
Automated Algorithm Configuration and
Parameter Tuning

Holger H. Hoos

1 Introduction

Computationally challenging problems arise in the context of many applications,
and the ability to solve these as efficiently as possible is of great practical, and often
also economical importance. Examples of such problems include scheduling, time-
tabling, resource allocation, production planning and optimisation, computer-aided
design and software verification. Many of these problems are NP-hard and con-
sidered computationally intractable, because there is no polynomial-time algorithm
that can find solutions in the worst case (unless NP=P). However, by using care-
fully crafted heuristic techniques, it is often possible to solve practically relevant
instances of these ‘intractable’ problems surprisingly effectively (see, e.g., Prasad
et al, 2005; Applegate et al, 2006; Pop et al, 2002). 1

The practically observed efficacy of these heuristic mechanisms remains typi-
cally inaccessible to the analytical techniques used for proving theoretical complex-
ity results, and therefore needs to be established empirically, on the basis of carefully
designed computational experiments. In many cases, state-of-the-art performance is
achieved using several heuristic mechanisms that interact in complex, non-intuitive
ways. For example, a DPLL-style complete solver for SAT (a prototypical NP-
complete problem with important applications in the design of reliable soft- and
hardware) may use different heuristics for selecting variables to be instantiated and
the values first explored for these variables, as well as heuristic mechanisms for
managing and using logical constraints derived from failed solution attempts. The
activation, interaction and precise behaviour of those mechanisms is often controlled
by parameters, and the settings of such parameters have a substantial impact on the

Holger H. Hoos
Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver,
BC, V6T 1Z4, Canada, e-mail: hoos@cs.ubc.ca

1 We note that the use of heuristic techniques does not imply that the resulting algorithms are nec-
essarily incomplete or do not have provable performance guarantees, but often results in empirical
performance far better than the bounds guaranteed by rigorous theoretical analysis.

1

2 Holger H. Hoos

efficacy with which a heuristic algorithm solves a given problem instance or class
of problem instances. For example, the run-time of CPLEX 12.1 – a widely used,
commercial solver for mixed integer programming problems – has recently been
demonstrated to vary up to a factor of over 50 with the settings of 76 user-accessible
parameters (Hutter et al, 2010c).

A problem routinely encountered by designers as well as end-users of parame-
terised algorithms is that of finding parameter settings (or configurations) for which
the empirical performance on a given set of problem instances is optimised. For-
mally, this algorithm configuration or parameter tuning problem can be stated as
follows:

Given

• an algorithm A with parameters p1, . . . , pk that affect its behaviour,
• a space C of configurations (i.e., parameter settings), where each configu-

ration c ∈C specifies values for A’s parameters such that A’s behaviour on
a given problem instance is completely specified (up to possible randomi-
sation of A),

• a set of problem instances I,
• a performance metric m that measures the performance of A, on instance

set I for a given configuration c,

find a configuration c∗ ∈C that results in optimal performance of A on I ac-
cording to metric m.

In the context of this problem, the algorithm whose performance is to be optimised
is often called the target algorithm, and we use A(c) to denote target algorithm A
under a specific configuration c. The set of values any given parameter p can take is
called the domain of p. Depending on the given target algorithm, various types of pa-
rameters may occur. Categorical parameters have a finite, unordered set of discrete
values; they are often used to select between a number of alternative mechanisms
or components. Using Boolean parameters, heuristic mechanism can be activated
or deactived, while the behaviour and interaction of these mechanisms is often con-
trolled by integer- and real-valued parameters (the former of which are a special
cases of ordinal parameters, whose domains are discrete and ordered). Conditional
parameters are only active when other parameters are set to particular values; they
routinely arise in the context of mechanisms that are activated or selected using some
parameter, and whose behaviour is then controlled by other parameters (where the
latter parameters conditionally depend on the former). Sometimes, it is useful to
place additional constraints on configurations, e.g., to exclude certain combinations
of parameter values that would lead to ill-defined, incorrect or otherwise undesirable
behaviour of a given target algorithm.

Clearly, the number and types of parameters, along with the occurrence of con-
ditional parameters and constraints on configurations, determine the nature of the
configuration space C and have profound implications on the methods to be used
for searching performance-optimising configurations within that space. These meth-

Automated Algorithm Configuration and Parameter Tuning 3

ods range from well-known numerical optimisation procedures, such as the Nelder-
Mead Simplex algorithm (Nelder and Mead, 1965; Bűrmen et al, 2006) or the more
recent, gradient-free CMA-ES algorithm (Hansen, 2006; Hansen and Ostermeier,
2001; Hansen and Kern, 2004), to approaches based on experimental design meth-
ods (see, e.g., Birattari et al, 2002; Balaprakash et al, 2007; Adenso-Diaz and La-
guna, 2006), response-surface models (see, e.g., Jones et al, 1998; Bartz-Beielstein,
2006) or stochastic local search procedures (see, e.g., Hutter et al, 2007b, 2009a).

In general, when configuring a specific target algorithm, it is desirable to find
parameter configurations that work well on problem instances other than those in
the given instance set I. To this end, care needs to be taken in selecting the instances
in I to be representative of the kinds of instances to which the optimised target
algorithm configuration is expected to be applied. Difficulties can arise when I is
small, yet contains very different types of instances. To recognise situations in which
a configured target algorithm, A(c∗), fails to perform well when applied to instances
other than those used in the configuration process, it is advisable to test it on a set
of instances not contained in I; this can be done by including in I only part of the
overall set of instances available, or by means of cross validation.

It is also advisable to investigate performance variation of A(c∗) over instance set
I, since, depending on the performance metric m used for the configuration of A and
differences between instances in I, the optimised configuration c∗ might represent
a tradeoff between strong performance on some instances at the cost of weaker
performance on others. In particular, when using robust statistics, such as median
run-time, as a performance metric, detrimental performance on large parts of a given
instance set can result. To deal effectively with target algorithm runs in which no
solution was produced (in particular, time-outs encountered when optimising run-
time), it is often useful to use a performance metric based on penalised averaging,
in which a fixed penalty is assigned to any unsuccessful run of A (see also Hutter
et al, 2009a).

In the existing literature, the terms algorithm configuration and parameter tuning
are often used interchangeably. We prefer to use parameter tuning in the context of
target algorithms with relatively few parameters with mostly real-valued domains,
and algorithm configuration in the context of target algorithms with many categori-
cal parameters. Following Hoos (2008), we note that algorithm configuration prob-
lems arise when dealing with an algorithm schema that contains a number of instan-
tiable components (typically, subprocedures or functions), along with a discrete set
of concrete choices for each of these. While most standard numerical optimisation
methods are not applicable to these types of algorithm configuration problems, F-
Race (Birattari et al, 2002; Balaprakash et al, 2007), Calibra (Adenso-Diaz and La-
guna, 2006) and ParamILS (Hutter et al, 2007b, 2009a) have been used successfully
in this context. However, so far only ParamILS has been demonstrated to be able to
deal with the vast design spaces resulting from schemata with many, independently
instantiable components (see, e.g., KhudaBukhsh et al, 2009; Tompkins and Hoos,
2010), and promising results have been achieved by a genetic programming pro-
cedure applied to the configuration of local search algorithms for SAT (Fukunaga,

4 Holger H. Hoos

2002, 2004), as well as by a recent gender-based genetic algorithm (Ansótegui et al,
2009).

In the remainder of this chapter, we discuss three classes of methods for solving
algorithm configuration and parameter tuning problems. Racing procedures itera-
tively evaluate target algorithm configurations on problem instances from a given
set and use statistical hypothesis tests to eliminate candidate configurations that
are significantly outperformed by other configurations; ParamILS uses a powerful
stochastic local search (SLS) method to search within potentially vast spaces of can-
didate configurations of a given algorithm; and sequential model-based optimisation
(SMBO) methods build a response surface model that relates parameter settings to
performance, and use this model to iteratively identify promising settings. We also
give a brief overview of other algorithm configuration and parameter tuning proce-
dures and comment on the applications in which various methods have proven to be
effective.

While we deliberately limit the scope of our discussion to the algorithm configu-
ration problem defined earlier in this section, we note that there are several concep-
tually closely related problems that arise in the computer-aided design of algorithms
(see also Hoos, 2008): per-instance algorithm selection methods choose one of sev-
eral target algorithms to be applied to a given problem instance based on properties
of that instance determined just before attempting to solve it (see, e.g., Rice, 1976;
Leyton-Brown et al, 2003; Guerri and Milano, 2004; Xu et al, 2007, 2008); similarly,
per-instance algorithm configuration methods use instance properties to determine
the specific configuration of a parameterised target algorithm to be used for solving
a given instance (see, e.g., Hutter et al, 2006). Reactive search procedures, on-line
algorithm control methods and adaptive operator selection techniques switch be-
tween different algorithms, heuristic mechanisms or parameter configurations while
running on a given problem instance (see, e.g., Carchrae and Beck, 2005; Battiti
et al, 2008; Da Costa et al, 2008); and dynamic algorithm portfolio approaches re-
peatedly adjust the allocation of CPU shares between algorithms that are running
concurrently on a given problem instance (see, e.g., Gagliolo and Schmidhuber,
2006).

Furthermore, we attempt neither to cover all algorithm configuration methods
that can be found in the literature, nor to present all details of the procedures we
describe; instead, we focus on three fundamental approaches of algorithm configu-
ration methods and survey a number of prominent methods based on these, including
the state-of-the-art procedures at the time of this writing. We briefly discuss selected
applications of these procedures to illustrate their scope and performance, but we do
not attempt to give a complete or detailed account of the empirical results found in
the literature.

Automated Algorithm Configuration and Parameter Tuning 5

2 Racing Procedures

Given a number of candidate solvers for a given problem, the concept of racing is
based on a simple, yet compelling idea: sequentially evaluate the candidates on a
series of benchmark instances and eliminate solvers as soon as they have fallen too
far behind the current leader, i.e., the candidate with the overall best performance at
a given stage of the race.

Racing procedures have been originally introduced for solving model selection
problems in machine learning. The first such technique, dubbed Hoeffding Races
(Maron and Moore, 1994), was introduced in a supervised learning scenario, where
a black-box learner is evaluated by measuring its error on a set of test instances.
The key idea is to test a given set of models, one test instance at a time, and to
discard models as soon as they are shown to perform significantly worse than the
best ones. Performance is measured as error over all test instances evaluated so far,
and models are eliminated from the race using non-parametric bounds on the true
error, determined based on Hoeffding’s inequality (which gives an upper bound on
the probability for the sum of random variables to deviate from its expected value).
More precisely, a model is discarded from the race, if the lower bound on its true
error (for a given confidence level 1− δ) is worse than the upper bound on the
error of the currently best model. As a result, the computational effort expended in
evaluating models becomes increasingly focussed on promising candidates, and the
best candidate models end up getting evaluated most thoroughly.

