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Abstract

High-performance algorithms play an important role in many areas of computer science and are
core components of many software systems used in real-world applications. Traditionally, the cre-
ation of these algorithms requires considerable expertise and experience, often in combination with
a substantial amount of trial and error. Here, we outline a new approach to the process of designing
high-performance algorithms that is based on the use of automated procedures for exploring poten-
tially very large spaces of candidate designs. We contrast this computer-aided design approach with
the traditional approach and discuss why it can be expected to yield better performing, yet simpler
algorithms. Finally, we sketch out the high-level design of a software environment that supports our
new design approach. Existing work on algorithm portfolios, algorithm selection, algorithm config-
uration and parameter tuning, but also on general methods for discrete and continuous optimisation
methods fits naturally into our design approach and can be integrated into the proposed software
environment.

1 Introduction

High-performance algorithms can be found at the heart of many software systems; they often provide
the key to effectively solving the computationally difficult problems encountered in the application ar-
eas in which these systems are deployed. Examples of such problems include scheduling, time-tabling,
resource allocation, production planning and optimisation, computer-aided design and software verifi-
cation. Many of these problems areNP-hard and considered computationally intractable, meaning that
in general, they cannot be solved by any polynomial-time algorithm. Many application-relevant NP-
hard optimisation problems are even inapproximable in the sense that not even good approximations to
optimal solutions can be found in polynomial time. 1

Nevertheless, these ‘intractable’ problems arise in practice, and finding good solutions to them in many
cases tends to become more difficult as economic constraints tighten. For example, resource alloca-
tion problems are typically very easy to solve if there is an abundance of resources relative to the
demands in a given situation. Conversely, as demands grossly exceed the resources available, there
will not be any allocation that satisfies all demand and, slightly less obviously, this will typically be

1Here and in the remainder of this report, we make the common assumptions thatNP6=P and, in the context of approxima-
bility results,NP6= ZPP .
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easy to demonstrate. It is between those extremes that the difficult cases arise, where the demands
and available resources are balanced enough that finding a satisfying allocation or demonstrating that
none exists becomes computationally very difficult. We note that in many real-world contexts, a nat-
ural tendency towards this critically constrained, computationally difficult case can be expected: The
underconstrained case is typically economically wasteful, which provides an incentive for increasing
the demands on resources (for example, by enlarging the customer base or by taking on more projects)
or to reduce availability of resources (for example, by scaling back personnel or equipment allotment);
the overconstrained case, on the other hand, typically corresponds to lost market opportunities and
can cause substantial strain within an organisation, which provides an incentive to increase resource
availability. Furthermore, growing awareness and concern about the limitations of natural resources,
such as oil or natural gas, along with increased competition within larger, often global markets and an
increasing trend towards just-in-time delivery of goods and services provide further incentives to find
good solutions to large instances of computationally difficult problems as fast as possible.

In most (if not all) cases, the key to solving computationally challenging problems effectively lies in
the use of heuristic algorithms, that is, algorithms that make use of heuristic mechanisms, whose effec-
tiveness can be demonstrated empirically, yet remains inaccessible to the analytical techniques used for
proving theoretical complexity results. (We note that our use of the term ‘heuristic algorithm’ includes
methods without provable performance guarantees as well as methods that have provable performance
guarantees, but nevertheless make use of heuristic mechanisms; in the latter case, the use of heuristic
mechanisms often results in empirical performance far better than the bounds guaranteed by rigorous
theoretical analysis.) The design of such effective heuristic algorithms is typically complicated by the
fact that substantial benefits can arise from using multiple heuristic mechanisms, which may interact
in complex, non-intuitive ways. For example, a DPLL-style complete solver for SAT (a prototypical
NP-complete problem with important applications in the design of reliable soft- and hardware) may
use different heuristics for selecting variables to be instantiated and the values first explored for these
variables, as well as heuristic mechanisms for managing and using logical constraints derived from
failed solution attempts.

