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Abstract
The performance of many machine learning meth-
ods depends critically on hyperparameter set-
tings. Sophisticated Bayesian optimization meth-
ods have recently achieved considerable successes
in optimizing these hyperparameters, in several
cases surpassing the performance of human ex-
perts. However, blind reliance on such methods
can leave end users without insight into the rela-
tive importance of different hyperparameters and
their interactions. This paper describes efficient
methods that can be used to gain such insight,
leveraging random forest models fit on the data
already gathered by Bayesian optimization. We
first introduce a novel, linear-time algorithm for
computing marginals of random forest predictions
and then show how to leverage these predictions
within a functional ANOVA framework, to quan-
tify the importance of both single hyperparame-
ters and of interactions between hyperparameters.
We conducted experiments with prominent ma-
chine learning frameworks and state-of-the-art
solvers for combinatorial problems. We show
that our methods provide insight into the relation-
ship between hyperparameter settings and perfor-
mance, and demonstrate that—even in very high-
dimensional cases—most performance variation
is attributable to just a few hyperparameters.

1. Introduction
Machine learning algorithms often behave very differently
with different instantiations of their hyperparameters. This
is true especially for complex model families, such as
deep belief networks (Hinton et al., 2006), convolutional
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networks (LeCun et al., 2001), stacked denoising autoen-
coders (Vincent et al., 2010), and computer vision archi-
tectures (Bergstra et al., 2013), all of which have tens up
to hundreds of hyperparameters. Since hyperparameter set-
tings often make the difference between mediocre and state-
of-the-art performance, and since naive hyperparameter op-
timization methods, such as grid search, do not scale to
many dimensions, there has been a recent surge of interest
in more sophisticated hyperparameter optimization meth-
ods (Hutter et al., 2011; Bergstra and Bengio, 2012; Bergstra
et al., 2011; Snoek et al., 2012; Bardenet et al., 2013). In
low-dimensional problems with numerical hyperparameters,
the best available hyperparameter optimization methods
use Bayesian optimization (Brochu et al., 2009) based on
Gaussian process models, whereas in high-dimensional and
discrete spaces, tree-based models (Bergstra et al., 2011),
and in particular random forests (Hutter et al., 2011; Thorn-
ton et al., 2013; Gramacy et al., 2013), are more success-
ful (Eggensperger et al., 2013).

Such modern hyperparameter optimization methods have
achieved considerable recent success. For example,
Bayesian optimization found a better instantiation of nine
convolutional network hyperparameters than a domain ex-
pert, thereby achieving the lowest error reported on the
CIFAR-10 benchmark at the time (Snoek et al., 2012). In
high-dimensional hyperparameter optimization problems,
recent success stories include (1) a new best result for the
MNIST rotated background images dataset in 2011 using
an automatically configured deep belief network with 32 hy-
perparameters (Bergstra et al., 2011); (2) a complex vision
architecture with 238 hyperparameters that can be instanti-
ated to yield state-of-the-art performance for such disparate
tasks as face-matching verification, face identification, and
object recognition (Bergstra et al., 2013); and (3) Auto-
WEKA, a framework enabling per-dataset optimization over
a 768-dimensional space including all model classes and
hyperparameters defined in WEKA (Thornton et al., 2013).
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A similar development can be observed in the area of com-
binatorial optimization, where automated hyperparameter
optimization approaches have recently led to substantial
improvements of high-performance heuristic algorithms for
a wide range of problems, including propositional satis-
fiability (Hutter et al., 2007; KhudaBukhsh et al., 2009),
mixed integer programming (Hutter et al., 2009), answer
set programming (Silverthorn et al., 2012) and the travel-
ing salesman problem (Styles and Hoos, 2013).1 While
traditional hyperparameter optimization methods in that
community are based on heuristic search (Adenso-Diaz and
Laguna, 2006; Nannen and Eiben, 2007; Hutter et al., 2009;
Ansotegui et al., 2009) and racing algorithms (Maron and
Moore, 1994; Birattari et al., 2010), recently, Bayesian opti-
mization methods based on random forest models have been
shown to compare favourably (Hutter et al., 2011).

The considerable success of Bayesian optimization for de-
termining good hyperparameter settings in machine learning
and combinatorial optimization has not yet been accompa-
nied by much work on methods for providing scientists with
answers to questions like the following: How important is
each of the hyperparameters, and how do their values affect
performance? Which hyperparameter interactions matter?
How do the answers to these questions depend on the data
set under consideration?

The answer to such questions is the key to scientific dis-
coveries, and consequently, recent Bayesian optimization
workshops at NIPS have identified these topics as a core area
in need of increased attention. Recent work on Bayesian
optimization has targeted the case where most hyperparam-
eters are truly unimportant (Chen et al., 2012; Wang et al.,
2013), and several applications have yielded evidence that
some hyperparameters indeed tend to be much more impor-
tant than others (Bergstra and Bengio, 2012; Hutter et al.,
2013). However, not much work has been done on quantify-
ing the relative importance of the hyperparameters that do
matter.

