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Abstract. Machine learning can be used to build models that predict the run-
time of search algorithms for hard combinatorial problems. Suchempirical hard-
ness modelshave previously been studied for complete, deterministic search algo-
rithms. In this work, we demonstrate that such models can also make surprisingly
accurate predictions of the run-time distributions of incomplete and randomized
search methods, such as stochastic local search algorithms. We also show for the
first time how information about an algorithm’s parameter settings can be incor-
porated into a model, and how such models can be used to automatically adjust
the algorithm’s parameters on a per-instance basis in order to optimize its perfor-
mance. Empirical results for Novelty+ and SAPS on structured and unstructured
SAT instances show very good predictive performance and significant speedups
of our automatically determined parameter settings when compared to the default
and best fixed distribution-specific parameter settings.

1 Introduction
The last decade has seen a dramatic rise in our ability to solve combinatorial optimiza-
tion problems in many practical applications. High-performance heuristic algorithms
increasingly exploit problem instance structure. Thus, knowledge about the relation-
ship between this structure and algorithm behavior forms animportant basis for the
development and successful application of such algorithms. This has inspired a large
amount of research on methods for extracting and acting uponsuch information. These
range from search space analysis to automated algorithm selection and tuning methods.

An increasing number of studies explore the use of machine learning techniques in
this context [15, 18, 6, 8]. One recent approach uses linear basis function regression to
obtain models of the time an algorithm will require to solve agiven problem instance
[19, 21]. These so-calledempirical hardness modelscan be used to obtain insights into
the factors responsible for an algorithm’s performance, orto induce distributions of
problem instances that are challenging for a given algorithm. They can also be leveraged
to select among several different algorithms for solving a given problem instance.

In this paper, we extend on this work in three significant ways. First, past work
on empirical hardness models has focused exclusively on complete, deterministic algo-
rithms [19, 21]. Our first goal is to show that the same methodscan be used to predict
sufficient statistics of the run-time distributions (RTDs)of incomplete, randomized al-
gorithms, and in particular of stochastic local search (SLS) algorithms for SAT. This is



important because SLS algorithms are among the best existing techniques for solving a
wide range of hard combinatorial problems, including hard subclasses of SAT [14].

The behavior of many randomized heuristic algorithms is controlled by parameters
with continuous or large discrete domains. This holds in particular for most state-of-
the-art SLS algorithms. For example, the performance of WalkSAT algorithms such
as Novelty [20] or Novelty+ [12] depends critically on the setting of a noise parameter
whose optimal value is known to depend on the given SAT instance [13]. Understanding
the relationship between parameter settings and the run-time behavior of an algorithm
is of substantial interest for both scientific and pragmaticreasons, as it can expose
weaknesses of a given search algorithm and help to avoid the detrimental impact of
poor parameter settings. Thus, our second goal is to extend empirical hardness models
to include algorithm parameters in addition to features of the given problem instance.

Finally, hardness models could also be used to automatically determine good param-
eter settings. Thus, an algorithm’s performance could be optimized for each problem
instance without any human intervention or significant overhead. Our final goal is to
explore the potential of such an approach for automatic per-instance parameter tuning.

In what follows, we show that we have achieved all three of ourgoals by reporting
the results of experiments with SLS algorithms for SAT. (We note however, that our
approach is by no means limited to SLS algorithms or SAT, though the features we
use were created with some domain knowledge. In experimental work it is obviously
necessary to choosesomespecific domain. We have chosen to study the SAT problem
because it is the prototypical and best-studiedNP-complete problem and there exists
a great variety of SAT benchmark instances and solvers.) Specifically, we considered
two high-performance SLS algorithms for SAT, Novelty+ [12] and SAPS [17], and sev-
eral widely-studied structured and unstructured instancedistributions. In Section 2, we
show how to build models that predict the sufficient statistics of RTDs for randomized
algorithms. Empirical results demonstrate that we can predict the median run-time for
our test distributions with surprising accuracy (we achieve correlation coefficients be-
tween predicted and actual run-time of up to 0.995), and thatbased on this statistic we
can also predict the complete exponential RTDs Novelty+ and SAPS exhibit. Section 3
describes how empirical hardness models can be extended to incorporate algorithm
parameters; empirical results still demonstrate good performance for this harder task
(correlation coefficients reach up to 0.98). Section 4 showsthat these models can be
leveraged to perform automatic per-instance parameter tuning that results in significant
reductions of the algorithm’s run-time compared to using default settings (speedups of
up to two orders of magnitude) or even the best fixed parametervalues for the given
instance distribution (speedups of up to an order of magnitude). Section 5 describes
how Bayesian techniques can be leveraged when predicting run-time for test distribu-
tions that differ from the one used for training of the empirical hardness model. Finally,
Section 6 concludes the paper and points out future work.

2 Run-time Prediction: Randomized Algorithms

Previous work [19, 21] has shown that it is possible to predict the run-time of deter-
ministic tree-search algorithms for combinatorial problems using supervised machine
learning techniques. In this section, we demonstrate that similar techniques are able
to predict the run-time of algorithms which are both randomized and incomplete. We



support our arguments by presenting the results of experiments involving two powerful
local search algorithms for SAT.