High-performance heuristic algorithms are not only crucial for solving NP-hard problems, but also
play an important role in dealing with large instances of easier problems, particularly when these need
to be solved under tight time-constraints. For example, the problem of finding shortest paths in graphs,
which arises prominently in the context of route planning in transportation networks (e.g., using GPS
navigation systems in cars), can be solved using Dijkstra’s classical algorithm (Dijkstra, 1959) in time
O(n2) in the worst case, where n is the number of vertices in the given graph, and in time O(n log n)
for sparse graphs (see, e.g., Sanders and Schultes, 2007). However, when dealing with real-world road
networks, which can easily have more than one million nodes, the running time of Dijkstra’s algorithm
becomes prohibitive. Therefore, much effort has been invested in designing high-performance heuristic
algorithms for solving the same problem, leading to procedures that solve realistic route planning prob-
lems up to one million times faster than Dijkstra’s algorithm (Sanders and Schultes, 2007). Similarly, in
the context of high-performance sorting algorithms, heuristic mechanisms (along with other techniques
whose effectiveness is often primarily established empirically) are used to achieve substantial speedups
over the methods found in textbooks on algorithms and in the research literature (see, e.g., Bentley and
McIlroy, 1993; Brodal et al., 2008).

For a number of reasons, which we will discuss in more detail in the following section, the design of
effective heuristic algorithms, particularly algorithms for solving computationally hard problems, is a
difficult task that requires considerable expertise and experience. By expertise, we refer to expert-level
knowledge acquired, for example, in graduate-level university courses or from the research literature;
this may include knowledge of generic, broadly applicable algorithmic techniques, such as stochastic
local search or branch-and-cut methods, as well as of knowledge related to the specific problem for
which an algorithm is to be developed or improved. By experience, on the other hand, we refer to
insights and intuitions gained from actively working on effective heuristic algorithms, often under the
guidance of a skilled and successful researcher or practitioner.
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The knowledge gained from this experience is difficult to formalise and to communicate effectively;
therefore, developing the ability to design effective heuristic algorithms typically not only takes years
of dedicated work under the guidance of someone who is already an expert, but also involves a large
amount of trial and error. In this respect, heuristic algorithm design resembles more a craft or an art than
a scientific or engineering effort; due to the lack of formalised procedures, best practices and rigorous
results, it is also often regarded with some suspicion in academia.

In the remainder of this report, we first discuss the traditional approach for designing high-performance
algorithms and point out its shortcomings. Next, we outline a fundamentally different approach that
is based on the idea of applying human expertise primarily for specifying possibly large combinatorial
design spaces (i.e., sets of algorithms for the given problem) that are subsequently searched for high-
performance algorithms using powerful, automated procedures. We will explain the advantages of this
computer-aided algorithm design approach over traditional design methods, followed by a high-level
description of a (yet unrealised) software environment that supports computer-aided algorithm design
procedures and their application. As will be argued in that section, there is a substantial amount of
existing work that is applicable and likely to be useful in this context. Finally, we summarise the
main differences between this novel approach and traditional methods for designing high-performance
algorithms, and highlight its features and advantages.

The computer-aided algorithm design approach outlined in this report is conceptually related to existing
work on automated algorithm selection, algorithm configuration, parameter tuning and algorithm port-
folios (see, e.g., Rice, 1976; Leyton-Brown et al., 2003; Birattari et al., 2002; Adenso-Diaz and Laguna,
2006; Hutter et al., 2007; Huberman et al., 1997; Gomes and Selman, 2001; Gagliolo and Schmidhuber,
2006), as well as to general-purpose discrete and continuous optimisation techniques (see, e.g., Hansen
and Ostermeier, 2001; Hansen and Kern, 2004; Bűrmen et al., 2006; Powell, 1998; Nelder and Mead,
1965). It has also connexions with work in algorithm synthesis (see, e.g., Westfold and Smith, 2001;
Van Hentenryck and Michel, 2007; Monette et al., 2009; Di Gaspero and Schaerf, 2007), algorithm
engineering (see, e.g., Sanders and Schultes, 2007; Maue and Sanders, 2007) and meta-learning (see,
e.g., Vilalta and Drissi, 2002), as well as work on so-called hyper-heuristics (see, e.g., Cowling et al.,
2002; Burke et al., 2003). Surveying these bodies of work in their entirety would is beyond the scope
of this report, but we will point out the connexions and give prominent examples for techniques that
can be directly applied in the context of our approach in Sections 3 and 4, while in Section 5, we will
comment in more detail on the aforementioned research directions as they relate do (and differ from)
our notion of computer-assisted algorithm design.