In this paper, we investigate the classic technique of func-
tional analysis of variance (functional ANOVA) (Sobol,
1993; Huang, 1998; Jones et al., 1998; Hooker, 2007)
to decompose the variance V of a blackbox function f :
Θ1 × · · · ×Θn → R into additive components VU associ-
ated with each subset of hyperparameters U ⊆ {1, . . . , n}.
In our case, f is our algorithm’s performance with hyper-
parameter settings θ. As is standard, we learn a predictive
model f̂ of f and partition the variance of f̂ . In order
to do this tractably, we must be able to efficiently com-
pute marginalizations of f̂ over arbitrary input dimensions
T ⊆ {1, . . . , n}. This has been shown to be possible for

1While that community uses the term ‘parameters’ for design
choices that need to be instantiated before running an algorithm,
here we stick with machine learning nomenclature and use the
term ‘hyperparameters’ for these choices throughout.

Gaussian process models f̂ with certain kernels (see, e.g.,
Jones et al., 1998). However, here, we are most interested
in random forest models, since these have been shown to
achieve the best performance for model-based optimization
in complex hyperparameter spaces, particularly in cases in-
volving categorical and conditional hyperparameters (Thorn-
ton et al., 2013; Eggensperger et al., 2013). To date, efficient
marginalizations had not been available for random forest
models, forcing researchers to revert to sampling-based
techniques to compute approximate functional ANOVA de-
compositions (Gramacy et al., 2013). Here, we provide
the first efficient and exact method for deriving functional
ANOVA sensitivity indices for random forests.

When applying this new method to quantify the importance
of the hyperparameters of machine learning algorithms and
combinatorial optimization procedures, following Hutter
et al. (2011), we consider a setting slightly more general
than blackbox function optimization: given an algorithm
A with configuration space Θ, a set of training scenarios
π1, . . . , πk, and a performance metric m(θ, π) capturing
A’s performance with hyperparameter configurations θ ∈ Θ
on scenario π, find a configuration θ ∈ Θ that minimizes
m over π1, . . . , πk, i.e., that minimizes the function

f(θ) :=

k∑
i=1

m(θ, πi).

In the case of hyperparameter optimization of machine learn-
ing algorithms, the πi are typically cross-validation folds,
and for combinatorial problem solving procedures, they are
problem instances deemed representative for the kind of
instances we aim to optimize performance for.

In the following, we first introduce our new, linear-time
algorithm for computing the marginals of random forest
predictions (Section 2). We then show how this algorithm
can be leveraged to tractably identify main and (low-order)
interaction effects within the functional ANOVA framework
(Section 3). Finally, we demonstrate the power of this ap-
proach through an extensive experimental evaluation, using
highly parametric machine learning frameworks and combi-
natorial solvers for NP-hard problems (Section 4).

2. Efficient Marginal Performance
Predictions

Algorithm designers wanting to manually assess hyperpa-
rameter importance often investigate the local neighbour-
hood of a given hyperparameter configuration: vary one
hyperparameter at a time and measure how performance
changes. Note that the only information obtained with this
analysis is how different hyperparameter values perform in
the context of a single instantiation of the other hyperparam-
eters. Optimally, algorithm designers would like to know
how their hyperparameters affect performance in general,
not just in the context of a single fixed instantiation of the
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remaining hyperparameters, but across all their instantia-
tions. Unfortunately, performing algorithm runs for all these
instantiations is infeasible in all but the easiest cases, since
there are Dk such instantiations of k discrete hyperparam-
eters with domain size D. (Continuous hyperparameters
are even worse, having infinitely many instantiations.) As
it turns out, an approximate analysis based on predictive
models can be used to solve this problem and quantify the
performance of a hyperparameter instantiation in the con-
text of all instantiations of the other hyperparameters. In
this section, we will show that this marginal performance
of a partial hyperparameter instantiation can be predicted
by computing the required exponential (or infinite) sum of
predictions in linear time. We first cover some notation and
define the problem formally. Then, we introduce an algo-
rithm to predict this marginal performance using random
forests and prove its correctness and linear time complexity.

2.1. Problem Definition

We begin with some basic definitions. LetA be an algorithm
having n hyperparameters with domains Θ1, . . . ,Θn. We
use integers to denote the hyperparameters, and N to refer
to the set {1, . . . , n} of all hyperparameters of A.

Definition 1 (Configuration space Θ). A’s configuration
space is Θ = Θ1 × · · · ×Θn.

Definition 2 (Hyperparameter Instantiation). A complete
instantiation of an algorithm’s n hyperparameters is a vec-
tor θ = 〈θ1, . . . , θn〉 with θi ∈ Θi. We also refer to
complete hyperparameter instantiations as hyperparam-
eter configurations. A partial instantiation of a subset
U = {u1, . . . , um} ⊆ N of A’s hyperparameters is a vec-
tor θU = 〈θu1

, . . . , θum
〉 with θui

∈ Θui
.

The extension set of a partial hyperparameter instantiation is
the set of hyperparameter configurations that are consistent
with it.