2.1 Prediction of sufficient statistics for run-time distributions

It has been shown in the literature that high-performance randomized local search al-
gorithms tend to exhibit exponential run-time distributions [14], meaning that the run-
times of two runs that differ only in their random seeds can easily vary by an order
of magnitude. Even more extreme variability in run-time hasbeen observed for ran-
domized complete search algorithms [11]. Due to this inherent algorithm randomness,
we have to predict a probability distribution over the amount of time an algorithm will
take to solve the problem. For many randomized algorithms such run-time distributions
closely resemble standard parametric distributions such as exponential or Weibull (see,
e.g., [14]). These parametric distributions are completely specified by certain sufficient
statistics. For example, an exponential distribution can be specified by its median. It
follows that by predicting such sufficient statistics, a prediction for the entire run-time
distribution for an unseen instance is obtained.

Note that for randomized algorithms, the error in a model’s predictions can be di-
vided into two components: the extent to which the model fails to describe the data, and
the inherent noise in the employed summary statistics due torandomness of the algo-
rithm. This latter component may be reduced by measuring thestatistics over a larger
number of runs per instance. As we will see in Figures 1(a) and1(b), while empirical
hardness models of SLS algorithms are able to predict the run-times of single runs rea-
sonably well, their predictions of median run-times over a larger set of runs are much
more accurate.

Our approach for run-time prediction of randomized incomplete algorithms largely
follows the basis function regression approach of [19, 21].3 While an extension of our
work to randomized tree search algorithms should be straight-forward, experiments in
this paper are restricted to incomplete local search algorithms.

In order to predict the run-time of an algorithmA on a distributionD of instances,
we draw an i.i.d. sample ofN instances fromD. For each instancesn in this training set,
A is run some constant number of times and an empirical fitrn of the sufficient statistics
of interest is recorded. Note thatrn is a1×M vector if there areM sufficient statistics
of interest. We also compute a set ofk = 43 instance featuresxn = [xn,1, . . . , xn,k] for
each instance. This set is a subset of the features used in [21], including basic statistics,
graph-based features, local search probes, and DPLL-basedmeasures.4 We restricted
the subset of features because some features from [21] timedout for large instances—
the computation of all our 43 features took only about 2 seconds per instance.

3 In previous preliminary and unpublished experiments for the winner determination problem,
we examined other techniques such as support vector machine regression, multivariate adap-
tive regression splines and lasso regression; none improved predictive performance signifi-
cantly. More recent experiments (see Section 5) suggest that Gaussian process regressioncan
increase performance, especially when the amount of training data is small. However, this
method has complexity cubic in the number ofdata points, complicating its practical use.

4 Information on precisely which features we used, as well as the rest
of our experimental data and Matlab code, is available online at
http://www.cs.ubc.ca/labs/beta/Projects/Empirical-Hardness-Models/.



Given this data for all the training instances, a functionf(x) is fitted that, from
the featuresxn of an instancesn, approximates the sufficient statisticsrn of A’s run-
time distribution on this instance. Since linear functionsof these raw features may
not be expressive enough, we construct a richer set of basis functions which can in-
clude arbitrarily complex functions ofall featuresxn of an instancesn, or simply
the raw features themselves. These basis functions typically contain a number of el-
ements which are either unpredictive or highly correlated.Predictive performance can
thus be improved (especially in terms of robustness) by applying some form of fea-
ture selection that identifies a small subset ofD important features; as explained later,
here we use forward selection with a designated validation set to select up toD = 40
features. We denote the reduced set ofD basis functions for instancesn as φn =
φ(xn) = [φ1(xn), . . . , φD(xn)]. We then use ridge regression to fit theD × M ma-
trix of free parametersw of a linear functionfw(xn) = φ(xn)⊤w, that is, we com-
pute w = (δI + Φ⊤Φ)−1Φ⊤r, whereδ is a small regularization constant (set to
10−2 in our experiments),Φ is theN × D design matrixΦ = [φ⊤

1 , . . . ,φ⊤
N ]⊤, and

r = [r1
⊤, . . . , rN

⊤]⊤. Given a new, unseen instancesN+1, a prediction of theM
sufficient statistics can be obtained by computing the instance featuresxN+1 and eval-
uatingfw(xN+1) = φ(xN+1)

⊤w. One advantage of the simplicity of ridge regression
is a low computational complexity ofΘ(max{D3,D2N,DNM}) for training and of
Θ(DM) for prediction for an unseen test instance.

2.2 Experimental setup and empirical results for predicting median run-time

We performed experiments for the prediction of run-time distributions for two SLS al-
gorithms, SAPS and Novelty+. Because previous studies [12, 17, 14] have shown that
these algorithms tend to have approximately exponential run-time distributions, the suf-
ficient statisticsrn for each instancesn reduce to the empirical median run-time of a
fixed number of runs. In this section we fix SAPS parameters to their default values
〈α, ρ, Psmooth〉 = 〈1.3, 0.8, 0.05〉. For Novelty+, we use its default parameter setting
〈noise, wp〉 = 〈0.5, 0.01〉 for unstructured instances. On structured instances Novelty+

is known to perform better with lower noise settings, and indeed with noise=0.5 the ma-
jority of runs did not finish within an hour of CPU time. Thus, we chose〈noise, wp〉 =
〈0.1, 0.01〉 which solved all structured instances in 15 minutes of CPU time. We con-
sider models that incorporate multiple parameter settingsin the next section.

