Performance Prediction and Automated Tuning of
Randomized and Parametric Algorithms

Frank Huttet, Youssef Hamadi Holger H. Hoos, and Kevin Leyton-Browh

1 University of British Columbia, 2366 Main Mall, Vancouver BC, V6T1Z4ada
{hutter, kevinl b, hoos}@s. ubc. ca
2 Microsoft Research, 7 JJ Thomson Ave, Cambridge, UK
youssef h@n crosoft.com

Abstract. Machine learning can be used to build models that predict the run-
time of search algorithms for hard combinatorial problems. Suchirical hard-

ness modellave previously been studied for complete, deterministic search algo-
rithms. In this work, we demonstrate that such models can also makeéssugty
accurate predictions of the run-time distributions of incomplete and raizédm
search methods, such as stochastic local search algorithms. We @istoslthe

first time how information about an algorithm’s parameter settings candog-in
porated into a model, and how such models can be used to automatically adjus
the algorithm’s parameters on a per-instance basis in order to optimizefiis-pe
mance. Empirical results for Noveltyand SAPS on structured and unstructured
SAT instances show very good predictive performance and sigrifigseedups

of our automatically determined parameter settings when compared toféhdtde
and best fixed distribution-specific parameter settings.

1 Introduction

The last decade has seen a dramatic rise in our ability t@ @@mbinatorial optimiza-
tion problems in many practical applications. High-pemfance heuristic algorithms
increasingly exploit problem instance structure. Thugwedge about the relation-
ship between this structure and algorithm behavior formargortant basis for the
development and successful application of such algoritiths has inspired a large
amount of research on methods for extracting and acting apolminformation. These
range from search space analysis to automated algorittettisel and tuning methods.

An increasing number of studies explore the use of machamaileg techniques in
this context [15, 18, 6, 8]. One recent approach uses linasisfunction regression to
obtain models of the time an algorithm will require to solvgieen problem instance
[19, 21]. These so-callegimpirical hardness modetsn be used to obtain insights into
the factors responsible for an algorithm’s performancetooinduce distributions of
problem instances that are challenging for a given algariffhey can also be leveraged
to select among several different algorithms for solvingvaig problem instance.

In this paper, we extend on this work in three significant wayisst, past work
on empirical hardness models has focused exclusively oplete; deterministic algo-
rithms [19, 21]. Ouir first goal is to show that the same metheaatsbe used to predict
sufficient statistics of the run-time distributions (RTé)incomplete, randomized al-
gorithms, and in particular of stochastic local search (S§orithms for SAT. This is



important because SLS algorithms are among the best existihniques for solving a
wide range of hard combinatorial problems, including haroctasses of SAT [14].

The behavior of many randomized heuristic algorithms igrotled by parameters
with continuous or large discrete domains. This holds irtipalar for most state-of-
the-art SLS algorithms. For example, the performance okBATl algorithms such
as Novelty [20] or Novelty [12] depends critically on the setting of a noise parameter
whose optimal value is known to depend on the given SAT ir&tfih3]. Understanding
the relationship between parameter settings and the mmiehavior of an algorithm
is of substantial interest for both scientific and pragmatiasons, as it can expose
weaknesses of a given search algorithm and help to avoidetreangntal impact of
poor parameter settings. Thus, our second goal is to extepitieal hardness models
to include algorithm parameters in addition to featuresefdiven problem instance.

Finally, hardness models could also be used to automatibetermine good param-
eter settings. Thus, an algorithm’s performance could hieniged for each problem
instance without any human intervention or significant bead. Our final goal is to
explore the potential of such an approach for automatidénstance parameter tuning.

In what follows, we show that we have achieved all three ofgmnals by reporting
the results of experiments with SLS algorithms for SAT. (Vi¢éenhowever, that our
approach is by no means limited to SLS algorithms or SAT, ghothe features we
use were created with some domain knowledge. In experiremwik it is obviously
necessary to choosamespecific domain. We have chosen to study the SAT problem
because it is the prototypical and best-studié®-complete problem and there exists
a great variety of SAT benchmark instances and solvers gifigadly, we considered
two high-performance SLS algorithms for SAT, Noveltji 2] and SAPS [17], and sev-
eral widely-studied structured and unstructured instalisteibutions. In Section 2, we
show how to build models that predict the sufficient statsstf RTDs for randomized
algorithms. Empirical results demonstrate that we canipréide median run-time for
our test distributions with surprising accuracy (we ackieurrelation coefficients be-
tween predicted and actual run-time of up to 0.995), andithaéd on this statistic we
can also predict the complete exponential RTDs Novetipd SAPS exhibit. Section 3
describes how empirical hardness models can be extendettdgporate algorithm
parameters; empirical results still demonstrate goodoperdince for this harder task
(correlation coefficients reach up to 0.98). Section 4 shitas these models can be
leveraged to perform automatic per-instance parameterguhat results in significant
reductions of the algorithm'’s run-time compared to usinfadk settings (speedups of
up to two orders of magnitude) or even the best fixed paranvataes for the given
instance distribution (speedups of up to an order of magajtuSection 5 describes
how Bayesian techniques can be leveraged when predictmgjme for test distribu-
tions that differ from the one used for training of the emgatihardness model. Finally,
Section 6 concludes the paper and points out future work.

2 Run-time Prediction: Randomized Algorithms

Previous work [19, 21] has shown that it is possible to pretie run-time of deter-

ministic tree-search algorithms for combinatorial probéeusing supervised machine
learning techniques. In this section, we demonstrate haites techniques are able
to predict the run-time of algorithms which are both randoedi and incomplete. We



support our arguments by presenting the results of expatsnevolving two powerful
local search algorithms for SAT.