Definition 3 (Extension Set). Let θU = 〈θu1
, . . . , θum

〉
be a partial instantiation of the hyperparameters U =
{u1, . . . , um} ⊆ N . The extension set X(θU ) of θU is
then the set of hyperparameter configurations θN |U =
〈θ′1, . . . , θ′n〉 such that ∀j(j = uk ⇒ θ′j = θuk

).

To handle sets of hyperparameter configurations with a mix
of continuous and categorical hyperparameters, we define
the range size of a set.

Definition 4 (Range size). The range size ||S|| of an empty
set S is defined as 1; for other finite S, the range size
equals the cardinality: ||S|| = |S|. For closed intervals
S = [l, u] ⊂ R with l < u, ||S|| = u − l. For cross-
products S = S1 × · · · × Sk, ||S|| =

∏k
i=1 ||Si||.

The probability density of a uniform distribution over
X(θU ) is then simply 1/||X(θU )|| = 1/||ΘT ||, where
T = {t1, . . . , tk} = N \ U and ΘT = Θt1 × · · · × Θtk .

Now, we can define the marginal (predicted) performance
of a partial instantiation θU as the expected (predicted) per-
formance of A across X(θU ).

Definition 5 (Marginal performance). Let A’s (true) per-
formance be y : Θ 7→ R, U ⊆ N , and T = N \ U . A’s
marginal performance aU (θU ) is then defined as

aU (θU ) = E[y(θN |U ) | θN |U ∈ X(θU )]

=
1

||ΘT ||

∫
y(θN |U )dθT .

Similarly, A’s marginal predicted performance âU (θU ) un-
der a model ŷ : Θ→ R is

âU (θU ) =
1

||ΘT ||

∫
ŷ(θN |U )dθT . (1)

Note that if the predictive model ŷ has low error on aver-
age across the configuration space, the difference between
predicted and true marginal performance will also be low.

2.2. Efficient Computation of Marginal Predictions in
Random Forests

In this section, we show that when using random forest
predictors ŷ, the marginal predicted performance âU (θU )
defined in Eq. 1 can be computed exactly in linear time. The
fact that this can be done for random forests is important
for our application setting, since random forests yield the
best performance predictions for a broad range of highly
parameterized algorithms (Hutter et al., 2014).

Random forests (Breiman, 2001) are ensembles of regres-
sion trees. Each regression tree partitions the input space
through sequences of branching decisions that lead to each
of its leaves. We denote this partitioning as P . Each equiva-
lence class Pi ∈ P is associated with a leaf of the regression
tree and with a constant ci. Let Θ

(i)
j ⊂ Θj denote the subset

of domain values of hyperparameter j that is consistent with
the branching decisions leading to the leaf associated with
Pi. Then, for trees with axis-aligned splits, Pi is simply the
Cartesian product

Pi = Θ
(i)
1 × · · · ×Θ(i)

n . (2)

The predictor ŷ : Θ→ R encoded by the regression tree is

ŷ(θ) =
∑
Pi∈P

I(θ ∈ Pi) · ci, (3)

where I(x) is the indicator function. Random forests simply
predict the average of their individual regression trees.

Our approach for computing marginal predictions âU (θU )
of a random forest works in two phases: a preprocessing
phase that has to be carried out only once and a prediction
phase that has to be carried out once per requested marginal
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Algorithm 1: ComputePartitioning(Θ, T , i, Θ(i))
Input :Θ = Θ1 × · · · ×Θn, a configuration space; T , a

regression tree partitioning Θ; i, a node;
Θ(i) = Θ

(i)
1 × · · · ×Θ

(i)
n , i’s partition of Θ

Output :Partitioning P = {P1, ..., Pk} of Θ(i)

1 if node i is a leaf then return {Θ(i)}
2 else
3 Let v be the hyperparameter that node i splits on
4 Follow the splitting rule defined by node i to partition

Θ
(i)
v into newly created sets Θ

(l)
v and Θ

(r)
v for its left

and right child l and r, respectively
5 Pl ← ComputePartitioning(Θ, T , l,

Θ
(i)
1 × · · ·Θ

(i)
v−1 ×Θ

(l)
v ×Θ

(i)
v−1 × · · · ×Θ

(i)
n )

6 Pr ← ComputePartitioning(Θ, T , r,
Θ

(i)
1 × · · ·Θ

(i)
v−1 ×Θ

(r)
v ×Θ

(i)
v−1 × · · · ×Θ

(i)
n )

7 return Pl ∪ Pr

prediction. Both phases require only linear time given a ran-
dom forest model as input (constructing the random forest
is a separate problem, but is also cheap: for T data points of
dimensionality n, it is O(n ·T 2 log T ) in the worst case and
O(n · T log2 T ) in the more realistic best case of balanced
trees (Hutter et al., 2014)).

The key idea behind our algorithm is to exploit the fact
that each of the regression trees in a given forest defines a
partitioning P of the configuration space Θ, with piecewise
constant predictions ci in each Pi ∈ P , and that the problem
of computing sums over an arbitrary number of configura-
tions thus reduces to the problem of identifying the ratio of
configurations that fall into each partition.