This idea can be easily transferred to the problem of selecting an algorithm from
a set of candidates, where each candidate may correspond to a configuration of a
parameterised algorithm (Birattari et al, 2002). In this context, candidate algorithms
(or configurations) are evaluated on a given set of problem instances. As in the case
of model selection, the race proceeds in steps, where in each step, every candidate
is evaluated on the same instance, taken from the given instance set, and candidates
that performed significantly worse on the instances considered so far are eliminated
from the race. (We note that the evaluation of candidates in each step can, in princi-
ple, be performed independently in parallel.)

This procedure requires that the set of candidate algorithms be finite and, since
in the initial steps of a race all candidates will need to be evaluated, of somewhat
reasonable size. Therefore, when applied to algorithm configuration or parameter
tuning scenarios with continuous parameters, racing approaches need to make use
of discretisation or sampling techniques. In the simplest case, all continuous param-
eters are discretised prior to starting the race. Alternatively, stages of sampling and
racing can be interleaved, such that the candidate configurations being considered
become increasingly concentrated around the best performing configurations.

In the following, we will first present the F-Race procedure of Birattari et al
(2002) in more detail and outline its limitations. We will then discuss variations of
F-Race that overcome those weaknesses (Balaprakash et al, 2007; Birattari et al,
2010), and finally summarise some results achieved by these racing procedures in
various algorithm configuration scenarios.

6 Holger H. Hoos

2.1 F-Race

The F-Race algorithm by Birattari et al (2002) closely follows the previously dis-
cussed racing procedure. Similar to Hoeffding races, it uses a non-parametric test as
the basis for deciding which configurations to eliminate in any given step. However,
rather than just performing pairwise comparisons with the currently best configura-
tion (the so-called incumbent), F-Race first uses the rank-based Friedman test (also
know as Friedman two-way analysis of variance by ranks) for ni independent s-
variate random variables, where s is the number of configurations still in the race,
and ni is the number of problem instances evaluated so far. The Friedman test as-
sesses whether the s configurations show no significant performance differences on
the ni given instances; if this null hypothesis is rejected, i.e., if there is evidence that
some configurations perform better than others, a series of pairwise post hoc tests
between the incumbent and all other configurations is performed. All configurations
found to have performed significantly worse than the incumbent are eliminated from
the race. An outline of the F-Race procedure for algorithm configuration, as intro-
duced by Birattari et al, 2002, is shown in Fig. 1; as mentioned by Balaprakash et al,
2007, runs on a fixed number of instances are performed before the Friedman test is
first applied. The procedure is typically terminated either when only one configura-
tion remains, or when a user-defined time budget has been exhausted.

The Friedman test involves ranking the performance results of each configura-
tion on a given problem instance; in the case of ties, the average of the ranks that
would have been assigned without ties is assigned to each tied value. The test then
determines whether some configurations tend to be ranked better than others when
considering the rankings for all instances considered in the race up to the given itera-
tion. Following Birattari et al (2002), we note that performing the ranking separately
for each problem instance amounts to a blocking strategy on instances. The use of
this strategy effectively reduces the impact of noise effects that may arise from the
performance variation observed over the given instances set for any configuration of
the target algorithm under consideration; this can become critical when those per-
formance variations are large, as has been observed for many algorithms for various
hard combinatorial problems (see, e.g., Gomes et al, 2000; Hoos and Stützle, 2000).

2.2 Sampling F-Race and Iterative F-Race

A major limitation of this basic version of F-Race stems from the fact that in the
initial steps, all given configurations have to be evaluated. This property of basic
F-Race severely limits the size of the configuration spaces to which the procedure
can be applied effectively – particularly, when dealing with configuration spaces
corresponding to so-called full factorial designs, which contain all combinations of
values for a set of discrete (or discretised) parameters. Two more recent variants
of F-Race, Sampling F-Race and Iterative F-Race, have been introduced to address

Automated Algorithm Configuration and Parameter Tuning 7

procedure F-Race
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
parameters integer nimin;
output set of configurations C∗;

C∗ :=C; ni := 0;
repeat

randomly choose instance i from set I;
run all configurations of A in C∗ on i;
ni := ni+1;
if ni≥ nimin then

perform rank-based Friedman test on results for configurations in C∗ on all instances
in I evaluated so far;

if test indicates significant performance differences then
c∗ := best configuration in C∗ (according to m over instances evaluated so far);
for all c ∈C∗ \{c∗} do

perform pairwise Friedman post hoc test on c and c∗;
if test indicates significant performance differences then

eliminate c from C∗;
end if;

end for;
end if;

end if;
until termination condition met;
return C∗;

end F-Race

Fig. 1 Outline of F-Race for algorithm configuration (original version, according to Birat-
tari et al, 2002). In typical applications, nimin is set to values between 2 and 5; further details
are explained in the text. When used on its own, the procedure would typically be modified
to return c∗ ∈ C∗ with the best performance (according to m) over all instances evaluated
within the race.

this limitation (Balaprakash et al, 2007); both use the previously described F-Race
procedure as a subroutine.

Sampling F-Race (short: RSD/F-Race) is based on the idea of using a sampling
process to determine the initial set of configurations subsequently used in a stan-
dard F-Race. In RSD/F-Race, a fixed number r of samples is determined using a so-
called Random Sampling Design, in which each configuration is drawn uniformly
at random from the given configuration space C. (In the simplest case, where no
conditional parameters or forbidden configurations exist, this can be done by sam-
pling values for each parameter independently and uniformly at random from the
respective domain.) As noted by Balaprakash et al (2007), the performance of this
procedure depends substantially on r, the number of configurations sampled, in re-
lation to the size of the given configuration space.

A somewhat more effective approach for focussing a procedure based on F-Race
on promising configurations is Iterative F-Race (short: I/F-Race). The key idea be-
hind I/F-Race is the use of an iterative process, where in the first stage of each

8 Holger H. Hoos

procedure I/F-Race
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
output set of configurations C∗;

initialise probabilistic model M;
C′ := /0; // later, C′ is the set of survivors from the previous F-Race
repeat

based on model M, sample set of configurations Ĉ ⊆C;
perform F-Race on configurations in Ĉ∪C′ to obtain set of configurations C∗;
update probabilistic model M based on configurations in C∗;
C′ :=C∗;

until termination condition met;
return c∗ ∈C∗ with best performance (according to m) over all instances evaluated;

end I/F-Race

Fig. 2 High-level outline of Iterated F-Race, as introduced by Balaprakash et al, 2007;
details are explained in the text. The most recent version of I/F-Race slightly deviates from
this outline (see Birattari et al, 2010).

iteration, configurations are sampled from a probabilistic model M, while in the
second stage, a standard F-Race is performed on the resulting sample, and the con-
figurations surviving this race are used to define or update the model M used in the
following iteration. (See Fig. 2.)

The probabilistic model used in each iteration of I/F-Race consists of a series
of probability distributions, D1, . . . ,Ds, each of which is associated with one of s
‘promising’ parameter configurations, c1, . . . ,cs. Balaprakash et al (2007) consider
only numerical parameters and define each distribution Di to be a k-variate normal
distribution Ni := N (µi,Σi) that is centred on configuration ci, i.e., µi = ci. They
further define the covariance between any two different parameters in a given Ni to
be zero, such that Ni can be factored into k independent, univariate normal distribu-
tions. To start the process with an unbiased probabilistic model, in the first iteration
of I/F-Race, a single k-variate uniform distribution is used, which is defined as the
product of the k independent uniform distributions over the ranges of each given
parameter (we note that this can be seen as a degenerate case of the normal distribu-
tions used subsequently, in which the variance is infinite and truncation is applied).

In each iteration of I/F-Race, a certain number of configurations are sampled
from the distributions N1, . . . ,Ns. In the first iteration, this corresponds to sampling
configurations uniformly at random from the given configuration space. In subse-
quent iterations, for each configuration to be sampled, first, one of the Ni is chosen
using a rank-based probabilistic selection scheme based on the performance of the
configuration ci associated with Ni (for details, see Balaprakash et al, 2007), and
then, a configuration is sampled from this distribution. Values that are outside the
range allowable for a given parameter are set to the closer of the two boundaries, and
settings for parameters with integer domains are rounded to the nearest valid value.
The number a of configurations sampled in each iteration depends on the number

Automated Algorithm Configuration and Parameter Tuning 9

s of configurations that survived the F-Race in the previous iteration; Balaprakash
et al (2007) keep the overall number of configurations considered in each iteration
of I/F-Race constant at some value r, and therefore simply replace those configura-
tions eliminated by F-Race with newly sampled ones (i.e., a := r− s, where in the
first iteration, s = 0).

The resulting population of a + s configurations is subjected to a standard F-
Race; this race is terminated using a complex, disjunctive termination condition
that involves a (lower) threshold on the number of surviving configurations as well
as upper bounds on the computational budget (measured in target algorithm runs)
and the number of problem instances considered. 2 Each of the F-races conducted
within I/F-Race uses a random permutation of the given instance set, in order to
avoid bias due to a particular instance ordering. The s configurations that survived
the race (where the value of s depends on the part of the termination condition that
determined the end of that race) induce the probabilistic model used in the following
iteration of I/F-Race.

To increasingly focus the sampling process towards the most promising config-
urations, the standard deviations of the component distributions of the probabilistic
models Ni are gradually decreased using a volume reduction technique. More pre-
cisely, after each iteration, the standard deviation vector σi of each distribution Ni is
scaled by a factor (1/r)k, where r is the total number of configurations entered into
the F-Race, and k is the number of given parameters; this corresponds to a reduction
of the total volume of the region bounded by µi±σi (over all k parameters) by a fac-
tor of r. At the beginning of I/F-Race, when configurations are sampled uniformly,
the standard deviation values are (somewhat arbitrarily) set to half of the range of
the respective parameter values.

I/F-Race, as specified by Balaprakash et al (2007), assumes that all parameters
are numerical. This limitation is overcome in a later variant (Birattari et al, 2010),
which supports categorical parameters by sampling their values from discrete proba-
bility distributions that are updated by redistributing probability mass to values seen
in good configurations, as determined by F-Race. This version of I/F-Race, which
we call I/F-Race-10 for clarity, also differs from the one described previously in sev-
eral other aspects. Notably, the number of iterations in I/F-Race-10 is determined as
2+ blog2(k)+0.5c, and the overall computational budget (i.e., number of target al-
gorithm runs) is distributed equally over these iterations. Furthermore, the number r
of configurations considered at iteration number t is set to bb/(5+t)c, where b is the
computational budget available for that iteration; this leads to fewer configurations
being considered in later iterations. The threshold on the number of survivors below
which any given F-Race is terminated is also determined as 2+blog2(k)+0.5c. Fi-
nally, I/F-Race-10 handles conditional parameters by only sampling values for them
when they are active, and by only updating the respective component of the model
in situations where such parameters are active in a configuration surviving one of
the subsidiary F-Races. (For further details, see Birattari et al, 2010.)

2 The threshold mechanism ends the race as soon as the number of survivors has fallen below k,
the number of target algorithm parameters.