2 The traditional approach

High-performance heuristic algorithms are typically constructed in an iterative, manual process in
which the designer gradually introduces or modifies components or mechanisms whose performance
is then tested by empirical evaluation on one or more sets of benchmark problems. This process often
starts with some generic or broadly applicable problem solving method (e.g., an evolutionary algo-
rithm), a new algorithmic idea or even an algorithm suggested by theoretical considerations. This initial
algorithm is implemented and evaluated on some problem instances, after which heuristic mechanisms
are added or modified. These additions and modifications typically happen in stages, with performance
being assessed at each stage until a given performance target has been reached or exceeded (this target
could be defined in terms of existing algorithms or be derived from real-world application require-
ments), or the algorithm designer has no more time to spend (e.g., because of publication or project
deadlines).

During this iterative design process, the algorithm designer has to make many decisions. These concern
choices of the heuristic mechanisms being integrated and the details of these mechanisms, as well as
implementation details, such as data structures. Some of these choices take the form of parameters,
whose values are guessed or determined based on limited experimentation. Such parameters are often
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not exposed to later users of the final version of the software, and in many cases are not clearly visible
even at the source code level (e.g., they may appear as numerical constants inside arithmetic expressions
or logical conditions). Frequently, such hard-coded parameters are not mentioned in later descriptions
or discussions of the algorithm (e.g., in publications).

Various problems can and often do arise from this approach to algorithm design. The first of these stems
from the fact that it is inherently labour-intensive: Even experienced designers often have to spend
substantial amounts of time exploring and experimenting with various combinations of mechanisms
and methods before obtaining an effective heuristic algorithm for a given computational problem. To
a large extent, this work is being perceived as rather menial. Given this situation, human designers
typically explore relatively few designs that are chosen in an ad-hoc manner rather than based on
carefully planned experimental designs.

As a consequence, good designs, i.e., high-performance algorithms that may be realisable given the
components and mechanisms considered in the design process, may be easily missed. This applies es-
pecially to lengthy design processes during which many, possibly parameterised heuristic mechanisms
are considered, which jointly define a vast combinatorial space of possible designs. Cognizant of this
difficulty, algorithm designers tend to limit the size of the design space, e.g., by choosing to neither
expose nor vary certain parameters. While this indeed limits the effort involved in exploring the space
of possible designs or configurations, and therefore increases the possibility of searching larger parts of
that space, the arbitrary or ad-hoc nature of the choices made in this context (e.g., hard-coded parameter
values) can easily further reduce the performance potential realised at the end of the design process.

In many cases, the approach taken by human designers relies on implicit independence assumptions
regarding the effectiveness of heuristic mechanisms or parameter settings. These assumptions essen-
tially postulate that design choices can be made independently of each other; e.g., the effects of a
choice between two alternative mechanisms, say X and Y , in one part of a given algorithm, should be
independent of those of choosing between three mechanisms, say A, B and C, in another part. Unfor-
tunately, such independence assumptions are often incorrect, since the mechanisms interact, sometimes
in unintuitive ways (consider, e.g., the choice of variable- and value-ordering heuristics in a tree-search
algorithm for SAT or CSP).

Similar problems arise from the tendency of human designers to over-generalise conclusions drawn
from observations in the limited context of such experiments (e.g., “using mechanism X rather than Y
always results in better performance”, where in reality this may only be true when also using mechanism
A, but not when using B or C instead). Especially in the context of designing or optimising randomised
algorithms, this tendency can easily lead to the perception of illusory patterns, and particularly in cases
where there is an a priori expectation of a certain pattern or regularity, there is a risk of overestimating
empirical evidence supporting that pattern while underestimating evidence to the contrary.

As a result, algorithm designers may choose (consciously or subconsciously) to focus on certain parts
of a design space (e.g., by committing to a heuristic mechanism or parameter setting that is subse-
quently never revisited) while leaving others unexplored. This tends to further limit the extent to which
algorithms constructed in this manner realise the performance potential that is present in the underlying
design space.

Finally, the iterative design process appears to be biased towards increasingly complicated designs:
while sometimes, mechanisms or components whose addition has not led to performance improve-
ments are removed (and then typically never considered again), often, unless they are seen to decrease
performance, such mechanisms or components are kept in the design, while other mechanisms are
added. This may be advantageous in cases where a mechanism A is relatively ineffective on its own,
but leads to major performance gains in combination with other mechanisms X1, . . . , Xk added at
some later stage; however, it is problematic in cases where A remains ineffective throughout the design
process or, worse, where in combination with X1, . . . , Xk, A’s impact on overall performance actually
decreases (i.e., the performance of an algorithm using X1, . . . , Xk and A is lower than that of the same
algorithm without A — this may happen, e.g., when mechanism A results in heuristic guidance that,
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while ineffective on its own, partly counteracts the more effective guidance provided by Xi).