We first show that, given a partitioning P , we can compute
marginal predictions as a linear sum over entries in the
leaves.
Theorem 6. Given the partitioning P of a regression tree
T that defines a predictor ŷ : Θ 7→ R, and a partial
instantiation θU of Θ’s hyperparameters N , T ’s marginal
prediction âU (θU ) can be computed as

âU (θU ) =
∑
Pi∈P

||Θ(i)
N\U ||

||ΘN\U ||
I(θU ∈ Θ

(i)
U ) · ci.

All proofs are provided in the supplementary material. Us-
ing Theorem 6, we can compute arbitrary marginals by a
simple iteration over the partitions by counting the ratio
of hyperparameter configurations falling into each parti-
tion. However, regression trees do not normally provide
explicit access to these partitions; they are defined implic-
itly through the tree structure. Since we need to represent
the partitioning explicitly, one may worry about space com-
plexity. Indeed, if we stored the values Θ(i)

j for each leaf
i and categorical hyperparameter j (as well as lower and
upper bounds for continuous hyperparameters), for a ran-
dom forest with B trees of L leaves each, and n categorical

hyperparameters with domain size at most D, we would end
up with space complexity of Θ(B ·L · n ·D). In the largest
of the practical scenarios we consider later in this work
(random forests with B = 10 trees of up to L = 100 000
leaves, configuration spaces with up to n = 768 hyperpa-
rameters and domain sizes up to D = 20) this would have
been infeasible. Instead, we show that Algorithm 1 can
compute the partitioning using a pointer-based data struc-
ture, reducing the space complexity to O(B · L · (D + n)).
(Alternatively, when space is not a concern, the partitioning
can be represented using a bit mask, replacing O(log(D))
member queries with O(1) operations and thus reducing
the complexity of marginal predictions for single trees from
O(L · n logD) to O(L · n).)

Theorem 7. Given a regression tree T with L leaves and
a configuration space Θ with n hyperparameters and cate-
gorical domain size at most D, Algorithm 1 computes T ’s
partitioning of Θ in time and space O(L ·D + L · n).

To compute marginal predictions of random forests, we av-
erage over the marginal predictions of their individual trees.
We use the variance across these individual tree predictions
to express our model uncertainty.

Corollary 8. Given a random forest with B trees of up to
L leaves that defines a predictor ŷ : Θ → R for a config-
uration space Θ with n hyperparameters and categorical
domain size at most D, the time and space complexity of
computing a single marginal of ŷ is O(B · L · max{D +
n, n logD}). Each additional marginal can be computed in
additional space O(1) and time O(B · L · n logD).

3. Efficient Decomposition of Variance
In this section, we review functional analysis of variance
and demonstrate how we can use our efficient marginal
predictions with this technique to quantify the importance
of an algorithm’s individual hyperparameters and of low-
order interactions between hyperparameters.

3.1. Functional Analysis of Variance (ANOVA)

Functional analysis of variance (functional ANOVA) is a
prominent data analysis method from the statistics litera-
ture (Sobol, 1993; Huang, 1998; Jones et al., 1998; Hooker,
2007). While this method has not received much attention
in the machine learning community so far, we believe that
it offers great value. In a nutshell, ANOVA partitions the
observed variation of a response value (here: algorithm per-
formance) into components due to each of its inputs (here:
hyperparameters). Functional ANOVA decomposes a func-
tion ŷ : Θ1 × · · · ×Θn → R into additive components that
only depend on subsets of its inputs N :

ŷ(θ) =
∑
U⊆N

f̂U (θU ).
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Algorithm 2: QuantifyImportance(Θ, T , K)
Input :Θ, a configuration space with hyperparameters N ;

T , a regression tree; K, the maximal order of
interaction effects to be computed

Output :{FU | U ⊆ N, |U | ≤ K}, the fractions of
variance contributed by all hyperparameter subsets
up to size K

1 P ← ComputePartitioning(Θ, T , 1, Θ) // 1 is T ’s root

2 f̂∅ ←
∑

Pi∈P

(∏
j∈N ||Θ

(i)
j ||/||Θj ||

)
· ci.

3 V←
∑

Pi∈P

(∏
j∈N ||Θ

(i)
j ||/||Θj ||

)
· (ci − f̂∅)2.

4 for k = 1, . . . ,K do
5 for all U ∈ {U ′ ⊂ N, |U ′| = k} do
6 VU ← 0
7 for all θU ∈ ΘU do

8 âU (θU )←
∑

Pi∈P
||Θ(i)

N\U ||
||ΘN\U ||

I(θU ∈

Θ
(i)
U ) · ci

9 f̂U (θU )← âU (θU )−
∑

W(U f̂W (θW )

10 VU ← VU + 1/||ΘU || · f̂U (θU )2

11 FU ← VU/V

12 return {FU | U ⊆ N, |U | ≤ K}

The components f̂U (θU ) are defined as follows:

f̂U (θU ) =

{
1
||Θ||

∫
ŷ(θ)dθ if U = ∅.