10 Holger H. Hoos

2.3 Applications

Balaprakash et al (2007) describe applications of F-Race, Sampling F-Race and It-
erative F-Race to three high-performance stochastic local search algorithms: MAX-
MIN Ant System for the TSP with 6 parameters (Stützle and Hoos, 2000), an
estimation-based local search algorithm for the probabilistic TSP (PTSP) with 3
parameters (Balaprakash et al, 2010), and a simulated annealing algorithm for ve-
hicle routing with stochastic demands (VRP-SD) with 4 parameters (Pellegrini and
Birattari, 2006). The empirical results from these case studies indicate that both,
Sampling F-Race and Iterative F-Race can find good configurations in spaces that
are too big be handled effectively by F-Race, and that Iterative F-Race tends to give
better results than Sampling F-Race, especially when applied to more difficult con-
figuration problems. Both, the PTSP and the VRP-SD algorithms as configured by
Iterative F-Race represented the state of the art in solving these problems at the time
of this study.

Further applications of F-Race have recently been summarised by Birattari et al
(2010). These include tuning the parameters of various meta-heuristic algorithms
for university timetabling problems (Rossi-Doria et al, 2003), of a control system
for simple robots (Nouyan et al, 2008), and of a new state-of-the-art memetic al-
gorithm for the linear ordering problem (Schiavinotto and Stützle, 2004). In all of
these cases, the basic F-Race algorithm was applied to target algorithms with few
parameters and rather small configuration spaces (48–144 configurations).

Yuan et al (2008) report an application of I/F-Race for tuning various heuristic
algorithms for solving a locomotive scheduling problem provided by the German
railway company, Deutsche Bahn. The target algorithms considered in this work had
up to 5 parameters, mostly with continuous domains. The most complex application
of I/F-Race reported by Birattari et al (2010) involves 12 parameters of the ACOTSP
software, some of which conditionally depend on the value of others.

While these (and other) racing procedures have been demonstrated to be useful
for accomplishing a broad range of parameter tuning tasks, it is somewhat unclear
how well they perform when applied to target algorithms with many more param-
eters, and how effectively they can deal with the many categorical and conditional
parameters arising in the context of more complex computer-aided algorithm de-
sign tasks, such as the ones considered by Hutter et al (2007a), KhudaBukhsh et al
(2009), Hutter et al (2010c), as well as by Tompkins and Hoos (2010).

3 ParamILS

When manually solving algorithm configuration problems, practitioners typically
start from some configuration (often, default or arbitrarily chosen settings) and then
attempt to achieve improvements by modifying one parameter value at a time. If
such an attempt does not result in improved performance, the modification is re-

Automated Algorithm Configuration and Parameter Tuning 11

jected and the process continues from the previous configuration. This corresponds
to an iterative first-improvement search in the space of configurations.

While the idea of performing local search in configuration space is appealing,
considering the success achieved by similar methods on other hard combinatorial
problems, iterative improvement is a very simplistic method that is limited to finding
local optima. The key idea behind ParamILS is to combine more powerful stochastic
local search (SLS) methods with mechanisms aimed at exploiting specific properties
of algorithm configuration problems. The way in which this is done does not rely
on an attempt to construct or utilise a model of good parameter configurations or of
the impact of configuations on target algorithm perfomance; therefore, ParamILS is
a model-free search procedure.

3.1 The ParamILS Framework

At the core of the ParamILS framework for automated algorithm configuration (Hut-
ter et al, 2007b, 2009a) lies Iterated Local Search (ILS), a well-known and versatile
stochastic local search method that has been applied with great success to a wide
range of difficult combinatorial problems (see, e.g., Lourenço et al, 2002; Hoos and
Stützle, 2004). ILS iteratively performs phases of simple local search, designed to
rapidly reach or approach a locally optimal solution to the given problem instance,
interspersed with so-called perturbation phases, whose purpose is to effectively es-
cape from local optima. Starting from a local optimum x, in each iteration one per-
turbation phase is performed, followed by a local search phase, with the aim of
reaching (or approaching) a new local optimum x′. Then, a so-called acceptance cri-
terion is used to decide whether to continue the search process from x′ or whether to
revert to the previous local optimum, x. Using this mechanism, ILS aims to solve a
given problem instance by effectively exploring the space of its locally optimal solu-
tions. At a lower level, ILS – like most SLS methods – visits (i.e., moves through) a
series of candidate solutions such that at any given time, there is a current candidate
solution, while keeping track of the incumbent (i.e., the best solution encountered
so far).

ParamILS uses this generic SLS method to search for high-performance config-
urations of a given algorithm as follows (see also Figure 3). The search process is
initialised by considering a given configuration (which would typically be the given
target algorithm’s default configuration) as well as r further configurations that are
chosen uniformly at random from the given configuration space. These r+ 1 con-
figurations are evaluated in a way that is specific to the given ParamILS variant, and
the best-performing configuration is selected as the starting point for the iterated
local search process. This initialisation mechanism can be seen as a combination of
the intuitive choice of starting from a user-defined configuration (such as the tar-
get algorithm’s default settings) and a simple experimental design technique, where
the latter makes it possible to exploit situations where the former represents a poor
choice for the given set of benchmark instances. Clearly, there is a trade-off between

12 Holger H. Hoos

procedure ParamILS
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
parameters configuration c0 ∈C, integer r, integer s, probability pr;
output configuration c∗;

c∗ := c0;
for i := 1 to r do

draw c from C uniformly at random;
assess c against c∗ based on performance of A on instances from I according to metric m;
if c found to perform better than c∗ then

c∗ := c;
end if;

end for;

c := c∗ ;
perform subsidiary local search on c;
while termination condition not met do

c′ := c;
perform s random perturbation steps on c′

perform subsidiary local search on c′;
assess c′ against c based on performance of A on instances from I according to metric m;
if c′ found to perform better than c then // acceptance criterion

update overall incumbent c∗;
c := c′;

end if;
with probability pr do

draw c from C uniformly at random;
end with probability;

end while;
return c∗;

end ParamILS

Fig. 3 High-level outline of ParamILS, as introduced by Hutter et al, 2007b; details are
explained in the text.

the effort spent on evaluating randomly sampled configurations at this point and the
effort used in the subsequent iterated local search process. Hutter et al (2009c) re-
ported empirical results suggesting that r = 10 results in better performance than
r = 0 and r = 100 across a number of configuration scenarios. However, we suspect
that more sophisticated initialisation procedures, in particular ones based on rac-
ing or sequential model-based optimisation techniques, might result in even better
performance.

The subsidiary local search procedure used in ParamILS is based on the one-
exchange neighbourhood induced by arbitrary changes in the values of a single
target algorithm parameter. ParamILS supports conditional parameters by pruning
neighbourhoods such that changes in inactive parameters are excluded from consid-
eration; it also supports exclusion of (complete or partial) configurations explicitly
declared ‘forbidden’ by the user. Using the one-exchange neighbourhood, ParamILS

Automated Algorithm Configuration and Parameter Tuning 13

performs iterative first improvement search – an obvious choice, considering the
computational cost of evaluating candidate configurations. We believe that larger
neighbourhoods might prove effective in situations in which parameter effects are
correlated, as well as in conjunction with mechanisms that recognise and exploit
such dependencies in parameter response. Furthermore, search strategies other than
iterative first improvement could be considered in variants of ParamILS that build
and maintain reasonably accurate models of local parameter responses.

The perturbation procedure used in the ParamILS framework performs a fixed
number, s, of steps chosen uniformly at random in the same one-exchange neigh-
bourhood used during the local search phases. Computational experiments in which
various fixed values of s as well as several multiples of the number of target algo-
rithm parameters were considered suggest that relatively small perturbations (i.e.,
s = 2) are sufficient for obtaining good performance of the overall configuration
procedure (Hutter et al, 2009c). Considering the use of iterative first improvement
during the local search phases, this is not overly surprising; still, larger perturbations
might be effective in combination with the future use of model-based techniques
within the ParamILS framework.

While various acceptance criteria have been used in the literature on ILS,
ParamILS uses one of the simplest mechanisms: Between two given candidate con-
figurations, it always chooses the one with better observed performance; ties are
broken in favour of the configuration reached in the most recent local search phase.
This results in an overall behaviour of the iterated local search process equivalent
to that of an iterative first improvement procedure searching the space of configu-
rations reached by the subsidiary local search process. Considering once again the
computational effort involved in each iteration of ParamILS, this is a natural choice;
however, in cases where many iterations of ParamILS can be performed, and where
the given configuration space contains attractive regions with many local minima,
more complex acceptance criteria that provide additional search diversification (e.g.,
based on the Metropolis criterion) might prove useful.

In addition to the previously described perturbation procedure, ParamILS also
uses a further diversification mechanism: At the end of each iteration, with a fixed
probability pr (by default set to 0.01), the current configuration is abandoned in
favour of a new one that is chosen uniformly at random and serves as the starting
point for the next iteration of the overall search process. This restart mechanism
provides the basis for the probabilistic approximate completeness of FocusedILS,
the more widely used of the two ParamILS variants discussed in the following. We
believe that it also plays an important role towards achieving good performance in
practice, although anecdotal empirical evidence suggests that additional diversifica-
tion of the search process is required in order to eliminate occasionally occurring
stagnation behaviour.

Finally, like the racing procedures discussed in the previous section, ParamILS
performs blocking on problem instances, i.e., it ensures that comparisons between
different configurations are always based on the same set of instances. This is im-
portant, since the intrinsic hardness of problem instances for any configuration of
the given target algorithm may differ substantially. Furthermore, when used for op-

14 Holger H. Hoos

timising the performance of a randomised target algorithm A, ParamILS also blocks
on the pseudo-random number seeds used in each run of A; the main reason for
this lies in the desire to avoid spurious performance differences in cases where the
differences between two configurations have no impact on the behaviour of A.

3.2 BasicILS

The conceptually simplest way of assessing the performance of a configuration of a
given target algorithm A is to perform a fixed number of runs of A. This is precisely
what happens in BasicILS(N), where the user-defined parameter N specifies the
number of target algorithm runs performed for each configuration to be assessed, us-
ing the same instances and pseudo-random number seeds. Applied to a randomised
target algorithm A, BasicILS(N) will only perform multiple runs per instance if N
exceeds the number of given problem instances; in this case, the list of runs per-
formed is determined by a sequence of random permutations of the given set of
instances, and the random number seed used in each run is determined uniformly at
random.

This approach works well for configuration scenarios where a relatively small set
of benchmark instances is representative for all instances of interest. Furthermore,
the N target algorithm runs per configuration can be performed independently in
parallel. As for all ParamILS variants – and, indeed, for any SLS algorithm – fur-
ther parallelisation can be achieved by performing multiple runs of BasicILS(N) in
parallel. Finally, in principle, it would be possible to perform multiple parallel runs
of the subsidiary local search in each iteration or to evaluate multiple neighbours of
a configuration in each search step independently in parallel.

3.3 FocusedILS

One drawback of BasicILS is that it tends to spend substantial effort in evaluating
poor configurations, especially when used to configure a given target algorithm for
minimised run-time. The only way to reduce that effort is to choose a small number
of runs, N; however, this can (and often does) result in poor generalisation of perfor-
mance to problem instances other than those used during the configuration process.
FocusedILS addresses this problem by initially evaluating configurations using few
target algorithm runs and subsequently performing additional runs to obtain increas-
ingly precise performance estimates for promising configurations. We note that the
idea of focussing the computational effort spent on evaluating configurations on can-
didates that have already shown promising performance is exactly the same as that
underlying the concept of racing. However, unlike the previously discussed racing
procedures, FocusedILS determines promising configurations heuristically rather
than using statistical tests.