In our experiments, we used six widely-studied SAT benchmark distributions, half
consisting of unstructured instances and half of structured instances. The first two dis-
tributions we studied each consisted of 20,000 uniform-random 3-SAT instances with
400 variables; the first (CV-var ) varied the clauses-to-variables ratio between3.26 and
5.26, while the second (CV-fixed) fixed c/v = 4.26. These distributions were previ-
ously studied in [21], facilitating a comparison of our results with past work. Our third
unstructured distribution (SAT04) consisted of 3,000 random unstructured instances
generated with the two generators used for the 2004 SAT solver competition (with
identical parameters) and was employed to evaluate our automated parameter tuning
procedure on a competition benchmark.

Our first two structured distributions are different variants of quasigroup completion
problems. The first one (QCP) consisted of 30,626 quasigroup completion instances,
while the second one (QWH ) contained 9,601 instances of the quasigroup comple-
tion problem for quasigroups with randomly punched holes) [10]. Both distributions



Unstructured instances
Dataset N Algorithm Runs Corrcoeff RMSE
CV-var 9952 SAPS 1 0.903/0.9110.37/0.35
CV-var 9952 SAPS 10 0.960/0.9680.23/0.20
CV-var 9952 SAPS 100 0.967/0.9770.21/0.17
CV-var 9952 SAPS 1000 0.968/0.9780.20/0.17
CV-var 9952 Novelty+ 10 0.947/0.9520.25/0.23

CV-fixed 10125 SAPS 10 0.765/0.7810.46/0.44
CV-fixed 10125 Novelty+ 10 0.586/0.6030.61/0.60
SAT04 1457 SAPS 10 0.933/0.9380.52/0.50
SAT04 1426 Novelty+ 10 0.934/0.9380.58/0.56

Structured instances
Dataset N Algorithm Runs Corrcoeff RMSE
QWH 7793 SAPS 10 0.988/0.9950.33/0.21
QWH 8049 Novelty+ 10 0.988/0.9920.22/0.18
QCP 14716 SAPS 10 0.995/0.9970.17/0.15
QCP 15263 Novelty+ 10 0.993/0.9940.12/0.11

SW-GCP 4287 SAPS 10 0.890/0.8920.45/0.45
SW-GCP 5573 Novelty+ 10 0.690/0.6910.23/0.23

Table 1. Evaluation of learned models on test data.N is the number of instances for which
the algorithm’s median runtime is≤ 900 CPU seconds (only those instances are used and split
50:25:25 into training, validation, and test sets). Columns for correlation coefficient and RMSE
indicate values using only raw features as basis functions, and then usingraw features and their
pairwise products. SAPS was always run with its default parameter settings 〈α, ρ〉 = 〈1.3, 0.8〉.
For Novelty+, we used noise=0.5 for unstructured and noise=0.1 for structured instances.

were created with the generatorlsencode by Carla Gomes. The ratio of unassigned
cells varied from25% to 75%. We chose quasigroup completion problems as a repre-
sentative of structured problems because this domain allows the systematic study of a
large instance set with a wide spread in hardness, and because the structure of the un-
derlying Latin squares is similar to the one found in applications such as scheduling,
time-tabling, experimental design, and error correcting codes [10]. Our last structured
distribution (SW-GCP) contained 20,000 instances of graph coloring based on small
world graphs that were created with the generatorsw.lsp by Toby Walsh [9].

As is standard in the study of SLS algorithms, all distributions were filtered to
contain only satisfiable instances, leading to 9,952, 10,125, 1,470, 17,989, 9,601, and
11,182 instances for CV-var, CV-fixed, SAT04, QCP, QWH, and SW-GCP, respectively.
To limit computational time we only used instances that weresolved in a single SAPS
run of one hour. This further reduced the sets to 9,952, 10,125, 1,469, 15,263, 8,049, and
5,573 instances for CV-var, CV-fixed, SAT04, QCP, QWH, and SW-GCP, respectively.

We then randomly split each instance set 50:25:25 into training, validation, and test
sets; all experimental results are based on the test set and were stable with respect to
reshuffling. We chose the 43 raw features and the constant1 as our basis functions,
and also included pairwise multiplicative combinations ofall raw features. We then
performed forward selection to select up to 40 features, stopping when the error on the
validation set first began to grow. Experiments were run on a cluster of 50 dual 3.2GHz
Intel Xeon PCs with 2MB cache and 2GB RAM, running SuSE Linux 9.1.

Overall, our experiments show that we can consistently predict median run-time
with surprising accuracy. Results for all our benchmark distributions are summarized in
Table 1. Note that a correlation coefficient (CC) of 1 indicates perfect prediction while
0 indicates random noise; a root mean squared error (RMSE) of0 means perfect pre-
diction while 1 roughly means average misprediction by one order of magnitude. Also
note that the predictive qualities for Novelty+ and SAPS are qualitatively similar.