This bias in the design process leads to complicated, historically grown algorithms with many compo-
nents, not all of which may be effective. Further development building on such algorithms rarely in-
cludes an assessment of the efficacy of components and mechanisms introduced in the original design,
and therefore, over the course of multiple design cycles, the complexity tends to increase further. The
resulting algorithms effectively are the result of very limited search in extremely large design spaces;
and while in principle, larger design spaces can be expected to contain better solutions (in this case,
better-performing algorithms), we would also expect the gap between the quality of the best solutions
existing in a given space and those found by an ineffective search procedure to widen with increasing
size of the design space.

In summary, while the traditional approach can and often does lead to satisfactory results, it tends to be
tedious and labour-intensive; the resulting algorithms are often unnecessarily complicated while failing
to realise the full performance potential present in the space of designs that can be built using the same
underlying set of components and mechanisms.

3 The new approach

As an alternative to the traditional, manual algorithm design process outlined in the previous section, we
propose an approach that uses fully formalised procedures, implemented in software, to permit a human
designer to explore large design spaces more effectively, with the aim of realising algorithms with
desirable performance characteristics. Since these procedures operate on algorithms, we characterise
them as meta-algorithms, while we refer to the algorithms being constructed or modified as target
algorithms.

In its simplest form, our approach, which may be called computer-aided design of high-performance
algorithms, can be outlined as follows.

A human designer

• specifies a (possibly very large) design space, i.e., a set of target algorithms, by means of a
collection of components (which may be parameterised) and one or more generic ways of com-
bining these components into an algorithm for the problem at hand (this may take the form of an
instantiable schema or of a family of such schemata);

• supplies a set of problem instances to be used for performance evaluation (this set could comprise
only one instance; a distribution of instances, i.e., set of instances associated with probabilities;
or an instance generator);

• specifies a performance metric which is used to assess candidate target algorithm designs when
run on given problem instances (e.g., median run-time or mean relative solution quality).

Based on this input, the meta-algorithmic system explores the design space in order to find target
algorithms with highest possible performance on the given problem instances. For the final assessment
of the target algorithm(s) thus obtained, in some cases a disjoint set of test problem instances may be
used.

Note that this approach automates both, the construction of target algorithms as well as the assess-
ment of their performance. By specifying the design space to be explored in an appropriate manner,
computer-aided algorithm design can be used to construct algorithm portfolios, which consist of several
target algorithms running concurrently in order to achieve increased performance robustness (see, e.g.,
Huberman et al., 1997; Gomes and Selman, 2001); per-instance algorithm selection methods, which
choose one of several target algorithms to be applied to a given problem instance based on properties of
that instance determined just before attempting to solve it (see, e.g., Rice, 1976; Leyton-Brown et al.,
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2003); or reactive algorithms, which may switch between different heuristic mechanisms or different
parameter configurations while running on a given problem instance (see, e.g., Battiti and Protasi, 1997;
Battiti et al., 2008).

More complex variants of computer-aided algorithm design may involve

• additional automated algorithm simplification phases, in which meta-algorithmic procedures are
used to simplify a target algorithm as much as possible without incurring inacceptable perfor-
mance losses (where what constitutes an ‘acceptable loss’ is specified by the algorithm designer)
— such simplification mechanisms could also be integrated into the exploration procedure;

• iterative modifications of the design space (e.g., by means of adding or changing algorithm com-
ponents or through modifications of the instantiable schema), interspersed with automated explo-
ration phases;

• iterative modifications of the set of problem instances used for performance evaluation (e.g., in
some cases, it may be useful to use relatively easy problem instances during an initial exploration
stage, and increasingly more difficult instances for subsequent refinements);

• multiple performance criteria, in which case the meta-algorithmic procedure used for exploring
the design space would aim to solve a multi-objective optimisation problem.