Automated Algorithm Configuration and Parameter Tuning 15

The mechanism used by FocusedILS to assess configurations is based on the
following concept of domination: Let c1 and c2 be configurations for which N(c1)
and N(c2) target algorithm runs have been performed, respectively. As in the case
of BasicILS, the runs performed for each configuration follow the same sequence of
instances (and pseudo-random number seeds). Then c1 dominates c2 if, and only if,
N(c1)≥N(c2) and the performance estimate for c1 based on its first N(c2) runs is at
least as good as that for c2 based on all of its N(c2) runs. This definition incorporates
the previously discussed idea of blocking, as configurations are compared based
on their performance on a common set of instances (and pseudo-random number
seeds).

Whenever FocusedILS decides that one configuration, c1, performs better than
another, c2, it ensures that c1 dominates c2, by performing additional runs on either
or both configurations. More precisely, when comparing two configurations, an ad-
ditional run is first performed for the configuration whose performance estimates is
based on fewer runs or, in the case of a tie, on both configurations. Then, as long as
neither configuration dominates the other, further runs are performed based on the
same criterion. Furthermore, when domination has been determined, FocusedILS
performs additional runs for the winner of the comparison (ties are always broken
in favour of more recently visited configurations). The number of these bonus runs
is determined as the number of configurations visited since the last improving search
step, i.e., since the last time a comparison between two configurations was decided
in favour of the one that has been visited more recently. This mechanism ensures that
the better a configuration appears to perform, the more thoroughly it is evaluated,
especially in cases where a performance improvement is observed after a number of
unsuccessful attempts.

As first established by Hutter et al (2007b), FocusedILS has an appealing theo-
retical property: With increasing run-time, the probability of finding a configuration
with globally optimal performance on the given set of benchmark instances ap-
proaches one. This probabilistic approximate completeness (PAC) property follows
from two key observations: Firstly, thanks to the previously mentioned probabilistic
restart mechanism used in the ParamILS framework, over time, any configuration
from a finite configuration space is visited arbitrarily often. Secondly, as the number
of visits to a given configuration increases, so does the number of target algorithm
runs FocusedILS performs on it, which causes the probability of mistakenly failing
to recognise that its true performance on the given instance set is better than that of
any other configuration it is compared against to approach zero. While this theoret-
ical guarantee only concerns the behaviour of FocusedILS in the limit, as run-time
approaches infinity, the mechanisms giving rise to it appear to be very effective in
practice when dealing with surprisingly large configuration spaces (see, e.g., Hut-
ter et al, 2007a, 2009a, 2010c). Nevertheless, stagnation of the search process has
been observed in several cases and is typically ameliorated by performing multiple
runs of FocusedILS independently in parallel, from which a single winning config-
uration is determined based on the performance observed on the set of benchmark
instances used in those runs. We expect that by replacing the simplistic probabilistic
restart mechanism, and possibly modifying the mechanism used for allocating the

16 Holger H. Hoos

additional target algorithms runs to be performed when assessing configurations,
stagnation can be prevented or overcome more effectively.

3.4 Adaptive Capping

Both, BasicILS and FocusedILS can be improved by limiting under certain condi-
tions the time that is spent evaluating poorly performing configurations. The key
idea is that when comparing two configurations c1 and c2, a situation may arise
where, regardless of the results of any further runs, c2 cannot match or exceed the
performance of c1 (Hutter et al, 2009a). This is illustrated by the following example,
taken from Hutter et al (2009a): Consider a use of BasicILS(100) for minimising the
expected run-time of a given target algorithm on a set of 100 benchmark instances,
where configuration c1 has solved all 100 instances in a total of 10 CPU seconds,
and c2 has run for the same 10 CPU seconds on the first instances without solving
it. Clearly, we can safely terminate that latter run after 10+ ε CPU seconds (for
some small time ε), since the average run-time of c2 must exceed 0.1 CPU seconds,
regardless of its performance in the remaining N− 1 runs, and therefore be worse
than that of c1.

Based on this insight, the trajectory-preserving adaptive capping mechanism of
Hutter et al (2009a) limits the effort spent on evaluating configurations based on
comparing lower bounds on the performance for one configuration c2 against upper
bounds (or exact values) on that of another configuration c1 based on the results
of given sets of runs for c1 and c2. We note that this corresponds to a notion of
racing, where each of the two configurations is working independently through a
given number of runs, but the race is terminated as soon as the winner can be deter-
mined with certainty. Apart from the potential for savings in running time, the use
of trajectory-preserving capping does not change the behaviour of ParamILS.

A heuristic generalisation of this capping mechanism makes it possible to achieve
even greater speedups, albeit at the price of possibly substantial changes to the
search trajectory followed by the configuration procedure. The key idea behind
this generalisation (dubbed aggressive capping) is to additionally bound the time
allowed for evaluating configurations based on the performance observed for the
current incumbent, i.e., the best-performing configuration encountered since the be-
ginning of the ParamILS run. The additional bound is obtained by multiplying the
performance estimate of the incumbent by a constant bm called the bound multiplier.
Formally, for bm = ∞, the additional bound becomes inactive (assuming the per-
formance measure is to be minimised), and the behaviour of trajectory-preserving
capping is obtained. For bm = 1, on the other hand, a very aggressive heuristic
is obtained, which limits the evaluation of any configuration to the time spent on
evaluating the current incumbent. In practice, bm = 2 appears to result in good per-
formance and is used as a default setting in ParamILS. Despite its heuristic nature,
this modified capping mechanism preserves the PAC property of FocusedILS.

Automated Algorithm Configuration and Parameter Tuning 17

Although Hutter et al (2009a) spelled out their adaptive capping mechanisms for
the performance objective of minimising a target algorithm’s mean run-time only,
these mechanisms generalise to other objectives in a rather straightforward way (a
discussion of capping in the context of minimising quantiles of run-time is found in
Ch. 7 of the dissertation of Hutter, 2009). We note, however, that – especially when
several target algorithm runs are conducted in parallel – adaptive capping would be
most effective in the case of run-time minimisation. Particularly substantial savings
can be achieved during the assessment of the r+1 configurations considered during
initialisation of the search process, as well as towards the end of each local search
phase. Finally, it should be noted that adaptive capping mechanisms can be used in
the context of configuration procedures other than ParamILS; for example, Hutter
et al (2009a) mention substantial speedups achieved by using adaptive capping in
combination with simple random sampling (the same procedure as used during the
initialisation of ParamILS).

3.5 Applications

ParamILS variants, and in particular FocusedILS, have been very successfully ap-
plied to a broad range of high-performance algorithms for several hard combinato-
rial problems. An early version of FocusedILS was used by Thachuk et al (2007)
to configure a replica-exchange Monte Carlo (REMC) search procedure for the 2D
and 3D HP protein structure prediction problems; the performance objective was to
minimise mean run-time for finding ground states for a given set of sequences in
these abstract, but prominent models of protein structure, and the resulting configu-
rations of the REMC procedure represented a considerable improvement in the state
of the art in solving these challenging problems.

FocusedILS has also been used in a series of studies leading to considerable ad-
vances in the state of the art of solving the satisfiability problem in propositional
logic, one of the most widely studied NP-hard problems in computing science.
Hutter et al (2007a) applied this procedure to SPEAR, a complete, DPLL-type SAT
solver with 26 parameters (10 of which are categorical), which jointly give rise
to a total of 8.34 · 1017 possible configurations. The design of SPEAR was influ-
enced considerably by the availability of a powerful configuration tool such as Fo-
cusedILS, whose application ultimately produced configurations that solved a given
set of SAT-encoded software verification problems about 100 times faster than pre-
vious state-of-the-art solvers for these types of SAT instances and won the first prize
in the QF BV category of the 2007 Satisfiability Modulo Theories (SMT) Compe-
tition.

KhudaBukhsh et al (2009) used FocusedILS to find performance-optimised in-
stantiations of SATenstein-LS, a highly parametric framework for stochastic local
search (SLS) algorithms for SAT. This framework was derived from components
found in a broad range of high-performance SLS-based SAT solvers; its 41 parame-
ters induce a configuration space of size 4.82 ·1012. Using FocusedILS, performance

18 Holger H. Hoos

improvements of up to three orders of magnitudes were achieved over the previous
best-performing SLS algorithms for various types of SAT instances, for several of
which SLS-based solvers are the most effective SAT algorithms overall. Several
automatically determined configurations of SATenstein-LS were used in the most
recent SATzilla solvers, which led the field in the 2009 SAT Competition, winning
prizes in 5 of the 9 main categories (Xu et al, 2009).

Very recently, Xu et al (2010) used FocusedILS in an iterative fashion to ob-
tain sets of configurations of SATenstein-LS that were then used in combination
with state-of-the-art per-instance algorithm selection techniques (here: SATzilla). In
each iteration of the overall procedure, dubbed Hydra, FocusedILS was used to find
configurations that would best complement a given portfolio-based per-instance al-
gorithm selector. This approach resulted in a portfolio-based SAT solver that, while
derived in a fully automated fashion from a single, highly parameterised algorithm,
reached state-of-the-art performance across a wide range of benchmark instances.

Tompkins and Hoos (2010) applied FocusedILS to a new, flexible framework for
SLS-based SAT solvers called VE-Sampler (which is conceptually orthogonal to the
previously mentioned SATenstein-LS framework). VE-Sampler has a large number
of categorical and conditional parameters, which jointly give rise to more than 1050

distinct configurations, and using FocusedILS, configurations could be found that
were shown to solve two well-known sets of SAT-encoded software verification
problems between 3.6 and 9 times faster than previous state-of-the-art SLS-based
SAT solvers for these types of SAT instances.

Chiarandini et al (2008) used FocusedILS to configure a hybrid, modular SLS al-
gorithm for a challenging university timetabling problem that subsequently placed
third in Track 2 of the Second International Timetabling Competition (ITC 2007).
The configuration space considered in this context was relatively small (7 parame-
ters, 50400 configurations), but the use of automated algorithm configuration made
it possible to achieve close to state-of-the-art performance within very limited hu-
man development time and without relying on deep and extensive domain expertise.
In subsequent work, Fawcett et al (2009) expanded the design space by parameter-
ising additional parts of the solver, and – using multiple rounds of FocusedILS with
different performance objectives – obtained a configuration that was demonstrated
to substantially improve upon the state of the art for solving the post-enrolment
course timetabling problem considered in Track 2 of ITC 2007. The overall perfor-
mance metric used in these studies (and in the competition) was solution quality
achieved by the target solver after a fixed amount of time.