âU (θU )−
∑

W(U f̂W (θW ) otherwise.
(4)

The constant f̂∅ is the function’s mean across its domain.
The unary functions f̂{j}(θ{j}) are called main effects and
capture the effect of varying hyperparameter j, averaging
across all instantiations of all other hyperparameters. The
functions f̂U (θU ) for |U | > 1 capture exactly the interac-
tion effects between all variables in U (excluding all lower-
order main and interaction effects of W ( U ).

By definition, the variance of ŷ across its domain Θ is

V =
1

||Θ||

∫
(ŷ(θ)− f̂∅)2dθ, (5)

and functional ANOVA decomposes this variance into con-
tributions by all subsets of variables (see, e.g., Hooker,
2007, for a derivation):

V =
∑
U⊂N

VU , where VU =
1

||ΘU ||

∫
f̂U (θU )2dθU . (6)

The importance of each main and interaction effect f̂U can
thus be quantified by the fraction of variance it explains:
FU = VU/V.

3.2. Variance Decomposition in Random Forests

In Algorithm 2, we use our efficient marginal predictions
from Section 2.2 to quantify the importance of main and

interaction effects of random forest predictors in the func-
tional ANOVA framework of Eq. 6.

Theorem 9. Given a configuration space Θ consisting
of n categorical hyperparameters2 of maximal domain
size D and a regression tree T with L leaves that de-
fines a predictor ŷ : Θ → R, Algorithm 2 exactly com-
putes the fractions of variance explained by all subsets
U of Θ’s hyperparameters N of arity up to K, with
space complexity O(L · D + L · n) and time complexity

O
(
L ·D +

∑K
k=1

(
n
k

)
·Dk(L · n log d+ 2k)

)
.

To compute hyperparameter importance in random forests,
we simply apply Algorithm 2 for each tree and compute
means and standard deviations across the trees.

3.3. Practical Use for Identifying Hyperparameter
Importance Given Logged Performance Data

Note that Theorem 9 assumes regression tree predictors
ŷ : Θ→ R that predict the performance of hyperparameter
configurations and do not mention training scenarios (such
as cross-validation folds in machine learning, or problem
instances when optimizing combinatorial solvers). How-
ever, the performance data logged in modern Bayesian
optimization methods consists of algorithm runs on sin-
gle training scenarios: “algorithm run t used configuration
θt on fold/instance πt and achieved performance yt”. We
thus construct random forest predictors ŷ′ : Θ × Π → R

and use them to predict, for every unique θ in our training
data, the average performance m̂θ = 1/m

∑k
i=1m(θ, πi)

across training scenarios π1, . . . , πk. Then, we learn ran-
dom forests ŷ : Θ → R using tuples (θ, m̂θ) as training
data. Our variance decomposition then applies directly to
the trees in these forests.

While some algorithm designers are interested in the global
effect of a hyperparameter (subset) in the context of all other
possible hyperparameter settings, others care more about
effects in “good” regions of the configuration space, where
“good” may have different meanings, such as “at least as
good as the (manually chosen) default” or “in the top X% of
configurations”. We can easily support such alternative mea-
sures of importance by capping the performance values of
each training configuration at a given maximum ymax and
learning our random forest on tuples (θ,min(mθ, ymax))
instead of (θ,mθ). The consequence is that no configura-
tion is predicted to be worse than ymax, and thus all remain-
ing performance variation characterizes regions of the space
with performance better than ymax.

2For continuous hyperparameters j with Θj = [lj , uj ],
we have to sum over all intervals of [lj , uj ] defined by
the split points in

⋃
Pi∈P{minΘ

(i)
j ,maxΘ

(i)
j }. The num-

ber of such intervals can in principle grow as large as the
number of leaves, leading to worst-case time complexity
O
(
L ·D +

∑K
k=1

(
n
k

)
· Lk(L · n log d+ 2k)

)
.
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4. Empirical Evaluation
We demonstrate our techniques by assessing the importance
of hyperparameters of various machine learning algorithms
and solvers for NP-hard problems. Additional details and
results for all experiments are provided in the supplementary
material.

4.1. Evaluation on Ground-Truth Data

Our first experiment utilizes data gathered with an online
variational Bayes algorithm for Latent Dirichlet Allocation
(Online LDA) (Hoffman et al., 2010) and made available
as part of a previous study in Bayesian optimization for
the hyperparameters of this algorithm (Snoek et al., 2012).
Complete ground truth data is available for a grid of three
hyperparameters (κ, τ0, and S), discretized to 6, 6, and 8
values, respectively; κ controls how quickly information
is forgotten, τ0 > 0 downweights early iterations, and S
concerns the size of mini-batches. For each of the 6×8×6 =
288 grid points, we know the algorithm’s performance score
(perplexity) and its training time.