2.1 Prediction of sufficient statistics for run-time distributions

It has been shown in the literature that high-performanoeamized local search al-
gorithms tend to exhibit exponential run-time distribatd14], meaning that the run-
times of two runs that differ only in their random seeds casilgavary by an order
of magnitude. Even more extreme variability in run-time bagn observed for ran-
domized complete search algorithms [11]. Due to this inttesgorithm randomness,
we have to predict a probability distribution over the antoafrtime an algorithm will
take to solve the problem. For many randomized algorithrok gin-time distributions
closely resemble standard parametric distributions sa@xponential or Weibull (see,
e.g., [14]). These parametric distributions are compyetpkcified by certain sufficient
statistics. For example, an exponential distribution carspecified by its median. It
follows that by predicting such sufficient statistics, adiction for the entire run-time
distribution for an unseen instance is obtained.

Note that for randomized algorithms, the error in a model&djrtions can be di-
vided into two components: the extent to which the modes$fmildescribe the data, and
the inherent noise in the employed summary statistics duarntdomness of the algo-
rithm. This latter component may be reduced by measuringttéstics over a larger
number of runs per instance. As we will see in Figures 1(a)Xdbjl while empirical
hardness models of SLS algorithms are able to predict théimes of single runs rea-
sonably well, their predictions of median run-times ovea@ér set of runs are much
more accurate.

Our approach for run-time prediction of randomized incostgphllgorithms largely
follows the basis function regression approach of [19 2ahile an extension of our
work to randomized tree search algorithms should be stré@gtvard, experiments in
this paper are restricted to incomplete local search dlyos.

In order to predict the run-time of an algorithson a distributionD of instances,
we draw an i.i.d. sample @¥ instances fronD. For each instance, in this training set,
A is run some constant number of times and an empiricg| fitf the sufficient statistics
of interest is recorded. Note that is al x M vector if there aré// sufficient statistics
of interest. We also compute a setkof= 43 instance features,, = [z, 1, ..., zp k] fOr
each instance. This set is a subset of the features used]|jin@uding basic statistics,
graph-based features, local search probes, and DPLL-lmasadure$.We restricted
the subset of features because some features from [21] tiotefdr large instances—
the computation of all our 43 features took only about 2 sdsquer instance.

3 In previous preliminary and unpublished experiments for the winnermétation problem,
we examined other techniques such as support vector machinesiegreaultivariate adap-
tive regression splines and lasso regression; none improved predigiformance signifi-
cantly. More recent experiments (see Section 5) suggest that Gapss@ess regressiaan
increase performance, especially when the amount of training dataait $towever, this
method has complexity cubic in the numbemdatta points complicating its practical use.

4Information on precisely which features we used, as well as the rest

of our experimental data and Matlab code, is available online at
http://wwmv cs. ubc. cal/ | abs/ bet a/ Proj ect s/ Enpiri cal - Har dness- Model s/ .



Given this data for all the training instances, a functjtx) is fitted that, from
the featurese,, of an instances,,, approximates the sufficient statistics of .A’s run-
time distribution on this instance. Since linear functimisthese raw features may
not be expressive enough, we construct a richer set of baisctiéns which can in-
clude arbitrarily complex functions ddll featuresx,, of an instances,,, or simply
the raw features themselves. These basis functions tjpicahtain a number of el-
ements which are either unpredictive or highly correlair@dictive performance can
thus be improved (especially in terms of robustness) byyapplsome form of fea-
ture selection that identifies a small subsefoimportant features; as explained later,
here we use forward selection with a designated validagbiiosselect up td = 40
features. We denote the reduced setlbbasis functions for instance, as ¢, =
é(xn) = [p1(xn), ..., dp(x,)]. We then use ridge regression to fit thex M ma-
trix of free parametersv of a linear functionf,, (x,) = ¢(x,) " w, that is, we com-
putew = (61 + ®TH)"'&"r, wheres is a small regularization constant (set to
10~2 in our experiments)® is the N x D design matrixd = [¢{,...,¢4]", and
r = [r",...,7x"]T. Given a new, unseen instansg ,;, a prediction of theM
sufficient statistics can be obtained by computing the ittdeatures: 5,1 and eval-
uatingfw (zx+1) = ¢(xy41) T w. One advantage of the simplicity of ridge regression
is a low computational complexity @ (max{D?3, D?N, DN M }) for training and of
©(DM) for prediction for an unseen test instance.

2.2 Experimental setup and empirical results for predictirg median run-time

We performed experiments for the prediction of run-timdrdistions for two SLS al-
gorithms, SAPS and Novelty Because previous studies [12, 17, 14] have shown that
these algorithms tend to have approximately exponentigtime distributions, the suf-
ficient statistics,, for each instance,, reduce to the empirical median run-time of a
fixed number of runs. In this section we fix SAPS parameter$iedr default values
(e, p, Psmootn) = (1.3,0.8,0.05). For Novelty", we use its default parameter setting
(noise, wp) = (0.5,0.01) for unstructured instances. On structured instances iovel
is known to perform better with lower noise settings, ancediwith noise=0.5 the ma-
jority of runs did not finish within an hour of CPU time. Thusewhosegnoise, wp) =
(0.1,0.01) which solved all structured instances in 15 minutes of CPt&tiWe con-
sider models that incorporate multiple parameter setiim¢jse next section.

In our experiments, we used six widely-studied SAT benclkndastributions, half
consisting of unstructured instances and half of strudtinstances. The first two dis-
tributions we studied each consisted of 20,000 uniforndoam 3-SAT instances with
400 variables; the firstgV-var) varied the clauses-to-variables ratio betwg&é and
5.26, while the second@V-fixed) fixed ¢/v = 4.26. These distributions were previ-
ously studied in [21], facilitating a comparison of our riéswvith past work. Our third
unstructured distributiongAT04) consisted of 3,000 random unstructured instances
generated with the two generators used for the 2004 SAT isclvapetition (with
identical parameters) and was employed to evaluate ounetiénl parameter tuning
procedure on a competition benchmark.