Recently, Hutter et al (2010c) reported substantial improvements in the perfor-
mance of several prominent solvers for mixed integer programming (MIP) prob-
lems, including the widely used industrial CPLEX solver. In the case of CPLEX,
FocusedILS was used to configure 76 parameters, most of which are categorical
(and some conditional), giving rise to a configuration space of size 1.9 · 1047. De-
spite the fact that the default parameter settings for CPLEX are known to have been
chosen carefully, based on a considerable amount of thorough experimentation, sub-
stantial performance improvements were obtained for many prominent types of MIP
instances, both, in terms of time required for finding optimal solutions (and proving

Automated Algorithm Configuration and Parameter Tuning 19

optimality) and of minimising the solution quality (optimality gap) achieved within
a fixed amount of time (speedup factors beween 1.98 and 52.3, and gap reduction
factors between 1.26 and 8.65). Similarly impressive results were achieved for an-
other commercial MIP solver, Gurobi, and a prominent open-source MIP solver,
lpsolve.

Finally, Hutter et al (2009c) reported a successful meta-configuration experiment,
in which BasicILS was used to optimise the four parameters that control the be-
haviour of FocusedILS. BasicILS was chosen as the meta-configurator, since its
runs can be parallelised in a straightforward manner. At least partly because of the
enormous computational cost associated with this experiment (where each target al-
gorithm run corresponds to solving an algorithm configuration task, and hence to
executing many costly runs of the algorithm configured in that task, which itself
solved instances of a NP-hard problem, such as SAT), only marginal improve-
ments in the performance of the configurator, FocusedILS, on a number of previ-
ously studied configuration benchmarks could be achieved.

The target algorithms considered in most of these applications have continuous
parameters, and up to this point, ParamILS requires these parameters to be discre-
tised. While in principle, finding reasonable discretisations (i.e., ones whose use
does not cause major losses in the performance of the configurations found by
ParamILS) could be difficult, in most cases, generic approaches, such as even or
geometric subdivisions of a given interval, seem to give good results. Where this
is not the case, multiple runs of the configuration procedure can be used to itera-
tively refine the domains of continuous parameters. The same approach can be used
to extend domains in cases where parameter values in an optimised configuration
lie at the boundary of their respective domains. Nevertheless, the development of
ParamILS variants that natively deal with continuous parameters and support dy-
namic extensions of parameter domains remains an interesting direction for future
work.

4 Sequential Model-Based Optimisation

A potential disadvantage of the model-free search approach underlying ParamILS is
that it makes no explicit attempt to recognise and benefit from regularities in a given
configuration space. The model-based search paradigm underlying the approach
discussed in this section, on the other hand, uses the information gained from the
configurations evaluated so far to build (and maintain) a model of the configuration
space, based on which configurations are chosen to be evaluated in the future. We
note that, as also pointed out by its authors, the Iterative F-Race procedure (I/F-
Race) discussed in Section 2.2 of this chapter, is a model-based configuration pro-
cedure in this sense. But unlike I/F-Race, the models used by the methods discussed
in the following capture directly the dependency of target algorithm performance
on parameter settings. These response surface models can be used as surrogates
for the actual parameter response of a given target algorithm and provide the basis

20 Holger H. Hoos

procedure SMBO
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
output configuration c∗;

determine initial set of configurations C0 ⊂C;
for all c ∈C0, measure performance of A on I according to metric m;
build initial model M based on performance measurements for C0;
determine incumbent c∗ ∈C0 for which best performance was observed or predicted;
repeat

based on model M, determine set of configurations C′ ⊆C;
for all c ∈C′, measure performance of A on I according to metric m;
update model M based on performance measurements for C′;
update incumbent c∗;

until termination condition met;
return c∗;

end SMBO

Fig. 4 High-level outline of the general sequential model-based optimisation approach to
automated algorithm configuration; model M is used to predict the performance of config-
urations that have not (yet) been evaluated, and set C′ is typically chosen to contain config-
urations expected to perform well based on those predictions. Details of various algorithms
following this approach are explained in the text.

for determining promising configurations at any stage of an iterative model-based
search procedure; this generic approach is known as sequential model-based optimi-
sation (SMBO) and can be seen as a special case of sequential analysis – a broader
area within statistics that also comprises sequential hypothesis testing and so-called
multi-armed bandits. An outline of SMBO for algorithm configuration is shown in
Figure 4; in principle, performance measurements for multiple configurations can
be performed independently in parallel.

The setting considered in almost all work on sequential model-based optimi-
sation procedures up to this day is known as the black-box optimisation problem:
Given an unknown function f and a space of possible inputs X , find an input x ∈ X
that optimises f based on measurements of f on a series of inputs. The function to
be optimised, f , may be deterministic or stochastic; in the latter case, measurements
are subject to random noise and formally, the values of f are random variables. Al-
gorithm configuration can be seen as a special case of black-box optimisation, where
the function to be optimised is the performance m of an algorithm A on a set of prob-
lem instances I. However, in contrast to algorithm configuration procedures such as
FocusedILS or F-Race, black-box optimisation procedures do not take into account
the fact that approximate measurements can be obtained at lower computational
cost, by running A on subsets of I, and that by blocking on instances (and pseudo-
random number seeds), performance measurements for different configurations can
be compared more meaningfully; furthermore, they have no means of exploiting
knowledge about the instances in I acquired from earlier target algorithm runs.

Automated Algorithm Configuration and Parameter Tuning 21

Because black-box function optimisation is somewhat more general than algo-
rithm configuration, and methods for solving black-box function are easily appli-
cable to modelling and optimising the response of a wide range of systems, in the
following we use standard terminology from the statistics literature on experimen-
tal design, in particular, design point for elements of the given input space X and
response for values of the unknown function f . In the context of algorithm config-
uration, design points correspond to configurations of a given target algorithm A,
and response values represent A’s performance m on instance set I. A unified, more
technical presentation of the methods covered in this section can be found in the
dissertation of Hutter (2009), and further details are provided in the original articles
referenced throughout.

4.1 The EGO Algorithm

The efficient global optimisation (EGO) algorithm for black-box function optimi-
sation by Jones et al (1998) uses a response surface model obtained via noise-free
Gaussian process regression in combination with an expected improvement crite-
rion for selecting the next configuration to be evaluated. The noise-free Gaussian
process (GP) model utilised by EGO is also known as the DACE model, after its
prominent use in earlier work by Sacks et al (1989). It defines for every input x a
random variable F̂(x) that characterises the uncertainty over the true response value
f (x) at point x.

The model-based optimisation process carried out by EGO starts with about 10 ·k
design points determined using a k-dimensional space-filling Latin hypercube de-
sign (LHD). After measuring the response values for these values, the 2 · k+ 2 pa-
rameters of a DACE model are fit to the pairs of design points and response values,
using maximum likelihood estimates (as described by Jones et al, 1998, this can
be partially done in closed form). The resulting model is assessed by means of so-
called standardized cross-validated residuals, which reflect the degree to which pre-
dictions made by the model agree with the observed response values on the design
points used for constructing the model. If the model is deemed unsatisfactory, the
response values may be transformed using a log- or inverse-transform (i.e., modified
by applying the function lny or 1/y) and the model fitted again.

After a satisfactory initial model has been obtained, it is used in conjunction
with an expected improvement criterion to determine a new design point to be
evaluated. The expected improvement measure used in this context uses the cur-
rent DACE model M to estimate the expected improvement over the best response
value measured so far, fmin, at any given design point x, and is formally defined as
EI(x) := E[max{ fmin− F̂(x),0}], where F̂(x) is the random variable describing the
response for a design point x according to model M. Using a closed-form expression
for this measure given by Jones et al (1998) and a branch & bound search method
(which can be enhanced heuristically), the EGO algorithm then determines a design
point x′ with maximal expected improvement EI(x′). If EI(x′) is less than 1% of the

22 Holger H. Hoos

current incumbent, the procedure terminates. Otherwise, the response value f (x′) is
measured, and the DACE model is refitted on the previous set of data extended by
the pair (x′, f (x′)), and a new iteration begins, in which the updated model is used
to determine the next design point using the same process that yielded x′.

Note that in every iteration of this process, the DACE model has to be fitted,
which involves a matrix inversion of cost O(n3), where n is the number of design
points used. Depending on the cost of measuring the response value for a given
design point, this may represent a substantial computational overhead. Furthermore,
the noise-free Gaussian process model used in EGO cannot directly characterise
the stochastic responses obtained when solving algorithm configuration problems
involving randomised target algorithms.

4.2 Sequential Kriging Optimisation and Sequential Parameter
Optimisation

We now discuss two black-box optimisation procedures that deal with stochastic
responses, as encountered when modelling phenomena subject to observation noise
or configuring randomised algorithms.

The first of these, known as Sequential Kriging Optimisation (Huang et al, 2006)
estimates a Gaussian process (GP) model (also known as a kriging model) directly
from samples (i.e., noisy measurements) of response values. Similar to EGO, SKO
starts with an LHD of 10 · k design points, for which response values are sampled.
To facilitate initial estimates of the observation noise, one additional sample is then
drawn for each of the k best of these design points, after which a Gaussian process
model M is fitted directly to the resulting set of 11 · k pairs of design points and
corresponding response values. The resulting model M is then assessed and possibly
modified based on a transformation of the response, as in the EGO algorithm.

Next, an incumbent design point is determined based on model M, by minimising
the expression µ(x)+σ(x) using the Nelder-Mead Simplex algorithm (Nelder and
Mead, 1965), where µ(x) and σ(x) are the mean and standard deviation predicted
by M for input x, and the minimisation is over the design points used in constructing
the model. This risk-adverse strategy is less easily misled by inaccurate estimates
of the mean response value than a minimisation of the predicted mean only. The
next design point to be evaluated is determined based on model M using an aug-
mented expected improvement measure, designed to steer the process away from
design points with low predictive variance. This augmented expected improvement
measure is formally defined as

EI′(x) := E[max{ f̂min− F̂(x),0}] ·
(

1−σε/
√

s2(x)−σ2
ε

)
,

where f̂min is the model’s prediction for the current best input (as in EGO, obtained
by considering all design points used for building the model), F̂(x) is the random

Automated Algorithm Configuration and Parameter Tuning 23

variable describing the response for a design point x according to model M, σε is
the standard deviation of the measurement noise (assumed to be identical for all
inputs), and s2(x) is the variance of the response F̂(x) given by the model at point
x, where the second term in the product decreases as the predictions of M become
more accurate. Based on the given model M, the next design point to be evaluated,
x′, is determined by maximising EI′(x) using the Nelder-Mead Simplex algorithm
(Nelder and Mead, 1965). Next, the model is refitted, taking into account x′ and a
response value sampled at x′, and a new iteration begins, in which the updated model
is used to determine the next design point using the same process that yielded x′. If
the maximum EI′(x) values from d + 1 successive iterations all fall below a user-
defined threshold, the iterative sampling process is terminated. (This treshold can be
specified as an absolute value or as a fraction of the difference between the largest
and smallest observed response values.)

Unfortunately, SKO assumes that the variability of the response values at each
design point is characterised by a Gaussian distribution, and that the standard de-
viations of those distributions are the same across the entire design space. Both of
these assumptions are problematic in the context of configuring randomised algo-
rithms, particularly when minimising run-time (see, e.g., Hoos and Stützle, 2004).
Furthermore, the time required for fitting the model in each iteration of SKO is cu-
bic in the number of response values sampled, which can represent a substantial
computational burden.