Let us assume we only have available a subset of 100 data
points randomly sampled out of the 288. We can then fit
a model (here, a random forest) and marginalize out the
effects of all hyperparameters but one in the model. Us-
ing our efficient marginalization techniques from Section
2, this approach also scales to high dimensions. Figure 1
shows the marginal perplexity that is achieved by setting
each hyperparameter to a certain value (and averaging over
all instantiations of the others). Clearly, the batch size hy-
perparameter S is marginally most important, with large
batch sizes consistently yielding lower perplexity. Indeed,
functional ANOVA reveals that the batch size hyperparam-
eter by itself is responsible for 65% of the variability of
perplexity across the entire space. Another 18% are due to
an interaction effect between S and κ, which is visualized
in Figure 2. From this figure, we note that the κ hyperpa-
rameter is much more important for small batch sizes than
for large ones—an interaction effect that cannot be captured
by single marginals. Figures 1 and 2 also compare true
marginals (computed from the complete grid data) vs our
predictions, verifying that the two are closely aligned.

Since we also have data on the algorithm’s runtime with
different hyperparameter settings, we can carry out exactly
the same analysis to assess how runtime depends on hy-
perparameter settings. As the results in Figure 3 show,
hyperparameter κ most influences runtime (causing 54% of
the runtime variation), followed by the batch size hyperpa-
rameter (causing 21% of the runtime variation). The batch
size hyperparameter shows an interesting pattern, with high
runtimes for very low or very high values and a sweet spot
for intermediate values. Combining this finding with the
results from Figure 1 shows that batch sizes around 1 000
yield a good compromise of speed and accuracy.
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Figure 1. Main effects for Online LDA’s perplexity, one plot per
hyperparameter (identified by the column header). Each plot shows
marginal perplexity achieved when varying the hyperparameter’s
value across the x-axis. The dashed black line and grey-shaded
area indicate predicted marginals (mean± one standard deviation).
The blue circles denote true marginals.
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(on a finer grid)

Figure 2. Interaction effect for Online LDA’s hyperparameters κ
and S for predicting perplexity.

Overall, in this experiment on ground truth data we observed
that our predicted marginals and functional ANOVA analy-
ses are accurate and can give interesting insights even for
low-dimensional hyperparameter spaces.

4.2. Evaluation on WEKA’s Hyperparameter Space

We now demonstrate how to use our framework for an
exploratory analysis in a very high-dimensional hyperpa-
rameter space, that of the machine learning framework
WEKA (Hall et al., 2009). We use the hyperparameter space
defined by the recent Auto-WEKA framework (Thornton
et al., 2013), which includes not only numerical hyperpa-
rameters of each of the models implemented in WEKA,
but also discrete choices about which model to use, meta-
classifiers, ensemble classifiers, and a multitude of feature
selection mechanisms. With 768 hyperparameters, Auto-
WEKA constitutes the largest configuration space of which
we are aware, and it is precisely for this reason that we chose
to study it: at this dimensionality, it is virtually impossible
to manually keep track of each individual hyperparameter.
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Figure 3. Main effects for Online LDA’s runtime.
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Dataset # data time 1st 2nd 3rd

YEAST 12823 187s class (31%) feature-s (10%) baseclass (4%)
AMAZON 179 3s class (58%) baseclass (18%) feature-s (5%)
MNIST BASIC 129 3s class (55%) baseclass (15%) feature-s (6%)
KDD09-APPENTENCY 682 7s class (41%) baseclass (16%) feature-s (3%)
CIFAR-10 99 2s class (53%) baseclass (23%) feature-s (4%)

Table 1. Top 3 most important hyperparameters of Auto-WEKA
for each of 5 datasets, based on data from one SMAC run. We
also list the number of data points (i.e., 〈WEKA configuration,
performance〉 pairs) gathered by SMAC, as well as fANOVA’s run-
time using this data. We give means computed across 25 repetitions
(each based on a different SMAC run).

Auto-WEKA uses tree-based Bayesian optimization meth-
ods, such as TPE (Bergstra et al., 2011) and SMAC (Hutter
et al., 2011), to search WEKA’s joint space of models and
hyperparameters. Hyperparameter settings are evaluated by
running the respective instantiations of WEKA on one or
more cross-validation folds, and the resulting performance
values are used to inform a sequential search process. Thorn-
ton et al. (2013) made available the performance data for
each of 21 datasets gathered by SMAC (the method yielding
the best Auto-WEKA performance) during its optimization
process.

Table 1 lists a representative subset of those 21 data sets,
along with the average number of data points gathered in a
single SMAC run for the respective data set. With this data
as input, we ran our functional ANOVA approach to identify
the three most important hyperparameters for each dataset;
we list these in Table 1 along with the fraction of variance
explained by them. Not surprisingly, the most important
hyperparameter was the model class used. Depending on
the dataset, the second-most important hyperparameter con-
cerned either feature selection or the base classifier to be
used inside a meta classifier.

Figure 4 shows the marginal performance of each model
class in more detail for two representative datasets, revealing
that different model classes perform very differently on
different data sets. Note that performance, as shown in these
plots, is marginalized over all possible instantiations of a
given model, giving an advantage to methods that are robust
with respect to their hyperparameter settings.