Computer-aided algorithm design allows human designers to focus on the creative task of specifying
a design space in terms of potentially useful components. While some of these components will be
specific to the problem to be solved by the target algorithm or even certain types of problem instances
that are characteristic for a given application context, other components may be generic and reusable.
Examples for such reusable components include generic local search procedures (e.g., iterative first
improvement), neighbourhood relations (e.g., k−exchange) and generic look-ahead procedures that
can be used in the context of construction or tree search methods. Such components could be collected
in libraries, the use of which would help algorithm designers in specifying larger design spaces.

The use of powerful heuristic search and optimisation procedures in combination with significant
amounts of computing power, which in many industry and research contexts is quite readily avail-
able, enables the exploration of larger design spaces. Larger design spaces have the potential to contain
better-performing algorithms. However, in most cases, the problem of finding optimal or near-optimal
designs within a large space can be expected to be computationally hard (for typical, combinatorial
design spaces: NP-hard); therefore, given limited computational resources, enlarging a given design
space, even if this increases the quality of the optimal designs contained therein, may not result in prac-
tical gains, since these improved designs may never be found. On the other hand, an enlarged space
may contain sufficiently many or easily reachable good designs that a better-performing algorithm can
be found effectively.

Clearly, this tradeoff depends on the interactions between the meta-algorithmic procedures used for
exploring the design space and characteristics of the space itself. As is the case in the context of solving
other hard combinatorial problems effectively, we expect the experience and intuitions of the human
algorithm designer to be key to achieving good results in this context. In this context, human skills are
applied at the meta-level and leveraged by the automated stages of the computer-aided algorithm design
process. We believe that this way of leveraging human skills yields far superior results compared to
the direct application of the same abilities to the manual construction of target algorithms, analogous to
the advantages realised by using human effort and ingenuity for making and effectively using versatile
tools, rather than by applying human skills directly to the task of manufacturing a specific artifact.

Another useful feature of the computer-aided algorithm design approach is that it supports the con-
struction of algorithms for specific types of instances of a given problem in a rather straight-forward
way. For many problems, different types of solution strategies are known to work best for solving var-
ious kinds of instances. As the performance potential inherent to a class of algorithms, which may be
represented by a given combinatorial design space, is increasingly exploited, it is reasonable to assume
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that in addition to fairly instance-independent choices (i.e., choices that would contribute to perfor-
mance improvements on a broad class of problem instances), also components or configurations would
be selected whose effectiveness depends on characteristics of the problem instances considered in the
design process. Herein lies an additional pitfall of the traditional design process, which may encourage
design decisions that really only work well in the limited context of the typically very small number of
problem instances considered at a particular stage of the process.

In the computer-aided design process outlined here, the major part of the human effort involved is
spent in the context of specifying design spaces, while the search for high-performance designs for
a given set of problem instances is automated. Therefore, given a sufficiently rich design space and
enough computing time, high-performance algorithms for specific classes of problem instances can
be obtained relatively cheaply and in a straightforward way. Depending on the degree to which two
given sets of problem instances, say I and J , differ from each other, the effort spent in finding a good
algorithm A(I) for solving I , may even be leveraged effectively by starting the search for a high-
performance algorithm A(J) for J from the design of A(I). Related to this idea, in many real-world
application scenarios, after an initial algorithm has been found and deployed, it may be useful to collect
the problem instances solved by that algorithm and occasionally re-optimise the target algorithm using
these instances (possibly in addition to ones used earlier in the algorithm design process). This way, the
target algorithm could be automatically adapted to changing application requirements on an ongoing
basis — a concept that is closely related to the idea of life-long learning (see, e.g., Thrun, 1996).

Finally, computer-aided algorithm design can result in simpler target algorithms, because the use of
meta-algorithmic procedures makes it possible and likely to explore larger parts of a given design
space, while avoiding the previously discussed tendency of incremental, manual approaches to produce
complex designs. Furthermore, the use of automated simplification procedures (which, in the simplest
case, may perform simple abrasion analysis) makes it possible to explicitly search for simple designs
with few components and heuristic mechanisms. Such designs are easier to understand and to explain;
they are also more amenable to manual performance improvements by means of specially engineered
data structures and other implementation enhancements.

Our approach shares much of its motivation with existing work on automated parameter tuning, algo-
rithm configuration, algorithm portfolios and algorithm selection, all of which can be seen as special
cases of computer-aided algorithm design.