The Sequential Parameter Optimisation (SPO) procedure by Bartz-Beielstein
et al (2005) follows a fundamentally different strategy to deal with noisy response
measurements:3 Rather than fitting a Gaussian process model directly to the a set of
sampled responses, for each design point x, the measure to be optimised is estimated
empirically based on all samples taken at x, and a noise-free Gaussian process model
(like the one used in the EGO algorithm) is fitted to the resulting data. In contrast
to the approach taken by SKO, this makes it possible to optimise arbitrary statistics
of the noisy function values, i.e., in the case of algorithm configuration, of the given
target algorithm’s run-time distributions; examples of such statistics are the mean,
median, arbitrary quantiles, but also measures of variability, as well as combina-
tions of measures of location and variability. Another advantage of this approach is
its substantially lower computational complexity: While SKO requires time cubic in
the number of function values sampled, SPO’s run-time is only cubic in the number
of distinct design points – typically a much lower number.

Like SKO and EGO, SPO uses a Latin hypercube design as a basis for construct-
ing the initial model; however, SPO chooses d design points and samples r response
values for each of these, where d and r are specified by the user (the default value of
r is 2). Based on these samples, empirical estimates of the measure to be optimised

3 In the literature, the term sequential parameter optimisation is also used to refer to a broad
methodological framework encompassing fully automated as well as interactive approaches for
understanding and optimising an algorithm’s performance in response to its parameter settings.
Here, as in the work of Hutter et al (2009b), we use the term more narrowly to refer to the fully
automated SMBO procedures implemented in various versions of the Sequential Parameter Opti-
mization Toolbox (SPOT) by Bartz-Beielstein et al, 2008.

24 Holger H. Hoos

are calculated for each design point, and the point with the best resulting value is
chosen as the initial incumbent. Next, a noise-free Gaussian process model is fitted
to the resulting set of d pairs of design points and empirical response statistics. This
model, M, is sampled for 10000 design points chosen uniformly at random,4 and
the best j of these according to an expected improvement (EI) measure are selected
for further evaluation, where j is a user-defined number with a default setting of 1.
The EI measure used in this context is formally defined as

EI2(x) := E[(fmin− F̂(x))2] = E2[fmin− F̂(x)]+Var[fmin− F̂(x)],

where fmin is the best value of the measure to be optimised observed so far, and
F̂(x) is the distribution over the predictions obtained from model M at design point
x. This EI measure has been introduced by Schonlau et al (1998) with the aim of
encouraging the exploration of design points for which the current model produces
highly uncertain predictions.

At each of the design points determined in this way, r new response values are
measured. Furthermore, additional response values are measured for the current in-
cumbent to ensure that it is evaluated based on as many samples as available for
any of the new design points. Then, the best of all the design points considered so
far, according to the given measure to be optimised, is selected as the new incum-
bent (with ties broken uniformly at random). If the design point thus selected has
been an incumbent at any point earlier in the search process, r is increased; in SPO
version 0.3 (Bartz-Beielstein et al, 2005), r is doubled, while in the newer version
0.4 (Bartz-Beielstein, 2006), it is merely incremented by one, and in both cases,
values of r are limited to a user-specified maximum value rmax. At this point, a new
iteration of SPO begins, in which a noise-free GP is fitted on the augmented set of
data.

4.3 Recent Variants of Sequential Parameter Optimisation:
SPO+ and TB-SPO

Based on a detailed investigation of the core components of the SPO algorithm,
Hutter et al (2009b) introduced a variant called SPO+ that shows considerably more
robust performance on standard benchmarks than the SPO 0.3 and SPO 0.4 algo-
rithms described previously.

The main difference between SPO+ and the previous SPO procedures lies in
the way in which new design points are accepted as incumbents. Inspired by Fo-
cusedILS, SPO+ uses a mechanism that never chooses a new incumbent x̂′ without
ensuring that at least as many responses have been sampled at x̂′ as at any other
design point x 6= x̂′. To achieve this, for any challenger to the current incumbent x̂,
i.e., for any design point x′ that appears to represent an improvement over x̂ based

4 We note that the use of a space-filling design, such as an LHD, should in principle yield better
results, if implemented sufficiently efficiently.

Automated Algorithm Configuration and Parameter Tuning 25

on the samples taken so far, additional response values are sampled until either x′

ceases to represent an improvement, or the number of response values sampled at
x′ reaches that taken at x̂, with x′ still winning the comparison with x̂ based on the
respective samples; only in the latter case, x′ becomes the new incumbent, while in
the former case it is dismissed, and as many additional response values are sampled
for x̂ as newly measured for x′.

The new response values determined for a challenger x′ are sampled in batches,
with the number of new samples taken doubling in each successive batch. As noted
by Hutter et al (2009b), using this mechanism, rejection of challengers is done in
a rather aggressive, heuristic manner, and frequently occurs after only a single re-
sponse value has been sampled at x′ – long before a statistical test could conclude
that the x′ is worse than the current incumbent.

The Time-bounded Sequential Parameter Optimisation (TB-SPO) algorithm by
Hutter et al (2010b) introduces a number of further modifications to the SMBO
framework underlying the previously described SPO variants. In particular, in con-
trast to all SMBO procedures discussed so far, TB-SPO does not construct its initial
model based on a large sets of samples determined using a Latin hypercube design,
but rather interleaves response measurements at randomly chosen points with ones
taken at points that appear to be promising based on the current model. The initial
model is based on a single sample only; when used for algorithm configuration,
where the black-box function to be optimised represents the output of a parame-
terised algorithm, the default configuration for the algorithm would be used as the
design point at which this initial sample is taken. At any stage of the iterative model-
based search process that follows, response values are sampled at a series of design
points in which odd-numbered points are determined by optimising an expected im-
provement measure (as is done in SPO+), while even-numbered points are sampled
uniformly at random from the given design space. (Mechanisms that achieve a dif-
ferent balance between promising and randomly chosen design points could lead to
better performance but have not been explored so far.)

The number of design points at which response values are sampled between any
two updates to the model is determined based on the time t required for constructing
a new model and the search for promising parameter settings; to be precise, after at
least two design points have been evaluated, further points are considered until the
time used for evaluating design points since the last model update exceeds a user-
defined multiple (or fraction) of the overhead t.

Finally, in order to reduce the computational overhead incurred by the model
construction process, TB-SPO uses an approximate version of the standard Gaus-
sian process models found in the other SPO variants. This so-called projected pro-
cess (PP) approximation is based on the idea to only explicitly represent a randomly
sampled subset of the given data points (here: pairs of input and response values)
when building the Gaussian process model; if this subset comprises s data points,
while the complete set has n data points, the time complexity of fitting a GP model
decreases from O(n3) to O((s+ n) · s2), while the time required for predicting a
response value (mean and variance of the predictive distribution at a given design
point) decreases from O(n2) to O(s2) (Rasmussen and Williams, 2006). In the con-

26 Holger H. Hoos

text of an SMBO procedure, this will typically lead to substantial savings, since the
number of data points available increases over time, and n can easily reach values of
several thousand, while effective PP approximations can be based on constant-size
subsets with s no larger than 300 (Hutter et al, 2010b). (Details on other, minor dif-
ferences between TB-SPO and SPO+ can be found in the original article by Hutter
et al, 2010b.)

4.4 Applications

As mentioned earlier, sequential model-based optimisation methods have primar-
ily been developed for the optimisation of black-box functions, but can obviously
be applied to algorithm configuration problems by defining the function to be opti-
mised to be the performance of a target observed algorithm applied to one or more
benchmark instances. The design points are thus algorithm configurations, and the
response values capture the performance of A on the given benchmark instance(s)
according to some performance measure m. In principle, SMBO procedures like
those described earlier in this section can be applied to optimise a target algorithm
on a set I of benchmark instances by using a measure m that captures the perfor-
mance on the entire set I; however, as discussed earlier for the case of BasicILS, this
tends to quickly become impractical as the size of I grows. Therefore, the empirical
evaluation of SMBO procedures tends to be focussed on performance optimisation
on single benchmark instances. Furthermore, because of the nature of the response
surface models used, SMBO methods are usually restricted to dealing with real-
and integer-valued target algorithm parameters (although very recently, Hutter et al,
2011, have introduced techniques that can handle categorical parameters).

Following an example from Bartz-Beielstein et al (2008), the SPO variants dis-
cussed in this section have been empirically evaluated using CMA-ES (Hansen,
2006; Hansen and Kern, 2004; Hansen and Ostermeier, 2001) – one of the best-
performing gradient-free numerical optimisation procedures currently known – on
several standard benchmark functions from the literature on gradient-free numerical
optimisation (see, e.g., Hansen and Kern, 2004). The configuration space considered
in these examples, which involve the convex Sphere function as well as the non-
convex Ackley, Griewank and Rastrigin functions, is spanned by three real- and one
integer-valued parameters of CMA-ES, and the performance measure was solution
quality achieved after a fixed number of evaluations of the respective benchmark
function. The empirical results reported by Hutter et al (2009b) for CMA-ES ap-
plied to the 10-dimensional instances of these functions indicate that SPO+ tends to
perform significantly better than SPO 0.3 and 0.4, which in turn appear to perform
substantially better than SKO. In addition, Hutter et al (2009b) considered the min-
imisation of median number of search steps required by SAPS (Hutter et al, 2002), a
well-known stochastic local search algorithm for SAT, to solve a single benchmark
instance obtained from encoding a widely studied quasi-group completion problem
into SAT; in this case, four continuous parameters were optimised. The results from

Automated Algorithm Configuration and Parameter Tuning 27

that experiment confirmed that SPO+ tends to perform better than previous SPO
variants and suggest that, at least on some configuration problems with a relatively
modest number of predominently real-valued parameters, it can also yield slightly
better results than FocusedILS when allowed the same number of target algorithm
runs.

TB-SPO has been empirically compared against SPO+ and FocusedILS on rel-
atively simple algorithm configuration tasks involving the well-known SAT solver
SAPS (Hutter et al, 2002), with 4 continuous parameters, running on single SAT
instances. In these experiments, TB-SPO was shown to perform significantly better
than SPO+ (sometimes achieving over 250-fold speedups), and moderately better
than FocusedILS (Hutter et al, 2010b). However, it is important to keep in mind
that, unlike TB-SPO (and all other SMBO procedures covered in this section), Fo-
cusedILS explicitly deals with multiple problem instances, and can therefore be
expected to perform substantially better on realistic algorithm configuration tasks.
Furthermore, while SMBO procedures like TB-SPO do not require continuous al-
gorithm parameters to be discretised, they presently cannot deal with conditional
parameters, which are routinely encountered in the more challenging algorithm con-
figuration tasks on which FocusedILS has been shown to be quite effective.

5 Other Approaches

In addition to the methods covered in the previous sections, there are many other
procedures described in the literature that can, at least in principle, be applied to the
algorithm configuration problem considered here.