Our first two structured distributions are different vat&of quasigroup completion
problems. The first oneQ(CP) consisted of 30,626 quasigroup completion instances,
while the second oneQWH) contained 9,601 instances of the quasigroup comple-
tion problem for quasigroups with randomly punched holég).[ Both distributions



Unstructured instances
Datasefl N [Algorithm[Rung Corrcoeff [ RMSE
CV-var [ 9952| SAPS | 1 0.903/0.91§.37/0.35

Structured instances

CVovar | 9952| SAPS | 10 [0.960/0.9680.23/0.29  |-D2tase] N _|Algorithm|Rung Corrcoeff | RMSE
Cvavar | 9982| SAPS | 100[0967/0971021/0.01 | QNH | 7793] SAPS"[10 [0.98810.9950.33/0.21
CV-var | 9952| SAPS |100010.968/0.9780.20/0.17 | QWH | 8049 Novelty™ | 10 |0.988/0.9920.22/0.1

¥y [
CV-var | 9952| Noveltyt | 10 |0.947/0.9520.25/0.23 QCP 114719 SAPS | 10 10.995/0.9910.17/0.13
ol o SAPs T 67557 Ta a0 QCP 15263 Novelty" | 10 |0.993/0.9940.12/0.11
Cu-fixed| 10128 Novelty* | 10 [0.586/0.6030.61/0.6G | SW-CCH 4287| SAPS | 10°[0.890/0.8920.45/0.4%

+ r
SATO4 | 1457 SAPS | 10 0.933/0.93%.52/0.5( SW-GCH 5573| Novelty"™ | 10 |0.690/0.6910.23/0.23

SATO4 | 1426 | Novelty' | 10 |0.934/0.9380.58/0.56

Table 1. Evaluation of learned models on test dada.is the number of instances for which
the algorithm’s median runtime is 900 CPU seconds (only those instances are used and split
50:25:25 into training, validation, and test sets). Columns for correlatiefficent and RMSE
indicate values using only raw features as basis functions, and thenrasirfgatures and their
pairwise products. SAPS was always run with its default parameter sefting) = (1.3, 0.8).

For Novelty", we used noise=0.5 for unstructured and noise=0.1 for structustahices.

were created with the generalosencode by Carla Gomes. The ratio of unassigned
cells varied from25% to 75%. We chose quasigroup completion problems as a repre-
sentative of structured problems because this domain sltbe systematic study of a
large instance set with a wide spread in hardness, and ketaistructure of the un-
derlying Latin squares is similar to the one found in appiares such as scheduling,
time-tabling, experimental design, and error correctiodes [10]. Our last structured
distribution SW-GCP) contained 20,000 instances of graph coloring based onl smal
world graphs that were created with the generatar| sp by Toby Walsh [9].

As is standard in the study of SLS algorithms, all distribng were filtered to
contain only satisfiable instances, leading to 9,952, H),1270, 17,989, 9,601, and
11,182 instances for CV-var, CV-fixed, SAT04, QCP, QWH, andS@P, respectively.
To limit computational time we only used instances that vesleed in a single SAPS
run of one hour. This further reduced the sets to 9,952, 801,269, 15,263, 8,049, and
5,573 instances for CV-var, CV-fixed, SAT04, QCP, QWH, and G@P, respectively.

We then randomly split each instance set 50:25:25 intoitrgjivalidation, and test
sets; all experimental results are based on the test set aralstable with respect to
reshuffling. We chose the 43 raw features and the constastour basis functions,
and also included pairwise multiplicative combinationsatifraw features. We then
performed forward selection to select up to 40 featuregpsity when the error on the
validation set first began to grow. Experiments were run ooister of 50 dual 3.2GHz
Intel Xeon PCs with 2MB cache and 2GB RAM, running SuSE Linuk 9

Overall, our experiments show that we can consistentlyiprededian run-time
with surprising accuracy. Results for all our benchmarkritistions are summarized in
Table 1. Note that a correlation coefficient (CC) of 1 indésaperfect prediction while
0 indicates random noise; a root mean squared error (RMSEnoéans perfect pre-
diction while 1 roughly means average misprediction by omkeoof magnitude. Also
note that the predictive qualities for Novettyand SAPS are qualitatively similar.

Figure 1(a) shows a scatterplot of predicted vs. actualtime-for Novelty™ on
CV-var, where the model is trained and evaluated on a singiger instance. Most of
the data points are located in the very left of this plot, whice visualize by plotting
the 10%, 50% and 90% quantiles of the data (the three red déiske). While a strong
trend is evident in Figure 1(a), there is significant errothi@ predictions. Figure 1(b)



|
N

Predicted log10 runtime [seconds]
I
-

Predicted log10 runtime [seconds]
Predicted log10 runtime [seconds]

i
1
1
1
|
- o [ ] !
| - L | L
-4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1 -3 -2 -1 0 1
Actual log10 runtime [seconds] Actual 1og10 runtime [seconds] Actual log10 runtime [seconds]

(@) 1 Novelty™ run on CV-var.(b) 100 Novelty" runs on CV-c) 100 SAPS runs on CV-fixed.
CC=0.878, RMSE=0.37 var. CC=0.962, RMSE=0.21 CC=0.800, RMSE=0.42

Fig. 1. Correlation between observed and predicted run-times/medians tfwmas-of SAPS and
Novelty™ on unstructured instances. The basis functions were raw featuretheinghairwise
products. The three red vertical dashed lines in these and all otherrquat&ein this paper
denote the 10%, 50%, and 90% quantiles of the data. For example, this thead0% of the
data points lie between the left and the middle vertical lines.