Figure 1(a) shows a scatterplot of predicted vs. actual run-time for Novelty+ on
CV-var, where the model is trained and evaluated on a single run per instance. Most of
the data points are located in the very left of this plot, which we visualize by plotting
the 10%, 50% and 90% quantiles of the data (the three red dashed lines). While a strong
trend is evident in Figure 1(a), there is significant error inthe predictions. Figure 1(b)
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(a) 1 Novelty+ run on CV-var.
CC=0.878, RMSE=0.37
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(b) 100 Novelty+ runs on CV-
var. CC=0.962, RMSE=0.21
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(c) 100 SAPS runs on CV-fixed.
CC=0.800, RMSE=0.42

Fig. 1.Correlation between observed and predicted run-times/medians of run-times of SAPS and
Novelty+ on unstructured instances. The basis functions were raw features andtheir pairwise
products. The three red vertical dashed lines in these and all other scatter plots in this paper
denote the 10%, 50%, and 90% quantiles of the data. For example, this means that 40% of the
data points lie between the left and the middle vertical lines.
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(a) 10 SAPS runs on QWH
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(b) 10 SAPS runs on SW-GCP
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(c) 10 Novelty+ runs on QCP

Fig. 2.Correlation between observed and predicted run-times/medians of run-times of SAPS and
Novelty+ on SAT04 and QWH. The basis functions were raw features and their pairwise prod-
ucts. For RMSEs and correlations coefficients, see Table 1.

shows the same algorithm on the same dataset, but now predicting the median of an
empirical run-time distribution based on 100 runs. The error for the leftmost 90% of the
data points is substantially reduced, leading to an almost halved RMSE when compared
to predictions for a single run. It is also noteworthy that these run-time predictions are
more accurate than the predictions for the deterministic algorithms kcnfs, satz, and ok-
solver (compare against Figure 5(left) in [21]). While this is already true for predictions
based on single runs it is much more pronounced when predicting median run-time.
This same effect holds true for predicting median run-time of SAPS, and for different
distributions. Figure 1(c) also shows much better predictions than we observed for de-
terministic tree search algorithms on CV-fix (compare this plot against Figure 7(left)
in [21]). We believe that two factors contribute to this effect. First, we see deterministic
algorithms as comparable to randomized algorithms with a fixed seed. Obviously, the
single run-time of such an algorithm on a particular instance is less informative about
its underlying run-time distribution (were it randomized)than the sufficient statistics of
multiple runs. Second, one of the main reasons to introduce randomness in search is



# Basis function Cost of omission Corrcoeff RMSE
SAPS on CV-fix

1. sapsBestSolutionCoeffVariance× sapsBestStepCoeffVariance 100 0.744/0.7850.47/0.44
1. sapsBestSolutionCoeffVariance× sapsAvgImproveToBestMean 100
2. sapsBestStepCoeffVariance× sapsFirstLMRatio Mean 45
3. gsatBestSolutionCoeffVariance× lobjois meandepthover vars 37 0.758/0.7850.46/0.44
4. sapsAvgImproveToBestCoeffVariance 15
5. sapsBestCVMean× gsatBestStepMean 11

Novelty+ on QCP
1. VG mean× gsatBestStepMean 100 0.966/0.9940.29/0.11
1. sapsAvgImproveToBestCoeffVariance× gsatBestSolutionMean 100
2. varsclausesratio× lobjois meandepthover vars 68
3. VG mean× gsatBestStepMean 12 0.991/0.9940.13/0.11
4. TRINARY PLUS× lobjois log num nodesover vars 7

Table 2. Feature importance in small subset models for predicting median run-timeof 10 runs.
The cost of omission for a feature specifies how much worse validation set predictions are without
it, normalized to 100 for the top feature. The RMSE and Corrcoeff columns compare predictive
quality on the test set to that of full 40-feature models.

to achieve diversification. This allows the heuristic to recover from making a bad de-
cision by exploring a new part of the search space, and hence reduces the variance of
run-times across very similar instances. Because deterministic solvers do not include
such diversification mechanisms, they can exhibit strikingly different run-times on very
similar instances. (This observation is the basis of the literature on heavy-tailed run-
time distributions in complete search, see e.g. [11].) For example, consider modifying
a SAT instance by randomly shuffling the names of its variables. One would expect a
properly randomized algorithm to have essentially the samerun-time distributions for
both instances; however, a deterministic solver could exhibit very different runtimes on
the two instances [5]. Because empirical hardness models must give similar predictions
for instances with similar feature values, the model for thedeterministic solver could
be expected to exhibit higher error in this case.

Figure 2 visualizes our predictive quality for structured data sets. Performance for
both QWH and QCP, as shown in Figures 2(a) and 2(c), was very good with correla-
tion coefficients between predicted and actual median run-time of up to0.995. Note,
however, that the hardest instance in Figure 2(c) was predicted to be much easier than
it actually is. This is because the instance was exceptionally hard: over an order of
magnitude harder than the hardest instance in the training set. The last structured data
set, SW-GCP, is the hardest distribution for prediction we have encountered thus far
(unpublished data shows RMSEs of around 1.0 when predictingthe run-time of deter-
ministic algorithms on SW-GCP). As shown in Figure 2(b), thepredictions for SAPS
are surprisingly good; predictive quality for Novelty+ (see Table 1) is also much higher
than what we have seen for deterministic algorithms.