Experimental design methods, such as full or fractional factorial designs, strat-
ified random sampling, Latin hypercube designs and various other types of space-
filling and uniform designs (see, e.g., Santner et al, 2003) are applicable to algo-
rithm configuration, but per se do not take into account one fundamental aspect of
the problem: Namely, that we are interested in performance on multiple instances
and have control over the number of instances used for evaluating any given config-
uration. Furthermore, when minimizing the run-time of the given target algorithm (a
very common performance objective in algorithm configuration and parameter tun-
ing), it is typically necessary to work with censored data from incomplete runs, and
it can be beneficial to cut off runs early (as done by the adaptive capping strategy ex-
plained in Section 3.4). Perhaps more importantly, they lack the heuristic guidance
that is often crucial for searching large configuration spaces effectively.

Nevertheless, these simple design methods are sometimes used for the initiali-
sation of more complex procedures (see Section 4 and the work by Adenso-Diaz
and Laguna, 2006, which will be discussed in slightly more detail later). There is
also some evidence that in certain cases, a method as simple as uniform random
sampling, when augmented with adaptive capping or with the mechanism used by
TB-SPO for evaluating configurations, can be quite effective (see recent work by
Hutter et al, 2010b).

28 Holger H. Hoos

In principle, gradient-free numerical optimisation methods are directly applica-
ble to parameter tuning problems, provided that all parameters are real-valued (and
that there are no parameter dependencies, such as conditional parameters). Promi-
nent and relatively recent methods that appear to be particularly suitable in this con-
text are the covariance matrix adaptation evolution strategy (CMA-ES) by Hansen
and Ostermeier (2001) and the mesh adaptive direct search (MADS) algorithms by
Audet and Orban (2006). Similarly, it is possible to use gradient-based numerical
optimisation procedures – in particular, quasi-Newton methods such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (see, e.g., Nocedal and Wright, 2006)
– in conjunction with suitable methods for estimating or approximating gradient
information. However, in order to be applied in the context of configuring target al-
gorithms with categorical and conditional parameters, these methods would require
non-obvious modifications; we also expect that in order to be reasonably effective,
they would need to be augmented with mechanisms for dealing with multiple prob-
lem instances and capped (or censored) runs. The same holds for standard methods
for solving stochastic optimisation problems (see, e.g., Spall, 2003).

The CALIBRA algorithm by Adenso-Diaz and Laguna (2006), on the other hand,
has been specifically designed for parameter tuning tasks. It uses a specific types of
fractional factorial designs from the well-known Taguchi methodology in combina-
tion with multiple runs of a local search procedure that gradually refines the region
of interest. Unfortunately, CALIBRA can handle no more than five parameters, all
of which need to be ordinal (the limitation to five parameters stems from the specific
fractional designs used at the core of the procedure).

The CLASS system by Fukunaga (2002, 2004) is based on a genetic program-
ming approach; it has been specifically built for searching a potentially unbounded
space of the heuristic variable selection method used in a SLS-based SAT solver.
Like most genetic programming approaches, CLASS closely links the specification
of the configuration space and the evolutionary algorithm used for exploring this
space.

The Composer system developed by Gratch and Dejong (1992) is based on an
iterative improvement procedure not unlike that used in ParamILS; this procedure
is conceptually related to racing techniques in that it moves to a new configuration
only after gathering sufficient statistical evidence to conclude that this new configu-
ration performs significantly better than the current one. In a prominent application,
Gratch and Chien (1996) used the Composer system to optimise five parameters
of an algorithm for scheduling communication between a spacecraft and a set of
ground-based antennas.

Ansótegui et al (2009) recently developed a gender-based genetic algorithm for
solving algorithm configuration problems. Their GGA procedure supports categor-
ical, ordinal and real-valued parameters; it also allows its user to express indepen-
dencies between parameter effects by means of so-called variable trees – a con-
cept that could be of particular interest in the context of algorithm configuration
problems where such independencies are known by construction, or heuristic meth-
ods are are available for detecting (approximate) independencies. Although there is
some evidence that GGA can solve some moderately difficult configuration prob-

Automated Algorithm Configuration and Parameter Tuning 29

lems more effectively than FocusedILS without capping (Ansótegui et al, 2009),
it appears to be unable to reach the performance of FocusedILS version 2.3 with
aggressive capping on the most challenging configurations problems (Hutter et al,
2010a). Unfortunately, GGA also offers less flexibility than FocusedILS in terms of
the performance metric to be optimised. Further algorithm configuration procedures
based on evolutionary algorithms are covered in Chapter ?? of this book.

Finally, work originating from the Ph.D. project of Hutter (2009) has recently
overcome two major limitations of the sequential model-based optimisation meth-
ods discussed in Section 4 of this chapter by introducing a procedure that can handle
categorical parameters while explicitly exploiting the fact that performance is eval-
uated on a set of problem instances. There is some evidence that this procedure,
dubbed Sequential Model-based Algorithm Configuration (SMAC), can, at least on
some challenging configuration benchmarks, reach and sometimes exceed the per-
formance of FocusedILS (Hutter et al, 2011), and we are convinced that at least in
cases where the parameter response of a given target algorithm is reasonably regular
and performance evaluations are very costly, such advanced SMBO methods hold
great promise.

6 Conclusions and Future Work

Automated algorithm configuration and parameter tuning methods have been de-
veloped and used for more than a decade, and many of the fundamental techniques
date back even further. However, it has only recently become possible to effectively
solve complex configuration problems involving target algorithms with dozens of
parameters, which are often categorical and conditional. This success is based in
part on the increased availability of computational resources, but has mostly been
enabled by methodological advances underlying recent configuration procedures.

Still, we see much room (and, indeed, need) for future work on automated algo-
rithm configuration and parameter tuning methods. We believe that in developing
such methods, the fundamental features underlying all three types of methods dis-
cussed in this chapter can all play an important role, and that the best methods
will employ combinations of these. We further believe that different configuration
procedures will likely be most effective for solving various types of configuration
problems (depending, in particular, on the number and type of target algorithm pa-
rameters, but also on regularities in the parameter response). Therefore, we see a
need for research aiming to determine which configurator is most effective under
which circumstances. In fact, we expect to find situations in which the sequential
or iterative application of more than one configuration procedure turns out to be
effective – for example, one could imagine applying FocusedILS to find promising
configurations in vast, discrete configuration spaces, followed by a gradient-free nu-
merical optimisation method, such as CMA-ES, for fine-tuning a small number of
real-valued parameters.

30 Holger H. Hoos

Overall, we believe that algorithm configuration techniques, such as the ones
discussed in this chapter, will play an increasingly crucial role in the develop-
ment, evaluation and use of state-of-the-art algorithms for challenging computa-
tional problems, where the challenge could arise from high computational complex-
ity (in particular, NP-hardness) or from tight resource constraints (e.g., in real-
time applications). Therefore, we see great value in the design and development of
software frameworks that support the real-world application of various algorithm
configuration and parameter tuning procedures. The High-Performance Algorithm
Lab (HAL), recently introduced by Nell et al (2011), is a software environment de-
signed to support a wide range of empirical analysis and design tasks encountered
during the development, evaluation and application of high-performance algorithms
for challenging computational problems, including algorithm configuration and pa-
rameter tuning. Environments such as HAL not only facilitate the application of
automated algorithm configuration and parameter tuning procedures, but also their
development, efficient implementation and empirical evaluation.

In closing, we note that the availability of powerful and effective algorithm
configuration and parameter tuning procedures has a number of interesting con-
sequences for the way in which high-performance algorithms are designed and used
in practice. Firstly, for developers and end users, it is now possible to automatically
optimise the performance of (highly) parameterised solvers specifically for certain
classes of problem instances, leading to potentially much improved performance
in real-world applications. Secondly, while on-line algorithm control mechanisms
that adjust parameter settings during the run of a solver (as covered, for example,
in Chapters ?? and ?? of this book) can in principle lead to better performance
than the (static) algorithm configuration procedures considered in this chapter, we
expect these latter procedures to be very useful in the context of (statically) con-
figuring the parameters and heuristic components that determine the behaviour of
these on-line control mechanisms. Finally, during algorithm development, it is no
longer necessary (nor even desirable) to eliminate parameters and similar degrees
of freedom, but instead, developers can focus more on developing ideas for realising
certain heuristic mechanisms or components, while the precise instantiation can be
left to automated configuration procedures (Hoos, 2008). We strongly believe that
this last effect will lead to a fundamentally different and substantially more effec-
tive way of designing and implementing high-performance solvers for challenging
computational problems.

Acknowledgement

This chapter surveys and discusses to a large extent work carried out by my research group at UBC,
primarily involving Frank Hutter, Kevin Leyton-Brown and Kevin Murphy, as well as Thomas
Stützle at Université Libre de Bruxelles, to all of whom I am deeply grateful for their fruitful
and ongoing collaboration. I gratefully acknowledge valuable comments by Frank Hutter, Thomas
Stützle and Maverick Chan on earlier drafts of this chapter, and I thank the members of my research

Automated Algorithm Configuration and Parameter Tuning 31

group for the many intellectually stimulating discussions that provide a fertile ground for much of
our work on automated algorithm configuration and other topics in empirical algorithmics.

References

Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental design
and local search. Operations Research 54(1):99–114

Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic
configuration of algorithms. In: Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming (CP 2009), pp 142–157

Applegate DL, Bixby RE, Chvátal V, Cook WJ (2006) The Traveling Salesman Problem: A Com-
putational Study. Princeton University Press

Audet C, Orban D (2006) Finding optimal algorithmic parameters using the mesh adaptive direct
search algorithm. SIAM Journal on Optimization 17(3):642–664

Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the f-race algorithm: Sam-
pling design and iterative refinement. In: Bartz-Beielstein T, Blesa M, Blum C, Naujoks B, Roli
A, Rudolph G, Sampels M (eds) 4th International Workshop on Hybrid Metaheuristics, Pro-
ceedings, HM 2007, Springer Verlag, Berlin, Germany, Lecture Notes in Computer Science, vol
4771, pp 108–122

Balaprakash P, Birattari M, Stützle T, Dorigo M (2010) Estimation-based metaheuristics for the
probabilistic traveling salesman problem. Computers & OR 37(11):1939–1951

Bartz-Beielstein T (2006) Experimental Research in Evolutionary Computation: The New Experi-
mentalism. Natural Computing Series, Springer Verlag, Berlin, Germany

Bartz-Beielstein T, Lasarczyk C, Preuß M (2005) Sequential parameter optimization. In: McKay
B, et al (eds) Proceedings 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh,
Scotland, IEEE Press, vol 1, pp 773–780

Bartz-Beielstein T, Lasarczyk C, Preuss M (2008) Sequential parameter optimization toolbox,
manual version 0.5, September 2008, available at http://www.gm.fh-koeln.de/imperia/

md/content/personen/lehrende/bartz beielstein thomas/ spotdoc.pdf

Battiti R, Brunato M, Mascia F (2008) Reactive Search and Intelligent Optimization. Operations
Research/Computer Science Interfaces, Springer Verlag

Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring meta-
heuristics. In: GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp 11–18

Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and Iterated F-Race: An overview. In:
Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental Methods for the
Analysis of Optimization Algorithms, Springer, Berlin, Germany, pp 311–336