Predicted log10 runtime [seconds]
Predicted log10 runtime [seconds]
Predicted log10 runtime [seconds]
U
N

]

]
1 ]
] ]
1 1
] ]
] ]
] ]
] ]
] ]
L L

!
a

-6 L L
-6 -4 -2 0 2 4 -1 0 1 2 3 -6 -4 -2 0 2
Actual log10 runtime [seconds] Actual log10 runtime [seconds] Actual log10 runtime [seconds]

(a) 10 SAPS runs on QWH (b) 10 SAPS runs on SW-GCRc) 10 Novelty" runs on QCP

Fig. 2. Correlation between observed and predicted run-times/medians tfmas-of SAPS and
Novelty™ on SAT04 and QWH. The basis functions were raw features and theivipaiprod-
ucts. For RMSEs and correlations coefficients, see Table 1.

shows the same algorithm on the same dataset, but now pngdibe median of an
empirical run-time distribution based on 100 runs. Therdioothe leftmost 90% of the
data points is substantially reduced, leading to an almedsed RMSE when compared
to predictions for a single run. It is also noteworthy thatgé run-time predictions are
more accurate than the predictions for the determinisgjorithms kcnfs, satz, and ok-
solver (compare against Figure 5(left) in [21]). While tlisiready true for predictions
based on single runs it is much more pronounced when prediatiedian run-time.
This same effect holds true for predicting median run-tirh8APS, and for different
distributions. Figure 1(c) also shows much better prealitithan we observed for de-
terministic tree search algorithms on CV-fix (compare thit pgainst Figure 7(left)
in [21]). We believe that two factors contribute to this effd-irst, we see deterministic
algorithms as comparable to randomized algorithms withedfseed. Obviously, the
single run-time of such an algorithm on a particular instaiscless informative about
its underlying run-time distribution (were it randomizedn the sufficient statistics of
multiple runs. Second, one of the main reasons to introdacdamness in search is



#] Basis function [Cost of omissiorf Corrcoeff [ RMSE
SAPS on CV-fix

1.| sapsBestSolutionCoeffVariancex sapsBestStepCoeffVariance 100 0.744/0.78%0.47/0.44
1.|sapsBestSolutionCoeffVariancex sapsAvgimproveToBestMean 100
2. sapsBestStepCoeffVariancex sapsFirstLMRatio.Mean 45
3.| gsatBestSolutionCoeffVariancex lobjois meandepthover.vars 37 0.758/0.78%0.46/0.44
4. sapsAvgimproveToBesiCoeffVariance 15
5. sapsBestCV.Mean x gsatBestStepMean 11

Novelty™ on QCP
1. VG_meanx gsatBestStepMean 100 0.966/0.9940.29/0.11
1.| sapsAvglmproveToBesiCoeffVariancex gsatBestSolutionMean 100
2. varsclausegatio x lobjois_-meandepthover.vars 68
3. VG_meanx gsatBestStepMean 12 0.991/0.9940.13/0.11
4. TRINARY _PLUS X lobjois_log_.numnodesover.vars 7

Table 2. Feature importance in small subset models for predicting median runefih@ runs.
The cost of omission for a feature specifies how much worse validati@radictions are without
it, normalized to 100 for the top feature. The RMSE and Corrcoeff cofucampare predictive
quality on the test set to that of full 40-feature models.

to achieve diversification. This allows the heuristic toowsr from making a bad de-
cision by exploring a new part of the search space, and hetees the variance of
run-times across very similar instances. Because detistiisolvers do not include
such diversification mechanisms, they can exhibit striljinigfferent run-times on very

similar instances. (This observation is the basis of thegdiure on heavy-tailed run-
time distributions in complete search, see e.g. [11].) kan®le, consider modifying

a SAT instance by randomly shuffling the names of its varmabne would expect a
properly randomized algorithm to have essentially the sametime distributions for

both instances; however, a deterministic solver couldi@xhery different runtimes on

the two instances [5]. Because empirical hardness modedsgive similar predictions

for instances with similar feature values, the model forde&erministic solver could

be expected to exhibit higher error in this case.

Figure 2 visualizes our predictive quality for structurextadsets. Performance for
both QWH and QCP, as shown in Figures 2(a) and 2(c), was verg gith correla-
tion coefficients between predicted and actual medianima-bf up t00.995. Note,
however, that the hardest instance in Figure 2(c) was pestlio be much easier than
it actually is. This is because the instance was exceptiohalrd: over an order of
magnitude harder than the hardest instance in the traigibd ke last structured data
set, SW-GCP, is the hardest distribution for prediction agehencountered thus far
(unpublished data shows RMSEs of around 1.0 when predittimgun-time of deter-
ministic algorithms on SW-GCP). As shown in Figure 2(b), pimedictions for SAPS
are surprisingly good; predictive quality for Novettysee Table 1) is also much higher
than what we have seen for deterministic algorithms.

We now look at which features are most important to our modeisis not straight-
forward since the features are highly correlated. Follgwit9, 21], we build subset
models of increasing size until the RMSE and correlatiorffment are comparable to
the ones for the full model with 40 basis functions. Tablegbrés the results for SAPS
on CV-fix and Novelty on QCP and for each of these also gives the performance of
the best model with a single basis function. Overall, we plesthat the most important
features for predicting run-time distributions of our SU§aaithms are the same ones
that were observed to be important for predicting run-tiwfedeterministic algorithms
in [21]. Also similar to observations from [21], we found thaery few features are



True empirical RTD
- = - Predicted empirical RTD

True empirical RTD
- = = Predicted empirical RTD

D
-
o
A
-

4
©
4
©

N

o
o
=)
o
o

!
N
I
»
I
N

Probability of success
Probability of success

|
IS
o
N
o
N

Predicted log10 runtime [seconds]

|
[

o

"
-4 2 0 2 4 10° 10" 107 107 107 10°
Actual log10 runtime [seconds] Runtime [seconds] Runtime [seconds]

(a) Predictions of median rungb) Easy QCP instancedgs) (c) Hard QCP instance {gs)
time, instances¢ps and G.7s

|
o

Fig. 3. Predicted versus actual empirical RTDs for SAPS on two QCP instah@asins were
used for learning median run-time and in (a), 1000 runs for the empRAs in (b) and (c).

needed to build run-time models of instances that are afifdile. While [21] studied
only uniform-random data, we found in our experiments thét is true for both un-
structured and structured instances and for both algositiven studied. Small models
for CV-var (both for SAPS and Novelty) almost exclusively use local search features
(almost all of them based on short SAPS trajectories). Thuetstred domain QCP em-
ploys a mix of local search probes (based on both SAPS and §; 8aéiistraint-graph-
based features (e.g., V@@ean) and in the case of Noveityalso some DPLL-based
features, such as the estimate of the search tree sizeiflabgandepthovervars).
In some cases (e.g., models of SAPS on CV-var), and when veedreelatively few
runs per instance, a single feature can be sufficient foligtied single run-times with
virtually the same accuracy as the full model.