These results demonstrate that our framework can be used
out of the box for very high-dimensional hyperparameter
spaces with mixed continuous/discrete hyperparameters.

4.3. Evaluation for Combinatorial Problem Solvers

To demonstrate the versatility of our variance decomposition
methods, we also applied them to assess hyperparameter im-
portance of seven highly parametric state-of-the-art solvers
for prominent combinatorial problems; in particular, we
considered ten benchmarks from propositional satisfiabil-
ity (SAT), mixed integer programming (MIP) and answer
set programming (ASP), covering applications in formal
verification, industrial process optimization, computational
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Figure 4. Main effect of Auto-WEKA’s model class hyperparame-
ter for CIFAR-10 (top) and MNIST (bottom).

Raw Performance Impr. over 25% quant. Impr. over def
Scenario Main Pairwise Main Pairwise Main Pairwise

SPEAR-BMC 88% (2s) 4% (112s) 50% (1s) 15% (36s) 26% (0s) 20% (23s)
SPEAR-SWV 76% (6s) 8% (348s) 19% (1s) 21% (80s) 74% (4s) 11% (250s)
CRYPTOMINISAT-BMC 28% (1s) 18% (62s) 31% (1s) 20% (39s) 6% (0s) 11% (5s)
CRYPTOMINISAT-SWV 37% (4s) 33% (182s) 9% (1s) 19% (44s) 24% (2s) 35% (70s)

SPARROW-3SAT1k 78% (0s) 15% (0s) 53% (0s) 31% (0s) 31% (0s) 34% (0s)
SPARROW-5SAT500 65% (0s) 28% (0s) 57% (0s) 34% (0s) 66% (0s) 27% (0s)
CAPTAINJACK-3SAT1k 42% (9s) 9% (1321s) 21% (4s) 9% (599s) 37% (6s) 9% (832s)
CAPTAINJACK-5SAT500 20% (6s) 11% (917s) 18% (2s) 12% (308s) 26% (5s) 12% (726s)
SATENSTEIN-3SAT1k 45% (6s) 37% (845s) 23% (2s) 27% (296s) 27% (3s) 29% (334s)
SATENSTEIN-5SAT500 33% (9s) 45% (1155s) 16% (3s) 32% (379s) 22% (5s) 49% (648s)

CPLEX-RCW 58% (5s) 6% (713s) 16% (1s) 33% (199s) 6% (1s) 15% (127s)
CPLEX-CORLAT 31% (29s) 7% (4361s) 16% (10s) 22% (1427s) 30% (22s) 16% (3129s)
CPLEX-Regions200 61% (68s) 19% (10416s) 26% (26s) 33% (3476s) 13% (22s) 27% (2787s)
CPLEX-CLS 55% (143s) 5% (21502s) 2% (43s) 4% (5725s) 5% (53s) 15% (6047s)

CLASP-WeightedSeq 46% (13s) 13% (2368s) 27% (5s) 20% (858s) 30% (6s) 20% (1047s)
CLASP-Riposte 39% (103s) 8% (18518s) 10% (68s) 3% (12213s) 15% (82s) 3% (14362s)

Table 2. Fractions of variance explained by main effects and pair-
wise interaction effects, and total time required to compute all
of them. Left: effects for explaining raw performance; Middle:
effects for explaining improvements over 25% quantile; Right:
effects for explaining improvements over the default.

sustainability and database query optimization.

As for hyperparameter optimization, we carried out an ex-
periment with known ground-truth data for optimizing a
combinatorial problem solver (SPARROW, on its two bench-
marks in Table 2). The results were qualitatively similar to
those from Section 4.1 and are reported in the supplementary
material.

Next, we computed all main and interaction effects for all
solver/benchmark combinations we considered; the left third
of Table 2 summarizes the results. We note that in all cases,
the main effects accounted for a substantial fraction of the
overall performance variation (20–88%). Since single hy-
perparameter effects are easier for humans to understand
than complex interaction effects, this is an encouraging find-
ing. These main effects were computed within seconds,
meaning that algorithm designers could use our approach
interactively. Finally, pairwise interaction effects were also
important in several cases, explaining up to 45% of the
overall performance variation.
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Figure 5. Main effect of SPEAR’s variable selection heuristic
(with 20 possible values) for two different instance distributions.
Left: BMC; right: SWV.

One particularly interesting case in Table 2 is SPEAR’s
performance on bounded model checking (BMC) instances.
Here, 87% of the variance was explained by a single hy-
perparameter, SPEAR’s variable selection heuristic. Fig-
ure 5 (left) shows that several standard activity heuristics (la-
belled 0,2,3,4,5,6,7) performed well for this dataset, whereas
other ad-hoc heuristics performed poorly. In contrast, for
SPEAR’s performance on software verification (SWV) in-
stances (see Figure 5, right side), one of the heuristics ini-
tially suspected to perform poorly turned out to be very
effective. Before seeing these results, SPEAR’s developer
did not have any intuition about which variable selection
heuristic would work well for SWV; in particular, he did not
know whether selecting variables in the order they were cre-
ated (option 16, clearly the best choice) or in reverse order
(option 17, one of the worst choices) would be preferable
(personal communication). Our result helped him realize
that the SAT-encoding used in these SWV instances creates
important propositional variables first.