We now look at which features are most important to our models; this is not straight-
forward since the features are highly correlated. Following [19, 21], we build subset
models of increasing size until the RMSE and correlation coefficient are comparable to
the ones for the full model with 40 basis functions. Table 2 reports the results for SAPS
on CV-fix and Novelty+ on QCP and for each of these also gives the performance of
the best model with a single basis function. Overall, we observe that the most important
features for predicting run-time distributions of our SLS algorithms are the same ones
that were observed to be important for predicting run-timesof deterministic algorithms
in [21]. Also similar to observations from [21], we found that very few features are
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(a) Predictions of median run-
time, instances q0.25 and q0.75

10
−4

10
−2

10
−6

0

0.2

0.4

0.6

0.8

1

Runtime [seconds]

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 

 
True empirical RTD
Predicted empirical RTD

(b) Easy QCP instance (q0.25)

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

Runtime [seconds]

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 

 
True empirical RTD
Predicted empirical RTD

(c) Hard QCP instance (q0.75)

Fig. 3. Predicted versus actual empirical RTDs for SAPS on two QCP instances.10 runs were
used for learning median run-time and in (a), 1000 runs for the empirical RTDs in (b) and (c).

needed to build run-time models of instances that are all satisfiable. While [21] studied
only uniform-random data, we found in our experiments that this is true for both un-
structured and structured instances and for both algorithms we studied. Small models
for CV-var (both for SAPS and Novelty+) almost exclusively use local search features
(almost all of them based on short SAPS trajectories). The structured domain QCP em-
ploys a mix of local search probes (based on both SAPS and GSAT), constraint-graph-
based features (e.g., VGmean) and in the case of Novelty+ also some DPLL-based
features, such as the estimate of the search tree size (lobjois meandepthover vars).
In some cases (e.g., models of SAPS on CV-var), and when we record relatively few
runs per instance, a single feature can be sufficient for predicting single run-times with
virtually the same accuracy as the full model.

To illustrate that based on the median we can fairly accurately predict entire run-
time distributions for the SLS algorithms studied here, we show the predicted and em-
pirically measured RTDs for SAPS on two QCP instances in Figure 3. The two in-
stances correspond to the 0.25 and 0.75 quantiles of the distribution of actual median
hardness for SAPS on the entire QCP instance set; they correspond to the red crosses in
Figure 3(a), which shows the tight correlation between actual and predicted run-times.
Consistent with previous results by Hoos et al. (see, e.g., Chapters 4 and 6 of [14]),
the RTD for theq0.75 instance is closely approximated by an exponential distribution,
which our approach almost perfectly fits (see Figure 3(c)). The RTDs for easier in-
stances are known to typically exhibit smaller variance; therefore, an approximation
with an exponential distribution is less accurate (see Figure 3(b)). We plan to predict
sufficient statistics for the more general distributions needed to characterize such RTDs,
such as Weibull and generalized exponential distributions, in the future.

3 Run-time Prediction: Parametric Algorithms
The behavior of most high-performance SLS algorithms is controlled by one or more
parameters. It is well known that these parameters often have a substantial effect on
the algorithm’s performance (see, e.g., [14]). In the previous section, we showed that
quite accurate empirical hardness models can be constructed when these parameters are
held constant. In practice, however, we also want to be able to model an algorithm’s
behavior when these parameter values are changed. In this section, we demonstrate that



Algorithm Fixed parameters Default parameters Used parameter configurations
Novelty+ wp = 0.01 noise = 0.5% noise ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

SAPS
Psmooth = 0.05,

〈α, ρ〉 = 〈1.3, 0.8〉
All combinations ofα ∈ {1.2, 1.3, 1.4}

wp = 0.01 andρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Table 3.Parameter configurations employed in our experiments.

it is possible to incorporate parameters into empirical hardness models for randomized,
incomplete algorithms. Our techniques should also carry over to both deterministic and
complete parametric algorithms (in the case of deterministic algorithms using single
run-times instead of sufficient statistics of RTDs).

Our approach is to learn a functiong(x, c) that takes as inputs both the features
xn of an instancesn and the parameter configurationc of an algorithmA, and that
approximates sufficient statistics ofA’s RTD when run on instancesn with parameter
configurationc. In the training phase, for each training instancesn we runA some con-
stant number of times with a set of parameter configurationscn = {cn,1, . . . , cn,kn

},
and collect fits of the sufficient statisticsrn = [r⊤n,1, . . . , r

⊤
n,kn

]⊤ of the corresponding
empirical run-time distributions. We also computesn’s featuresxn. The key change
from the approach in Section 2.1 is that now the parameters that were used to generate
an 〈instance,run-time〉 pair are effectively treated as additional features of thattrain-
ing example. We define a new set of basis functionsφ(xn, cn,j) = [φ1(xn, cn,j), . . . ,
φD(xn, cn,j)] whose domain now consists of the cross product of features and parame-
ter configurations. For each instancesn and parameter configurationcn,j , we will have a
row in the design matrixΦ that containsφ(xn, cn,j)

⊤—that is, the design matrix now
containskn rows for training instancesn. The target vectorr = [r⊤

1 , . . . , r⊤
N ]⊤ just

stacks all the sufficient statistics on top of each other. We learn the functiongw(x, c) =
φ(x, c)⊤w by applying ridge regression as in Section 2.1.