To illustrate that based on the median we can fairly acclyrgteedict entire run-
time distributions for the SLS algorithms studied here, Wevethe predicted and em-
pirically measured RTDs for SAPS on two QCP instances in feig The two in-
stances correspond to the 0.25 and 0.75 quantiles of thébdisdn of actual median
hardness for SAPS on the entire QCP instance set; they ponédgo the red crosses in
Figure 3(a), which shows the tight correlation betweenalcind predicted run-times.
Consistent with previous results by Hoos et al. (see, elgap@rs 4 and 6 of [14]),
the RTD for theq 75 instance is closely approximated by an exponential digtioh,
which our approach almost perfectly fits (see Figure 3(che RTDs for easier in-
stances are known to typically exhibit smaller varianceréfore, an approximation
with an exponential distribution is less accurate (seereidfb)). We plan to predict
sufficient statistics for the more general distributionsded to characterize such RTDs,
such as Weibull and generalized exponential distributionthe future.

3 Run-time Prediction: Parametric Algorithms

The behavior of most high-performance SLS algorithms igrotled by one or more
parameters. It is well known that these parameters ofter hasubstantial effect on
the algorithm’s performance (see, e.g., [14]). In the masisection, we showed that
quite accurate empirical hardness models can be constrwtien these parameters are
held constant. In practice, however, we also want to be abtaddel an algorithm’s
behavior when these parameter values are changed. In thisrseve demonstrate that



Algorithm| Fixed parameterg Default parameterg Used parameter configurations
Novelty™ wp = 0.01 noise = 0.5% noise € {0.1,0.2,0.3,0.4,0.5,0.6}
Psmootn = 0.05, B All combinations ofa € {1.2,1.3,1.4}
SAPS | = 0.01 (@ P) = (13,08) a0, € 10,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9}

Table 3. Parameter configurations employed in our experiments.

it is possible to incorporate parameters into empiricathass models for randomized,
incomplete algorithms. Our techniques should also carey tivboth deterministic and

complete parametric algorithms (in the case of determinagorithms using single

run-times instead of sufficient statistics of RTDs).

Our approach is to learn a functigiix, ¢) that takes as inputs both the features
x,, of an instances,, and the parameter configuratierof an algorithm.4, and that
approximates sufficient statistics dfs RTD when run on instance, with parameter
configuratiore. In the training phase, for each training instangave run.4 some con-

stant number of times with a set of parameter configurations= {c,.1....,¢nk,
and collect fits of the sufficient statisties = [r,, ;,...,7, , ]' of the corresponding

empirical run-time distributions. We also computgs featuresz,,. The key change
from the approach in Section 2.1 is that now the parametatsitére used to generate
an (instance,run-timepair are effectively treated as additional features of theih-
ing example. We define a new set of basis functions,,, c,, ;) = [¢1(n,cnj), .- -,
¢p(2n, ¢, ;)] Whose domain now consists of the cross product of featuigparame-
ter configurations. For each instanggand parameter configuratiep ;, we will have a
row in the design matri¥ that contaings(x,,, cn,j)T—that is, the design matrix now
containsk,, rows for training instance,,. The target vector = [r{,...,7}]" just
stacks all the sufficient statistics on top of each other. &den the functiom,, (x, ¢) =
o(z, c) Tw by applying ridge regression as in Section 2.1.

Our experiments in this section concentrate on predictiadian run-time of SAPS
since that is the more challenging problem. SAPS has thteedigpendent, continu-
ous parameters, as compared to Noveltyhich has only one interesting parameter.
(Both algorithms have an additional parametep, which is typically set to a default
value that results in uniformly good performance.) Thiged#nce notwithstanding, we
observed qualitatively similar results with NoveftyNote that the approach outlined
above allows one to use different parameter settings fdr #aming instance. How to
pick these settings for training in the most informative wagn interesting experimen-
tal design question which invites the use of active leartéegniques; we plan to tackle
it in future work. In this study, we used the parameter coratims defined in Table 3.
We fixed Ps,,00tn, = 0.05 for SAPS since its effect is highly correlated with thatof

As basis functions, we used multiplicative combinationthefraw instance features
x,, and a 2nd-order expansion of all non-fixed (continuous)matar settings. FoK
raw featuresX = 43 in our experiments), this measi basis functions for Novelty,
and6 K for SAPS, respectively. As before we applied forward s&acto select up to
40 features, stopping when the error on the validation ssthizgan to grow. For each
data set reported here, we randomly picked 1000 instandas $plit 50:50 for train-
ing and validation. We ran one run per instance and pararetdiguration yielding
30,000 data points for SAPS and 6,000 for NoveltgTraining on the median of more
runs would likely have improved the results.) For the testwe used an additional 100
distinct instances and computed the median of 10 runs fdr pa@ameter setting.



+ - true SAPS median . .
prediction,alpha = 1.2
—&— prediction,alpha = 1.3
—%— prediction,alpha = 1.4

N
N o

|
-

o b
[

i
o

Log10 median runtime [seconds]
.
o ul

Predicted log10 runtime [seconds]
o
Predicted log10 runtime [seconds]

0
N

|
o3
o

-5 0 5 -2 0 2 4 "0 2468024680246 8
Actual log10 runtime [seconds] Actual log10 runtime [seconds] rho

Fig. 4. Left: Predictions for SAPS on QWH with 30 parameter settings. Middle: Datat
for 5 instances from SAPS on SATO04, different symbol for each im&aRight: Predicted run-
time vs. median SAPS run-time over 1000 runs for 30 parameter settintjeonedian SAT04
instance, the one marked with blue diamonds in the middle figure.