In automated parameter tuning, the design space is defined by an algorithm whose behaviour is con-
trolled by a set of parameters, and the task is to find performance-optimising settings of these parame-
ters. Depending on the number of algorithm parameters and the nature of their domains, various meth-
ods can be used for exploring the resulting design spaces, ranging from well-known numerical optimi-
sation procedures such as the Nelder-Nead Simplex algorithm (Nelder and Mead, 1965; Bűrmen et al.,
2006) or the more recent, gradient-free CMA-ES algorithm (Hansen and Ostermeier, 2001; Hansen and
Kern, 2004) to inherently discrete approaches based on experimental design methods (see, e.g., Birat-
tari et al., 2002; Balaprakash et al., 2007; Adenso-Diaz and Laguna, 2006), response-surface models
(see, e.g., Jones et al., 1998; Bartz-Beielstein, 2006) or stochastic local search procedures (see, e.g.,
Hutter et al., 2007, 2008).

In automated algorithm configuration, the design space is defined by an algorithm schema that contains
a number of instantiable components (typically, subprocedures or functions), along with a discrete set
of concrete choices for each of these. This can be seen as a special case of parameter tuning, in which
categorical parameters are used to select a set of components to instantiate the given schema. However,
the nature of the respective optimisation problems is very different from those arising, e.g., when tuning
a small number of real-valued algorithm parameters, and in fact, several of the previously mentioned
methods are not applicable. However, F-Race (Birattari et al., 2002; Balaprakash et al., 2007), Calibra
(Adenso-Diaz and Laguna, 2006) and ParamILS (Hutter et al., 2007, 2008) have been used successfully
in this context (although of these, so far only ParamILS has been demonstrated to be able to deal with
the vast design spaces resulting from schemata with many, independently instantiable components), and
promising results have been achieved by a genetic programming procedure applied to the configuration
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of local search algorithms for SAT (Fukunaga, 2002, 2004).

In the case of algorithm portfolios (see, e.g., Huberman et al., 1997; Gomes and Selman, 2001), the
design space considered consists of sets of algorithms that are run concurrently on a given problem
instance. In general, the components algorithms that make up the portfolio can be assigned different
CPU shares in a multi-tasking environment; furthermore, in the case of randomised algorithms, it can be
beneficial to include multiple copies of the same component algorithm. Extensions of this concept may
allow communication between the component algorithms (as mentioned, but not explored by Huberman
et al., 1997), or may dynamically re-allocate CPU shares between component algorithms (see, e.g.,
Gagliolo and Schmidhuber, 2006). Given a set of component algorithms, the problem of determining
performance-optimising (or risk-minimising) allocations of CPU shares can be seen as a parameter
tuning problem; however, because of its special properties, it is likely that this problem is best solved
using specific numerical optimisation methods. The problem of selecting component algorithms to be
included in a portfolio can be seen as an algorithm configuration problem, but again, may be solvable
most effectively using techniques that exploit special properties of the component selection task. 2

Per-instance algorithm selection methods (see, e.g., Rice, 1976; Leyton-Brown et al., 2003) exploit
differences in the relative performance between various algorithms. Given a problem instance π to be
solved, the idea is to select among several candidate algorithms the one that can be expected to give the
best performance on π; this is done based on knowledge on the correlation of algorithm performance
with instance features. This corresponds to an algorithm design problem in which the design space
consists of selection functions, which map instance features to candidate algorithms. In recent work,
performance-optimising selection functions are determined using statistical classification or regression
procedures (see, e.g., Guerri and Milano, 2004; Leyton-Brown et al., 2003). Advanced algorithm se-
lection methods may run more than one algorithm on a given problem instance (see, e.g., Xu et al.,
2007, 2008), or dynamically switch between algorithms (see, e.g., Carchrae and Beck, 2005); the cor-
responding design spaces and methods for determinining ‘good designs’ are conceptually related to
those previously mentioned.

It is not hard to see how more general computer-aided algorithm design approaches can in principle
combine aspects of and procedures for automated parameter tuning, algorithm configuration, algorithm
portfolios and per-instance algorithm selection. In the case of stochastic local search (SLS), a fun-
damental and widely used approach for solving hard combinatorial problems, design spaces spanning
such combinations can be defined based on Generalised Local Search Machines (GLSMs). GLSMs
are a general formalism for modelling SLS algorithms that is based on a clean separation between
lower-level search procedures and higher-level search control strategies (Hoos, 1999; Hoos and Stützle,
2004). As will be discussed in detail elsewhere, GLSMs can be used to structure large and complex
spaces of SLS algorithms, and existing work on automated parameter tuning, algorithm configuration
as well as on general discrete and continuous optimisation methods will likely provide a good basis for
automatically exploring these spaces.