Bűrmen Á, Puhan J, Tuma T (2006) Grid restrained Nelder-Mead algorithm. Computational Opti-
mization and Applications 34(3):359–375

Carchrae T, Beck J (2005) Applying machine learning to low knowledge control of optimization
algorithms. Computational Intelligence 21(4):373–387

Chiarandini M, Fawcett C, Hoos H (2008) A modular multiphase heuristic solver for post enroll-
ment course timetabling (extended abstract). In: Proceedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling (PATAT 2008), 6 pages

Da Costa L, Fialho Á, Schoenauer M, Sebag M (2008) Adaptive Operator Selection with Dynamic
Multi-Armed Bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO’08), pp 913–920

Fawcett C, Hoos H, Chiarandini M (2009) An automatically configured modular algorithm for
post enrollment course timetabling. Tech. Rep. TR-2009-15, University of British Columbia,
Department of Computer Science

32 Holger H. Hoos

Fukunaga AS (2002) Automated discovery of composite sat variable-selection heuristics. In: Pro-
ceedings of the 18th National Conference on Artificial Intelligence (AAAI-02), pp 641–648

Fukunaga AS (2004) Evolving local search heuristics for SAT using genetic programming. In:
Genetic and Evolutionary Computation – GECCO-2004, Part II, Springer-Verlag, Seattle, WA,
USA, Lecture Notes in Computer Science, vol 3103, pp 483–494

Gagliolo M, Schmidhuber J (2006) Dynamic algorithm portfolios. In: Amato C, Bernstein D, Zil-
berstein S (eds) Proceedings of the 9th International Symposium on Artificial Intelligence and
Mathematics (AI-MATH-06)

Gomes CP, Selman B, Crato N, Kautz H (2000) Heavy-tailed phenomena in satisfiability and con-
straint satisfaction problems. Journal of Automated Reasoning 24(1-2):67–100

Gratch J, Chien SA (1996) Adaptive problem-solving for large-scale scheduling problems: A case
study. Journal of Artificial Intelligence Research 4:365–396

Gratch J, Dejong G (1992) Composer: A probabilistic solution to the utility problem in speed-up
learning. In: Rosenbloom P, Szolovits P (eds) Proceedings of the 10th National Conference on
Artificial Intelligence (AAAI-92), AAAI Press / The MIT Press, Menlo Park, CA, USA, pp
235–240

Guerri A, Milano M (2004) Learning techniques for automatic algorithm portfolio selection. In:
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp 475–
479

Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano J, Larranaga P,
Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Advances on estimation
of distribution algorithms, Springer, pp 75–102

Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In:
Yao X, et al (eds) Parallel Problem Solving from Nature PPSN VIII, Springer, LNCS, vol 3242,
pp 282–291

Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation 9(2):159–195

Hoos H (2008) Computer-aided design of high-performance algorithms. Tech. Rep. TR-2008-16,
University of British Columbia, Department of Computer Science

Hoos H, Stützle T (2000) Local search algorithms for SAT: An empirical evaluation. Journal of
Automated Reasoning 24(4):421–481

Hoos HH, Stützle T (2004) Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann Publishers, USA

Huang D, Allen TT, Notz WI, Zeng N (2006) Global optimization of stochastic black-box systems
via sequential kriging meta-models. Journal of Global Optimization 34(3):441–466

Hutter F (2009) Automated configuration of algorithms for solving hard computational problems.
PhD thesis, University of British Columbia, Department of Computer Science, Vancouver, BC,
Canada

Hutter F, Tompkins DA, Hoos H (2002) Scaling and Probabilistic Smoothing: Efficient Dynamic
Local Search for SAT. In: Principles and Practice of Constraint Programming – CP 2002,
Springer-Verlag, LNCS, vol 2470, pp 233–248

Hutter F, Hamadi Y, Hoos HH, Leyton-Brown K (2006) Performance prediction and automated
tuning of randomized and parametric algorithms. In: Principles and Practice of Constraint Pro-
gramming – CP 2006, Springer-Verlag, LNCS, vol 4204, pp 213–228

Hutter F, Babić D, Hoos HH, Hu AJ (2007a) Boosting verification by automatic tuning of de-
cision procedures. In: Proc. Formal Methods in Computer-Aided Design (FMCAD’07), IEEE
Computer Society Press, pp 27–34

Hutter F, Hoos H, Stützle T (2007b) Automatic algorithm configuration based on local search. In:
Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-07), pp 1152–
1157

Hutter F, Hoos H, Leyton-Brown K, Murphy K (2009a) An experimental investigation of model-
based parameter optimisation: SPO and beyond. In: Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation (GECCO’09), ACM, pp 271–278

Automated Algorithm Configuration and Parameter Tuning 33

Hutter F, Hoos H, Leyton-Brown K, Stützle T (2009b) ParamILS: An automatic algorithm config-
uration framework. Journal of Artificial Intelligence Research 36:267–306

Hutter F, Hoos H, Leyton-Brown K, Stützle T (2009c) ParamILS: An automatic algorithm config-
uration framework (extended version). Tech. Rep. TR-2009-01, University of British Columbia,
Department of Computer Science

Hutter F, Hoos H, Leyton-Brown K (2010a) Sequential model-based optimization for general
algorithm configuration (extended version). Tech. Rep. TR-2010-10, University of British
Columbia, Department of Computer Science

Hutter F, Hoos H, Leyton-Brown K, Murphy K (2010b) Time-bounded sequential parameter opti-
mization. In: Proceedings of the 4th International Conference on Learning and Intelligent Opti-
mization (LION 4), Springer-Verlag, LNCS, vol 6073, pp 281–298

Hutter F, Hoos HH, Leyton-Brown K (2010c) Automated configuration of mixed integer pro-
gramming solvers. In: Proceedings of the 7th International Conference on the Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2010), Springer-Verlag, LNCS, vol 6140, pp 186–202

Hutter F, Hoos H, Leyton-Brown K (2011) Extending sequential model-based optimization to gen-
eral algorithm configuration. To appear in: Proceedings of the 5th International Conference on
Learning and Intelligent Optimization (LION 5)

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black box
functions. Journal of Global Optimization 13:455–492

KhudaBukhsh A, Xu L, Hoos H, Leyton-Brown K (2009) SATenstein: Automatically building
local search sat solvers from components. In: Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI-09), pp 517–524

Leyton-Brown K, Nudelman E, Andrew G, McFadden J, Shoham Y (2003) A portfolio approach
to algorithm selection. In: Rossi F (ed) Principles and Practice of Constraint Programming –
CP 2003, Springer Verlag, Berlin, Germany, Lecture Notes in Computer Science, vol 2833, pp
899–903

Lourenço HR, Martin O, Stützle T (2002) Iterated local search. In: Glover F, Kochenberger G (eds)
Handbook of Metaheuristics, Kluwer Academic Publishers, Norwell, MA, USA, pp 321–353

Maron O, Moore AW (1994) Hoeffding races: Accelerating model selection search for classifica-
tion and function approximation. In: In Advances in neural information processing systems 6,
Morgan Kaufmann, pp 59–66

Nelder JA, Mead R (1965) A simplex method for function minimization. The Computer Journal
7(4):308–313

Nell CW, Fawcett C, Hoos HH, Leyton-Brown K (2011) HAL: A framework for the automated
design and analysis of high-performance algorithms. To appear in: Proceedings of the 5th Inter-
national Conference on Learning and Intelligent Optimization (LION 5)

Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer-Verlag
Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot swarm: Self-organized strategies

to find your way home. Swarm Intelligence 2(1):1–23
Pellegrini P, Birattari M (2006) The relevance of tuning the parameters of metaheuristics. a case

study: The vehicle routing problem with stochastic demand. Tech. Rep. TR/IRIDIA/2006-008,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

Pop M, Salzberg SL, Shumway M (2002) Genome sequence assembly: Algorithms and issues.
Computer 35(7):47–54

Prasad MR, Biere A, Gupta A (2005) A survey of recent advances in sat-based formal verification.
International Journal on Software Tools for Technology Transfer 7(2):156–173

Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. The MIT Press
Rice JR (1976) The algorithm selection problem. Advances in Computers 15:65–118
Rossi-Doria O, Sampels M, Birattari M, Chiarandini M, Dorigo M, Gambardella LM, Knowles JD,

Manfrin M, Mastrolilli M, Paechter B, Paquete L, Stützle T (2003) A comparison of the perfor-
mance of different metaheuristics on the timetabling problem. In: Burke EK, Causmaecker PD
(eds) Practice and Theory of Automated Timetabling IV, 4th International Conference, PATAT

34 Holger H. Hoos

2002, Selected Revised Papers, Springer, Lecture Notes in Computer Science, vol 2740, pp
329–354

Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments (with
discussion). Statistical Science 4:409–435

Santner T, Williams B, Notz W (2003) The Design and Analysis of Computer Experiments.
Springer Verlag, New York

Schiavinotto T, Stützle T (2004) The linear ordering problem: Instances, search space analysis and
algorithms. Journal of Mathematical Modelling and Algorithms 3(4):367–402

Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization
of computer models. In: Flournoy N, Rosenberger W, Wong W (eds) New Developments and
Applications in Experimental Design, vol 34, Institute of Mathematical Statistics, Hayward,
California, pp 11–25

Spall J (2003) Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc., New
York, NY, USA

Stützle T, Hoos HH (2000) MAX-MIN Ant System. Future Generation Computer Systems
16(8):889–914

Thachuk C, Shmygelska A, Hoos H (2007) A replica exchange monte carlo algorithm for protein
folding in the hp model. BMC Bioinformatics 8(342)

Tompkins DA, Hoos HH (2010) Dynamic Scoring Functions with Variable Expressions: New SLS
Methods for Solving SAT. In: Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2010), Springer-Verlag, LNCS, vol 6175, pp 278–
292

Xu L, Hutter F, Hoos HH, Leyton-Brown K (2007) SATzilla-07: the design and analysis of an
algorithm portfolio for SAT. In: Principles and Practice of Constraint Programming – CP 2007,
Springer Berlin / Heidelberg, LNCS, vol 4741, pp 712–727

Xu L, Hutter F, Hoos HH, Leyton-Brown K (2008) SATzilla: portfolio-based algorithm selection
for SAT. Journal of Artificial Intelligence Research 32:565–606

Xu L, Hutter F, Hoos H, Leyton-Brown K (2009) SATzilla2009: An Automatic Algorithm Portfolio
for SAT, solver description, SAT Competition 2009

Xu L, Hoos H, Leyton-Brown K (2010) Hydra: Automatically configuring algorithms for portfolio-
based selection. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-
10), pp 210–216

Yuan Z, Fügenschuh A, Homfeld H, Balaprakash P, Stützle T, Schoch M (2008) Iterated greedy
algorithms for a real-world cyclic train scheduling problem. In: Blesa M, Blum C, Cotta C,
Fernndez A, Gallardo J, Roli A, Sampels M (eds) Hybrid Metaheuristics, Lecture Notes in
Computer Science, vol 5296, Springer Berlin / Heidelberg, pp 102–116