In Figure 4(left), we show predicted vs. actual SAPS ruretior the QWH dataset
and the 3Q«, p) combinations in Table 3. This may be compared to Figure 2(aith
shows the same algorithm on the same dataset for fixed paravadtes. (Note, how-
ever, that Figure 2(a) was trained on more runs and using poerful basis functions
for the instance features.) We observe that our model stillexes good performance,
yielding correlation coefficient/RMSE of 0.98/0.41, as qared to 0.988/0.33 for the
fixed-parameter setting (using raw features as basis furgti

Figure 4(middle) shows predicted vs. actual SAPS mediartino@ for five in-
stances from SAT04, namely the easiest and hardest instandehe 0.25, 0.5, and
0.75 quantiles. Runs corresponding to the same instancplatted using the same
symbol. Note that run-time variation due to the instanceftisnogreater than variation
due to parameter settings. However, harder instances edvel ihore sensitive to vari-
ation in the algorithm’s parameters than easier ones —hisates the importance of
parameter tuning, especially for hard instances. The geerarrelation coefficient for
the 30 points per instance is 0.63; for the 6 points per imgtam Novelty" it is 0.84,
much higher.

Figure 4(right) shows SAPS run-time predictions for the rmednstance of our
SATO04 test set at each of its 3@, p) combinations; these are compared to the actual
median SAPS run-times on this instance. We observe thaetiraéd model predicts
the actual run-times fairly well, despite the fact that telationship between run-time
and the two parameters is complex. In the experiment thedfigubased on feature
selection chose 40 features; thus, the model learned aM@ndional surface and the
figure shows that its projection onto the 2-dimensional peter space at the current
instance features qualitatively captures the shape oftis@gparameter-dependent run-
time for this instance.

4 Automated Parameter Tuning

Our results, as suggested by Figure 4 indicate that our rdstéie able to predict per-
instance and per-parameter run-times with reasonableanciWVe can thus hope that
they would also be able to predict which parameter settiegsitin the lowest run-time
for a given instance. This would allow us to use a learned inodautomatically tune
the parameter values of an SLS algorithm on a per-instargis by simply picking the
parameter configuration out of the ones we consider (see Blthat is predicted to



Set [ Algo [Gross corfRMSE|Corr per instbest fixed a posteridiyp: | swpi | Sdes |8 fized
SATO04 Nov| 0.90 | 0.76|0.8440.29 0.5 0.65193.19 0.88 | 0.88
QWH| Nov| 0.98 | 0.52|0.76+0.43 0.1 0.85683.04257.96 0.94
Mixed| Nov | 0.95 | 0.77 |0.80£0.35 0.2 0.71)350.12 14.49| 9.52
SATO4SAPS 0.91 | 0.60|0.63 £0.29 (1.3,0) 0.43 15.95| 2.66 | 0.96
QWH|SAPS 0.98 | 0.41|0.43+0.39 (1.2,0) 0.67 5.88 | 2.39 | 1.02
Mixed|SAPS 0.95 | 0.61|0.47+0.38 (1.3,0) 0.48 8.53 | 2.22| 0.97

Table 4. Results for automated parameter tuning. For each instance set anithalgove give

the correlation between actual and predicted run-time for all instand&SHRthe correlation for

all data points of an instance (mearstddev), and the best fixed a posteriori parameter setting on
the test set. We also give the average speedup over the best possibietes setting per instance
(svpi, always< 1), over the worst possible setting per instaneg,(, always> 1), the default
(saef), and the best fixed setting. For example, on Mixed, Novelity on average 9.52 times
faster than its best data-set specific fixed parameter seitjng.{). All experiments use second
order expansions of the parameters (combined with the instance ®atBodd face indicates
speedups of the automated parameter setting over the default ancée stffameter settings.

yield the lowest run-time. Note that our approach for partamieining is orthogonal to
that of reactive search approaches such as Adaptive NovEl8] and RSAPS [17].

In this section we investigate this approach. We now focushenNovelty" al-
gorithm, because we observed SAPS’s performance ar¢ung = (1.3,0.1) to be
very close to optimal across many different instance diistions® SAPS thus offers
little possibility for performance improvement through per-instance paramntahing
(Table 4 quantifies this). Novelty on the other hand, exhibits substantial variation in
the best parameter setting from one instance distributcaanbther, making it a good
algorithm for the evaluation of our approathVe used the same test and training data
as in the previous section; thus, Table 4 summarizes theriexgeats both from the
previous section and from this section. However, in thigiseave also created a new
instance distribution “Mixed”, which is the union of the QWH&SATO04 distributions.
This mix enables a large gain for automated parameter tumihgn compared to the
best fixed parameter setting) since Novélgyerforms best with high noise settings on
unstructured instances and low settings on structurednnoss.

Figure 5(a) shows the performance of our automatic pararhatéeng algorithm on
test data from Mixed, as compared to upper and lower boundts grossible perfor-
mance. We observe that the run-time with automatic paranseténg is close to the
optimal setting and far better than the worst one, with angasing margin for harder
instances. Figure 5(b) provides a comparison of our methathat a uniform random
picking of parameter combinations from the six consideredeity™ configurations
(see Table 3). Figure 5(c) compares our automatic tuninomsigtine best fixed param-
eter setting (this was determined in an a posteriori fash®the setting with the best

5 This is true even though it has been demonstrated that for each SAR®qtar there exist
instances for which a statistically significant improvement can be obtamedtioe default
setting(a, p) = (1.3,0.8) (defined in [17]) by tuning that parameter [25]. We note that the
setting(«, p) = (1.3,0.1) differs from the default studied by [25], raising the question of
whether the cited result would also hold for this setting.

% Indeed, the large potential gains for tuning WalkSAT’s noise paramatamper-instance basis
have been exploited before [22].