Our experiments in this section concentrate on predicting median run-time of SAPS
since that is the more challenging problem. SAPS has three interdependent, continu-
ous parameters, as compared to Novelty+ which has only one interesting parameter.
(Both algorithms have an additional parameter,wp, which is typically set to a default
value that results in uniformly good performance.) This difference notwithstanding, we
observed qualitatively similar results with Novelty+. Note that the approach outlined
above allows one to use different parameter settings for each training instance. How to
pick these settings for training in the most informative wayis an interesting experimen-
tal design question which invites the use of active learningtechniques; we plan to tackle
it in future work. In this study, we used the parameter combinations defined in Table 3.
We fixedPsmooth = 0.05 for SAPS since its effect is highly correlated with that ofρ.

As basis functions, we used multiplicative combinations ofthe raw instance features
xn and a 2nd-order expansion of all non-fixed (continuous) parameter settings. ForK
raw features (K = 43 in our experiments), this meant3K basis functions for Novelty+,
and6K for SAPS, respectively. As before we applied forward selection to select up to
40 features, stopping when the error on the validation set first began to grow. For each
data set reported here, we randomly picked 1000 instances tobe split 50:50 for train-
ing and validation. We ran one run per instance and parameterconfiguration yielding
30,000 data points for SAPS and 6,000 for Novelty+. (Training on the median of more
runs would likely have improved the results.) For the test set, we used an additional 100
distinct instances and computed the median of 10 runs for each parameter setting.
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Fig. 4. Left: Predictions for SAPS on QWH with 30 parameter settings. Middle: Data points
for 5 instances from SAPS on SAT04, different symbol for each instance. Right: Predicted run-
time vs. median SAPS run-time over 1000 runs for 30 parameter settings on the median SAT04
instance, the one marked with blue diamonds in the middle figure.

In Figure 4(left), we show predicted vs. actual SAPS run-time for the QWH dataset
and the 30〈α, ρ〉 combinations in Table 3. This may be compared to Figure 2(a),which
shows the same algorithm on the same dataset for fixed parameter values. (Note, how-
ever, that Figure 2(a) was trained on more runs and using morepowerful basis functions
for the instance features.) We observe that our model still achieves good performance,
yielding correlation coefficient/RMSE of 0.98/0.41, as compared to 0.988/0.33 for the
fixed-parameter setting (using raw features as basis functions).

Figure 4(middle) shows predicted vs. actual SAPS median run-time for five in-
stances from SAT04, namely the easiest and hardest instance, and the 0.25, 0.5, and
0.75 quantiles. Runs corresponding to the same instance areplotted using the same
symbol. Note that run-time variation due to the instance is often greater than variation
due to parameter settings. However, harder instances tend to be more sensitive to vari-
ation in the algorithm’s parameters than easier ones – this indicates the importance of
parameter tuning, especially for hard instances. The average correlation coefficient for
the 30 points per instance is 0.63; for the 6 points per instance in Novelty+ it is 0.84,
much higher.

Figure 4(right) shows SAPS run-time predictions for the median instance of our
SAT04 test set at each of its 30〈α, ρ〉 combinations; these are compared to the actual
median SAPS run-times on this instance. We observe that the learned model predicts
the actual run-times fairly well, despite the fact that the relationship between run-time
and the two parameters is complex. In the experiment the figure is based on feature
selection chose 40 features; thus, the model learned a 40-dimensional surface and the
figure shows that its projection onto the 2-dimensional parameter space at the current
instance features qualitatively captures the shape of the actual parameter-dependent run-
time for this instance.

4 Automated Parameter Tuning
Our results, as suggested by Figure 4 indicate that our methods are able to predict per-
instance and per-parameter run-times with reasonable accuracy. We can thus hope that
they would also be able to predict which parameter settings result in the lowest run-time
for a given instance. This would allow us to use a learned model to automatically tune
the parameter values of an SLS algorithm on a per-instance basis by simply picking the
parameter configuration out of the ones we consider (see Table 3) that is predicted to



Set Algo Gross corrRMSE Corr per inst.best fixed a posteriorisbpi swpi sdef sfixed

SAT04 Nov 0.90 0.76 0.84 ± 0.29 0.5 0.65193.19 0.88 0.88
QWH Nov 0.98 0.52 0.76 ± 0.43 0.1 0.85683.04257.96 0.94
Mixed Nov 0.95 0.77 0.80 ± 0.35 0.2 0.71350.12 14.49 9.52
SAT04 SAPS 0.91 0.60 0.63 ± 0.29 〈1.3, 0〉 0.43 15.95 2.66 0.96
QWH SAPS 0.98 0.41 0.43 ± 0.39 〈1.2, 0〉 0.67 5.88 2.39 1.02
Mixed SAPS 0.95 0.61 0.47 ± 0.38 〈1.3, 0〉 0.48 8.53 2.22 0.97

