objectives: runtime required to reach an optimal solution (most
scenarios) and solution quality achieved in a given time (timetabling, TSP,
MIP, and machine learning);

– Target instance homogeneity: from quite homogeneous instance distri-
butions (most scenarios) to distributions that are heterogeneous at least in
instance hardness;

– Instance features: from scenarios for which no characteristic features have
been defined so far (timetabling) to those where 138 features exist for every
problem instance included (most SAT scenarios).

Another design criterion was to select configuration scenarios that will enable
the assessment of different components of algorithm configuration procedures,
such as their search procedures (deciding which configuration will be selected
next), their intensification/racing components (deciding how many runs to per-
form on which instances), and, in case of runtime optimization, their capping



38 F. Hutter et al.

procedures (deciding after which time a run is terminated as unsuccessful). We
achieved this by including scenarios where:

– the racing component is more important than the search component (because
most configurations are good, but instances are fairly heterogeneous; e.g.,
Spear-SWV);

– the search component is more important than the racing component (because
few configurations are good, but instances are homogeneous; e.g., the CPLEX
scenarios);

– capping is unimportant: all scenarios optimizing solution quality, and scenarios
with maximum runtimes that are already low enough for capping to not yield
large gains;

– capping is very important: large captimes and configurations that finish in
orders of magnitude below the captime (e.g., CPLEX scenarios, ASP-Riposte,
and Spear-SWV).

On a more technical level, since the evaluation of target algorithm A’s per-
formance with configuration θ requires us to execute A with θ on several target
instances, it is important to ensure that time and memory limits are respected
and that different configuration procedures C1 and C2 call A identically. If that
is not guaranteed, spurious performance differences may be measured — e.g.,
we once measured a 20 % performance difference just because C1 used relative
paths and C2 absolute paths to call a particular target algorithm A (the tar-
get algorithm saved its callstring in the heap space before the instance data,
such that the callstring length affected memory locality and thus the num-
ber of cache misses). To avoid such problems, for each configuration scenario
we defined a wrapper that deterministically maps parameter settings to target
algorithm command line call strings, executes those call strings and parses their
results. This wrapper also kills target algorithm runs if these do not respect their
runtime or memory limits (and in this case returns the worst possible perfor-
mance); this mechanism is important to avoid “hung” runs of a configuration
procedure that are waiting for a particular target algorithm call to finish, as
well as cases where excessive memory consumption leads to swapping or to jobs
being killed (e.g., when executing on a cluster). For this purpose, we modified
the runsolver tool [17] used to control algorithm runs in the international SAT
competition.

Regarding usage and maintenance, we designed AClib to be lightweight and
extensible. Because instance files for some scenarios are extremely large, AClib
allows users to download subsets of scenarios. This can be done (automatically)
on the basis of problems (e.g., all TSP scenarios), of algorithms (e.g., all scenarios
that can be used with Clasp), or by requesting individual scenarios. All down-
loadable pieces are hashed to guarantee the integrity of downloads. All current
sequential algorithm configuration procedures that support discrete variables
and multiple instances (ParamILS [11], SMAC [10], and irace [13]) can be run on
the scenarios via a common interface. New configuration scenarios and configu-
ration procedures can be contributed through a streamlined process.



AClib: A Benchmark Library for Algorithm Configuration 39

3 Future Work

In future work, we would like to grow AClib to include other configuration sce-
narios from the literature that are complementary to the current set, including
polynomial-time algorithms. We plan to use AClib to assess strengths and weak-
nesses of existing configuration procedures and to use it as the basis for the first
competition of such procedures. We also plan to expand the instance feature
portion of AClib and to use AClib as a source for generating benchmarks for
algorithm selection.

Acknowledgments. We gratefully acknowledge all authors of algorithms and instance
distributions for making their work available (they are cited on the webpage, acknowl-
edged in README files, and will be cited in a future longer version of this paper).
We thank Kevin Tierney and Yuri Malitsky for modifying GGA [1] to support AClib’s
format; Lin Xu for generating several instance distributions and writing most feature
extraction code for SAT and TSP; Adrian Balint and Sam Bayless for contributing SAT
benchmark distributions; Mauro Vallati for exposing many new parameters in LPG;
the developers of Fast Downward for helping define its configuration space; and Steve
Ramage for helping diagnose and fix problems with several wrappers and runsolver.
M. Lindauer acknowledges support by DFG project SCHA 550/8-3, and M. López-
Ibáñez acknowledges support from a “Crédit Bref Séjour à l’étranger” from the Belgian
F.R.S.-FNRS.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

2. Balint, A., Fröhlich, A., Tompkins, D., Hoos, H.: Sparrow 2011. In: Booklet of
SAT-2011 Competition (2011)

3. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of GECCO-02, pp. 11–18 (2002)

4. Chiarandini, M., Fawcett, C., Hoos, H.: A modular multiphase heuristic solver for
post enrolment course timetabling. In: Proceedings of PATAT-08 (2008)

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236
(2011)

6. Fawcett, C., Helmert, M., Hoos, H.H., Karpas, E., Röger, G., Seipp, J.: FD-
autotune: domain-specific configuration using fast-downward. In: Proceedings of
ICAPS-PAL11 (2011)

7. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Proceedings of FMCAD-07, pp. 27–34 (2007)

8. Hutter, F., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: Configurable SAT
solver challenge (CSSC) (2013), riptsizehttp://www.cs.ubc.ca/labs/beta/Projects/
CSSC2013/

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/
http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/


40 F. Hutter et al.

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

12. KhudaBukhsh, A., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automati-
cally building local search SAT solvers from components. In: Proceedings of IJCAI-
09, pp. 517–524 (2009)

13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

14. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

15. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. Eur. J. Oper. Res. (2013)

16. Nannen, V., Eiben, A.: Relevance estimation and value calibration of evolutionary
algorithm parameters. In: Proc. of IJCAI-07, pp. 975–980 (2007)

17. Roussel, O.: Controlling a solver execution with the runsolver tool. JSAT 7(4),
139–144 (2011)

18. Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: an ASP
practitioner’s guide. In: Proceedings of ICLP-LIPICS-12, pp. 164–175 (2012)

19. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of KDD-2013, pp. 847–855 (2013)

20. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: new variable selection
heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011.
LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)

21. Vallati, M., Fawcett, C., Gerevini, A.E., Hoos, H.H., Saetti, A.: Generating fast
domain-optimized planners by automatically configuring a generic parameterised
planner. In: Proceedings of ICAPS-PAL11 (2011)


	AClib: A Benchmark Library for Algorithm Configuration
	1 Introduction
	2 Design Criteria and Summary of Benchmarks
	3 Future Work
	References