Q @ [
3 3 8 %
2 2 4 2 2 ¥ 2 2 MR
AL S J#
LA A S
5o 2y 5o 5o -
2 L 3 o 5 =1 "‘."0 02 o
s o s ° AR T
2 A 2 2
€ A € €
S -4 3 -4 S -4
g 4 e
- - -
-6 -6 -6
% 4 2 0 2 % -4 -2 0 2 % -4 -2 0 2

Log runtime[s], best/worst noise

(a) Automatic vs. best & worst (b) Automatic vs. random

Log runtime[s], random noise Log runtime[s], best fixed a posteriori noise

(c) Automatic vs. best fixed

Fig. 5. (a) Performance of automated parameter setting for Novediy data set Mixed, com-
pared to the best (dots) and worst (crosses) per-instance paraeititeg (out of the 6 parameter
settings we employed). (b) Compared to independent random noises\falueach instance. (c)
Speedup of Novelty over the best fixed a posteriori parameter setting for Mixed.

performance on the test set out of the ones we consideredabée3). This setting is
often the best that can be hoped for in practice. (A commonogah for tuning param-
eters is to perform a set of experiments, to identify the p@ter setting which achieves
the lowest overall run-time, and then to fix the parametethitsetting.) Figure 5(c),

in conjunction with Table 4, shows that our techniques camdtically outperform this
form of parameter tuning: Noveltyalmost achieves an average speedup of an order of
magnitude on Mixed as compared to the best fixed parametargen that set. SAPS
improves upon its default setting by more than a factor of teroall three distribu-
tions. Considering that our method is fully automatic and/\general, these are very
promising results.

Related work on automated parameter tuning

The task of configuring an algorithm’s parameters for high asbust performance
has been widely recognized as a tedious and time-consumshgthat requires well-
developed engineering skills. Automating this task is & y@omising and active area
of research. There exists a large number of approaches tahigndest configuration
for a given problem distribution [3, 24, 1]. All these technés aim to find a parameter
setting that optimizes some scoring function which avesaxyer all instances from the
given input distribution. If the instances are sufficierttiymogeneous, this approach
can perform quite well. However, if the problem instancedb¢osolved come from
heterogeneous distributions or even from completely atedl application areas, the
best parameter configuration may differ vastly from inséatecinstance. In such cases
it is advisable to apply an approach like ours that can chtiesbest parameter setting
for each run contingent on the characteristics of the ctiinstance to be solved. This
per-instance parameter tuning is more powerful but lesgmithan tuning on a per-
distribution basis in that it requires the existence of adaliscriminative instance
features. However, we believe it to be not too difficult toieregr a good set of instance
features if one is familiar with the general problem domain.

The only other approach for parameter tuning on a per-igstaasis we are aware
of is the Auto-WalkSAT framework [22]. This approach is bdiem empirical findings
showing that the optimal parameter setting of WalkSAT dtgors tends to be about



0.1 above the one that minimizes the invariance ratio [20foANalkSAT chooses re-
markably good noise settings on a variety of instances drutdmains where the above
relationship between invariance ratio and optimal noiséngedoes not hold (such as
logistics problems), it performs poorly [22]. Furthermgts approach is limited to SAT
and in particular to tuning the (single) noise parametehefWalkSAT framework. In
contrast, our automated parameter tuning approach appl@dbitrary parametric al-
gorithms and all domains for which good features can be ergéd.

Finally, reactive search algorithms [2], such as Adaptioeeltyt[13] or RSAPS [17]
adaptively modify their search strateduring a search. (Complete reactive search al-
gorithms include [18, 6].) Many reactive approaches stildnone or more parameters
whose settings remain fixed throughout the search; in thesesche automated con-
figuration techniques we presented here should be appitatiine these parameters.
While a reactive approach is in principle more powerful thansq(it can utilize dif-
ferent search strategies in different parts of the spati)also less general since the
implementation is typically tightly coupled to a specifigatithm. Ultimately, we aim
to generalize our approach to allow for modifying paransethrring the search—this
requires that the features evaluated during search arechegp to compute. We also
see reinforcement learning as very promising in this cadrjie.

5 Uncertainty Estimates through Bayesian Regression

So far, research in empirical hardness models has focusth@ case where the targeted
application domain is knowa priori and training instances from this domain are avail-
able. In practice, however, an algorithm may have to soleblpm instances that are
significantly different from the ones encountered duriraining. Empirical hardness
models may perform poorly in such cases. This is becausetdlistical foundations
upon which their machine learning approach is built relyrupiee test set being drawn
from the same distribution as the training set. Bayesianagmhes may be more appro-
priate in such scenarios since they explicitly modeltheertaintyassociated with their
predictions. Roughly, they provide an automatic measuh®af similar the basis func-
tions for a particular test instance are to those for theaitngiinstances, and associate
higher uncertainty with relatively dissimilar instanc®ée implemented two Bayesian
methods: (a) sequential Bayesian linear regression (B&R#a[technique which yields
mean predictions equivalent to ridge regression but afsréstimates of uncertainty;
and (b) Gaussian Process Regression (GPR) [23] with a stjeapenential kernel. We
detail BLR and the potential applications of a Bayesian aagh to run-time prediction
in an accompanying technical report [16]. Since GPR scalbially in the number of
data points, we trained it on a subset of 1000 data pointsuded all 9601 data points
for BLR). Even so, GPR took roughly 1000 times longer to train

We evaluated both our methods on two different problems.firseproblem is to
train and validate on our QWH data-set and test on our QCPs#dtadhile these dis-
tributions are not identical, our intuition was that theyashenough structure to allow
models trained on one to make good predictions on the others&cond problem was
much harder: we trained on data-set SAT04 and tested on adixgrse test set con-
taining instances from ten qualitatively different distriions from SATLIB. Figure 6
shows predictions and their uncertainty 6ne stddev) for both methods on the first
problem. The two distributions are similar enough to yiedhywgood predictions for



11

I&ll

Predicted log10 runtime [seconds]

I
1 Bl

—6 -4 -2

o

Predicted log10 runtime [seconds)

| |
A N [e] N 1Y

|
©]
o

1

1#1]1[1 lﬂll

1 I

-4

-2 o

Actual log10 runtime [seconds]

(a) Bayesian linear regression

Actual log10 runtime [seconds]

(b) GP with squared exponential kernel

Fig. 6. Predictions and their uncertainty of Noveitynedian run-time of 10 runs: Bayesian linear
regression and Gaussian Process with squared exponential keaimeldton QWH and tested
on QCP. The run-time predictions of these approaches are Gausskabjlity distributions for
every instance. The red dots specify the predictive mean and the laecthle standard deviation.