Next, we evaluated hyperparameter importance in the “good”
parts of the space, as described in Section 3.3. We used two
alternative notions of good configurations: (1) being in the
top 25% in terms of performance, and (2) beating the algo-
rithm default. Table 2 (middle and right) shows that single
marginals still explain a sizable fraction of the variance in
this good part of the space, but less than in the entire space.
A closer inspection of extreme cases, such as CPLEX-CLS,
showed that in these cases, most of the overall variance was
explained by one or more hyperparameters that were best
left at their defaults. However, for explaining improvements
over the default, these hyperparameters were useless, since
none of their values achieved such improvements.

4.4. Configuration in the Subspace of Important
Hyperparameters

We can also use our variance decomposition techniques to
identify a hyperparameter subspace that captures most of
the potential for improvements over a good configuration
(e.g., the default or the 25% quantile as in Section 4.3). To
verify that, by doing so, we indeed capture the potential for
improvement, we compare the results found by running the
algorithm configuration SMAC in that subspace and in the
full space. We performed this experiment for a neural net-

(a) Neural network on CIFAR-10-SMALL (b) CPLEX on CLS

Figure 6. Configuration results with SMAC on full and reduced
hyperparameter spaces.

work (8 hyperparameters; subspace: 3 hyperparameters) and
for the mixed integer programming solver CPLEX (76 hyper-
parameters; subspace: 10 hyperparameters). As the results
in Figure 6 illustrate, configuration in the subspace yielded
good results and often did so faster than in the full space.
Note that these results do not imply that we have defined an
improved configuration procedure for small configuration
budgets: the models we used to identify the important sub-
spaces were fit on data gathered by first running SMAC in
the complete space. However, they do confirm that our func-
tional ANOVA approach rates as important hyperparameters
that capture the potential for improvement.

5. Conclusion
In this work, we introduced an efficient approach for as-
sessing the importance of the inputs to a blackbox function,
and applied it to quantify the effect of algorithm hyperpa-
rameters. We first derived a novel linear-time algorithm for
computing marginal predictions over arbitrary input dimen-
sions in random forests and then showed how this algorithm
can be used to quantify the importance of main effects and
interaction effects through a functional ANOVA framework.
We empirically validated our approach on performance data
from several well-known machine learning frameworks and
from state-of-the-art solvers for several prominent combina-
torial problems. We confirmed our predictions using ground
truth data and showed how our approach can be used to
gain insights into the relevance of hyperparameters. We also
demonstrated that performance variability is often largely
caused by few hyperparameters that define a subspace to
which we can restrict configuration.

The methods introduced in this work offer a principled, sci-
entific way for algorithm designers and users to gain deeper
insights into the way in which design choices controlled by
hyperparameters affect the overall performance of a given
algorithm. In future work, we plan to extend our approach
to detect dominated hyperparameter values and interactions
between instance characteristics and hyperparameter set-
tings. We also plan to develop configuration procedures that
determine important hyperparameters on the fly and exploit
this information to speed up the optimization process.

Our implementation, along with a quick start guide showing
how to apply it to your own algorithms, is publicly available
at www.automl.org/fanova.

www.automl.org/fanova
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Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors,
Empirical Methods for the Analysis of Optimization Algorithms,
chapter F-race and iterated F-race: An overview. Springer, 2010.

L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian
optimization of expensive cost functions, with application to
active user modeling and hierarchical reinforcement learning.
Technical Report UBC TR-2009-23 and arXiv:1012.2599v1,
Dept. of Computer Science, Univ. of British Columbia, 2009.

B. Chen, R.M. Castro, and A. Krause. Joint optimization and
variable selection of high-dimensional Gaussian processes. In
Proc. of ICML-12, 2012.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek,
H. Hoos, and K. Leyton-Brown. Towards an empirical foun-
dation for assessing bayesian optimization of hyperparameters.
In NIPS Workshop on Bayesian Optimization in Theory and
Practice, 2013.

R.B. Gramacy, M. Taddy, and S.M. Wild. Variable selection and
sensitivity analysis using dynamic trees, with an application to
computer code performance tuning. Ann. Appl. Stat., 7(1):51–
80, 2013.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I.H. Witten. The WEKA data mining software: an update. ACM
SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7), July 2006.

M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for
latent Dirichlet allocation. In Proc. of NIPS-10, pages 856–864,
2010.

G. Hooker. Generalized functional ANOVA diagnostics for high
dimensional functions of dependent variables. Journal of Com-
putational and Graphical Statistics, 16(3), 2007.

J. Z. Huang. Projection estimation in multiple regression with
application to functional anova models. The Annals of Statistics,
26(1):242–272, 1998.
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