Table 4. Results for automated parameter tuning. For each instance set and algorithm, we give
the correlation between actual and predicted run-time for all instances, RMSE, the correlation for
all data points of an instance (mean± stddev), and the best fixed a posteriori parameter setting on
the test set. We also give the average speedup over the best possible parameter setting per instance
(sbpi, always≤ 1), over the worst possible setting per instance (swpi, always≥ 1), the default
(sdef ), and the best fixed setting. For example, on Mixed, Novelty+ is on average 9.52 times
faster than its best data-set specific fixed parameter setting (sfixed). All experiments use second
order expansions of the parameters (combined with the instance features). Bold face indicates
speedups of the automated parameter setting over the default and best fixed parameter settings.

yield the lowest run-time. Note that our approach for parameter tuning is orthogonal to
that of reactive search approaches such as Adaptive Novelty+ [13] and RSAPS [17].

In this section we investigate this approach. We now focus onthe Novelty+ al-
gorithm, because we observed SAPS’s performance around〈α, ρ〉 = 〈1.3, 0.1〉 to be
very close to optimal across many different instance distributions.5 SAPS thus offers
little possibility for performance improvement through per-instance parameter tuning
(Table 4 quantifies this). Novelty+, on the other hand, exhibits substantial variation in
the best parameter setting from one instance distribution to another, making it a good
algorithm for the evaluation of our approach.6 We used the same test and training data
as in the previous section; thus, Table 4 summarizes the experiments both from the
previous section and from this section. However, in this section we also created a new
instance distribution “Mixed”, which is the union of the QWH and SAT04 distributions.
This mix enables a large gain for automated parameter tuning(when compared to the
best fixed parameter setting) since Novelty+ performs best with high noise settings on
unstructured instances and low settings on structured instances.

Figure 5(a) shows the performance of our automatic parameter-tuning algorithm on
test data from Mixed, as compared to upper and lower bounds onits possible perfor-
mance. We observe that the run-time with automatic parameter setting is close to the
optimal setting and far better than the worst one, with an increasing margin for harder
instances. Figure 5(b) provides a comparison of our method against a uniform random
picking of parameter combinations from the six considered Novelty+ configurations
(see Table 3). Figure 5(c) compares our automatic tuning against the best fixed param-
eter setting (this was determined in an a posteriori fashionas the setting with the best

5 This is true even though it has been demonstrated that for each SAPS parameter there exist
instances for which a statistically significant improvement can be obtained over the default
setting〈α, ρ〉 = 〈1.3, 0.8〉 (defined in [17]) by tuning that parameter [25]. We note that the
setting〈α, ρ〉 = 〈1.3, 0.1〉 differs from the default studied by [25], raising the question of
whether the cited result would also hold for this setting.

6 Indeed, the large potential gains for tuning WalkSAT’s noise parameter on a per-instance basis
have been exploited before [22].
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Fig. 5. (a) Performance of automated parameter setting for Novelty+ on data set Mixed, com-
pared to the best (dots) and worst (crosses) per-instance parameter setting (out of the 6 parameter
settings we employed). (b) Compared to independent random noise values for each instance. (c)
Speedup of Novelty+ over the best fixed a posteriori parameter setting for Mixed.

performance on the test set out of the ones we considered, seeTable 3). This setting is
often the best that can be hoped for in practice. (A common approach for tuning param-
eters is to perform a set of experiments, to identify the parameter setting which achieves
the lowest overall run-time, and then to fix the parameters tothis setting.) Figure 5(c),
in conjunction with Table 4, shows that our techniques can dramatically outperform this
form of parameter tuning: Novelty+ almost achieves an average speedup of an order of
magnitude on Mixed as compared to the best fixed parameter setting on that set. SAPS
improves upon its default setting by more than a factor of twofor all three distribu-
tions. Considering that our method is fully automatic and very general, these are very
promising results.

Related work on automated parameter tuning

The task of configuring an algorithm’s parameters for high and robust performance
has been widely recognized as a tedious and time-consuming task that requires well-
developed engineering skills. Automating this task is a very promising and active area
of research. There exists a large number of approaches to findthe best configuration
for a given problem distribution [3, 24, 1]. All these techniques aim to find a parameter
setting that optimizes some scoring function which averages over all instances from the
given input distribution. If the instances are sufficientlyhomogeneous, this approach
can perform quite well. However, if the problem instances tobe solved come from
heterogeneous distributions or even from completely unrelated application areas, the
best parameter configuration may differ vastly from instance to instance. In such cases
it is advisable to apply an approach like ours that can choosethe best parameter setting
for each run contingent on the characteristics of the current instance to be solved. This
per-instance parameter tuning is more powerful but less general than tuning on a per-
distribution basis in that it requires the existence of a setof discriminative instance
features. However, we believe it to be not too difficult to engineer a good set of instance
features if one is familiar with the general problem domain.

The only other approach for parameter tuning on a per-instance basis we are aware
of is the Auto-WalkSAT framework [22]. This approach is based on empirical findings
showing that the optimal parameter setting of WalkSAT algorithms tends to be about



0.1 above the one that minimizes the invariance ratio [20]. Auto-WalkSAT chooses re-
markably good noise settings on a variety of instances, but for domains where the above
relationship between invariance ratio and optimal noise setting does not hold (such as
logistics problems), it performs poorly [22]. Furthermore, its approach is limited to SAT
and in particular to tuning the (single) noise parameter of the WalkSAT framework. In
contrast, our automated parameter tuning approach appliesto arbitrary parametric al-
gorithms and all domains for which good features can be engineered.