both approaches. While BLR was overconfident on this datatlsetuncertainty es-
timates of GPR make more sense: they are very small for aetynaredicted data
points and large for mispredicted ones. Both models acHisirailar predictive accu-
racy (CC/RMSE 0.953/0.50 for BLR; 0.953/0.51 for GPR). Hue second problem
(space restrictions prevent a figure), BLR showed massigpnedlictions (several tens
of orders of magnitude) but associated very high uncestaiith the mispredicted in-
stances, reflecting their dissimilarity with the trainirgd.S5PR showed more reasonable
predictions, and also did a good job in indicating high utaiaty about instances for
which predictive quality was low. Based on these prelimimasults, we view Gaussian
process regression as particularly promising and plamttysts application to run-time
prediction in more detail. However, we note that its scalefpavior somewhat limits
its usefulness in practice.

6 Conclusion and Future Work

In this work, we have demonstrated that empirical hardnexstets obtained from linear
basis function regression can be extended to make suiglsisiccurate predictions of
the run-time of randomized, incomplete algorithms suchageMy™ and SAPS. Based
on a prediction of sufficient statistics for run-time distriions (RTDs), we showed very
good predictions of the entire empirical RTDs for unseehitetances. We have also
demonstrated for the first time that empirical hardness isa model the effect of
algorithm parameter settings on run-time, and that thesgeta@an be used as a basis
for automated per-instance parameter tuning. In our exy@eris, this tuning never hurt
and sometimes resulted in substantial and completely attomperformance improve-
ments, as compared to default or optimized fixed parametiinge

There are several natural ways in which this work can be ee@nFirst, we are
currently studying Bayesian methods for run-time predittin more detail. Further,
it should be straight-forward to apply our approach to randed systematic search
methods and we plan to do this in future work. We also planudysthe extent to which
our results generalize to problems other than SAT and inqodait to optimization
problems. Finally, we would like to apply active learningpamaches [7] in order to
probe the parameter space in the most informative way irr dodeduce training time.



References

1.

2.

(G208~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

B. Adenso-Daz and M. Laguna. Fine-tuning of algorithms usingitmaal experimental

design and local searcRperations Researcb4(1), 2006. To appear.

R. Battiti and M. Brunato. Reactive search: machine learning forongimased heuristics.

Technical Report DIT-05-058, UniveraitDegli Studi Di Trento, Dept. of information and

communication technology, Trento, Italy, September 2005.

. M. Birattari, T. Stitzle, L. Paquete, and K. Varrentrapp. A racing algorithm for conifigur
metaheuristics. lProc. of GECCO-02pages 11-18, 2002.

. C. M. Bishop.Neural Networks for Pattern Recognitio@xford University Press, 1995.

. F. Brglez, X. Y. Li, and M. F. Stallmann. On SAT instance classes andtaod for reliable

performance experiments with SAT solver&nnals of Mathematics and Artificial Intelli-

gence 0:1-34, 2004.

. T. Carchrae and J. C. Beck. Applying machine learning to low-kndyeecontrol of opti-

mization algorithmsComputational Intelligence21(4):372-387, 2005.

. D. A. Cohn, Z. Ghahramani, and M. |. Jordan. Active learning wisistical modelsJAIR,

4:129-145, 1996.

. C. Gebruers, B. Hnich, D. Bridge, and E. Freuder. Using CBRI&xtsolution strategies in

constraint programming. IRroc. of ICCBR-05pages 222—-236, 2005.

. I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morphing: Gaimdp structure and ran-

domness. IProc. of AAAI-99 pages 654—660, Orlando, Florida, 1999.

C. P. Gomes and B. Selman. Problem structure in the presencewbpéons. InProc. of
AAAI-97, 1997.

C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailedophema in satisfiability
and constraint satisfaction problends.of Automated Reasoning4(1), 2000.

H. H. Hoos. On the run-time behaviour of stochastic local seararitdms for SAT. In
Proc. of AAAI-99 pages 661666, 1999.

H. H. Hoos. An adaptive noise mechanism for WalkSATPtac. of AAAI-02 pages 655—
660, 2002.

H. H. Hoos and T. &tzle. Stochastic Local Search - Foundations & Applicatioiorgan
Kaufmann, SF, CA, USA, 2004.

E. Horvitz, Y. Ruan, C. P. Gomes, H. Kautz, B. Selman, and D. Mck&ring. A Bayesian
approach to tackling hard computational problemsPioc. of UAI-01 2001.

F. Hutter and Y. Hamadi. Parameter adjustment based on perfoerpeediction: Towards an
instance-aware problem solver. Technical Report MSR-TR-2@35Microsoft Research,
Cambridge, UK, December 2005.

F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and probaigiksnoothing: Efficient
dynamic local search for SAT. IRroc. of CP-02volume 2470, pages 233-248, 2002.

M. G. Lagoudakis and M. L. Littman. Learning to select branchirigsrin the DPLL
procedure for satisfiability. I&lectronic Notes in Discrete Mathematics (ENDQNMDO1.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning theigcap hardness of opti-
mization problems: The case of combinatorial auction®rbc. of CP-022002.

D. McAllester, B. Selman, and H. Kautz. Evidence for invariants inlleearch. IrProc. of
AAAI-97 pages 321-326, 1997.

E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and foBam. Understanding
random SAT: Beyond the clauses-to-variables raticProc. of CP-042004.

D. J. Patterson and H. Kautz. Auto-WalkSAT: a self-tuning implentiemtaf WalkSAT. In
Electronic Notes in Discrete Mathematics (ENDM)2001.

C. E. Rasmussen and C. K. I. William&aussian Processes for Machine Learninghe
MIT Press, 2006.

B. Srivastava and A. Mediratta. Domain-dependent paramdestisa of search-based
algorithms compatible with user performance criteriaPtac. of AAAI-052005.

. J. R. Thornton. Clause weighting local search for SATof Automated Reasoning005.