Finally, reactive search algorithms [2], such as Adaptive Novelty+[13] or RSAPS [17]
adaptively modify their search strategyduring a search. (Complete reactive search al-
gorithms include [18, 6].) Many reactive approaches still have one or more parameters
whose settings remain fixed throughout the search; in these cases the automated con-
figuration techniques we presented here should be applicable to tune these parameters.
While a reactive approach is in principle more powerful than ours (it can utilize dif-
ferent search strategies in different parts of the space), it is also less general since the
implementation is typically tightly coupled to a specific algorithm. Ultimately, we aim
to generalize our approach to allow for modifying parameters during the search—this
requires that the features evaluated during search are verycheap to compute. We also
see reinforcement learning as very promising in this context [18].

5 Uncertainty Estimates through Bayesian Regression

So far, research in empirical hardness models has focused onthe case where the targeted
application domain is knowna priori and training instances from this domain are avail-
able. In practice, however, an algorithm may have to solve problem instances that are
significantly different from the ones encountered during training. Empirical hardness
models may perform poorly in such cases. This is because the statistical foundations
upon which their machine learning approach is built rely upon the test set being drawn
from the same distribution as the training set. Bayesian approaches may be more appro-
priate in such scenarios since they explicitly model theuncertaintyassociated with their
predictions. Roughly, they provide an automatic measure ofhow similar the basis func-
tions for a particular test instance are to those for the training instances, and associate
higher uncertainty with relatively dissimilar instances.We implemented two Bayesian
methods: (a) sequential Bayesian linear regression (BLR) [4], a technique which yields
mean predictions equivalent to ridge regression but also offers estimates of uncertainty;
and (b) Gaussian Process Regression (GPR) [23] with a squared exponential kernel. We
detail BLR and the potential applications of a Bayesian approach to run-time prediction
in an accompanying technical report [16]. Since GPR scales cubically in the number of
data points, we trained it on a subset of 1000 data points (butused all 9601 data points
for BLR). Even so, GPR took roughly 1000 times longer to train.

We evaluated both our methods on two different problems. Thefirst problem is to
train and validate on our QWH data-set and test on our QCP data-set. While these dis-
tributions are not identical, our intuition was that they share enough structure to allow
models trained on one to make good predictions on the other. The second problem was
much harder: we trained on data-set SAT04 and tested on a verydiverse test set con-
taining instances from ten qualitatively different distributions from SATLIB. Figure 6
shows predictions and their uncertainty (± one stddev) for both methods on the first
problem. The two distributions are similar enough to yield very good predictions for
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(b) GP with squared exponential kernel

Fig. 6.Predictions and their uncertainty of Novelty+ median run-time of 10 runs: Bayesian linear
regression and Gaussian Process with squared exponential kernel, trained on QWH and tested
on QCP. The run-time predictions of these approaches are Gaussian probability distributions for
every instance. The red dots specify the predictive mean and the black bars the standard deviation.

both approaches. While BLR was overconfident on this data set,the uncertainty es-
timates of GPR make more sense: they are very small for accurately predicted data
points and large for mispredicted ones. Both models achieved similar predictive accu-
racy (CC/RMSE 0.953/0.50 for BLR; 0.953/0.51 for GPR). For the second problem
(space restrictions prevent a figure), BLR showed massive mispredictions (several tens
of orders of magnitude) but associated very high uncertainty with the mispredicted in-
stances, reflecting their dissimilarity with the training set. GPR showed more reasonable
predictions, and also did a good job in indicating high uncertainty about instances for
which predictive quality was low. Based on these preliminary results, we view Gaussian
process regression as particularly promising and plan to study its application to run-time
prediction in more detail. However, we note that its scalingbehavior somewhat limits
its usefulness in practice.

6 Conclusion and Future Work

In this work, we have demonstrated that empirical hardness models obtained from linear
basis function regression can be extended to make surprisingly accurate predictions of
the run-time of randomized, incomplete algorithms such as Novelty+ and SAPS. Based
on a prediction of sufficient statistics for run-time distributions (RTDs), we showed very
good predictions of the entire empirical RTDs for unseen test instances. We have also
demonstrated for the first time that empirical hardness models can model the effect of
algorithm parameter settings on run-time, and that these models can be used as a basis
for automated per-instance parameter tuning. In our experiments, this tuning never hurt
and sometimes resulted in substantial and completely automatic performance improve-
ments, as compared to default or optimized fixed parameter settings.

There are several natural ways in which this work can be extended. First, we are
currently studying Bayesian methods for run-time prediction in more detail. Further,
it should be straight-forward to apply our approach to randomized systematic search
methods and we plan to do this in future work. We also plan to study the extent to which
our results generalize to problems other than SAT and in particular to optimization
problems. Finally, we would like to apply active learning approaches [7] in order to
probe the parameter space in the most informative way in order to reduce training time.
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