We also note that when using appropriately chosen design spaces, computer-aided algorithm design
can yield algorithms with provable performance guarantees. As a trivial example, consider portfolio
constructions that run two or more algorithms for a given optimisation problem Π concurrently and
return the best solution found by any of them. Let A1 be an algorithm for Π that is provably guaran-
teed to reach a certain approximation ratio after some runtime, say t(π), where π is the given problem
instance. Clearly, for k component algorithms, all with equal CPU share, any portfolio containing A1

is guaranteed to achieve the same approximation ratio as A1 in time k× t(π). Similarly, any sequential
algorithm that first runs A1 for t(π), then executes a stochastic local search procedure initialised at the
candidate solution produced by A1, and finally returns the best solution encountered, is also guaranteed
to achieve the same approximation ratio as A1. While these simple examples illustrate the feasibil-
ity of the concept, there certainly exist more complex ways of specifying design spaces in which all
algorithms have provable performance guarantees by construction.

2It may be noted that neither Huberman et al. (1997) nor Gomes and Selman (2001) present automated methods for portfolio
construction, while Fukunaga (2000) uses a bootstrap sampling method for portfolio optimisation.
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4 A software environment for computer-aided design of high-
performance algorithms

In order to apply computer-aided algorithm design methods in practice, various software components
need to be made available to a human designer. In the simplest case, these could be comprised of a
parametric target solver along with an implementation of a meta-algorithmic optimisation procedure,
where the former is an implementation of a family of target algorithms, whose members are obtained
by means of setting exposed parameters to certain values, while the latter searches the configuration
space defined by these parameters for performance-optimising settings. This search process involves
selecting candidate configurations of the parametric target solver as well as measuring the performance
observed when running these configuration of the target solver on the given problem instances.

As previously mentioned, many existing procedures could in principle be used for these parameter
tuning or algorithm configuration tasks; depending on the nature and number of parameters of the
given target algorithm, procedures such as Nelder-Mead Simplex (Bűrmen et al., 2006; Nelder and
Mead, 1965), CMA-ES (Hansen and Kern, 2004; Hansen and Ostermeier, 2001), F-Race (Birattari
et al., 2002; Balaprakash et al., 2007) or ParamILS (Hutter et al., 2007, 2008) might be utilised in this
context. However, existing implementations of these procedures use different formats for specifying the
parameter space, which complicates their use in the context of more general computer-aided algorithm
design tasks that may benefit from or require the use of more than one meta-algorithmic optimisation
procedure (e.g., during sequential design stages).

However, we believe that computer-aided design of high-performance algorithms is best supported by a
software environment that goes much beyond the application of a single parameter tuning and algorithm
configuration procedure. We envision a system that integrates

• various approaches and formalisms for specifying algorithm design spaces, such as algorithm
portfolios (see, e.g., Huberman et al., 1997; Gomes and Selman, 2001), per-instance algorithm
selectors (see, e.g., Guerri and Milano, 2004; Leyton-Brown et al., 2003; Xu et al., 2008) or
Generalised Local Search Machines (Hoos, 1999; Hoos and Stützle, 2004);

• a collection of methods for exploring design spaces, including algorithm configuration and para-
mater tuning procedures (see, e.g., Hutter et al., 2008, 2007; Balaprakash et al., 2007; Bartz-
Beielstein, 2006), continuous optimisation methods (see, e.g., Bűrmen et al., 2006; Nelder and
Mead, 1965; Hansen and Kern, 2004; Hansen and Ostermeier, 2001), as well as specialised pro-
cedures for constructing algorithm portfolios or selectors (see, e.g., Gagliolo and Schmidhuber,
2006; Guerri and Milano, 2004; Leyton-Brown et al., 2003; Xu et al., 2008; Carchrae and Beck,
2005);

• support for a variety of performance metrics, including (descriptive statistics over) run-time as
well as solution quality achieved after fixed run-time;

• support for managing sets of benchmark instances;

• support for managing and interpreting experimental results, which should also include mecha-
nisms that avoid unnecessary duplication of algorithm runs;

• methods for automated algorithm simplification, including simple abrasion analysis as well as
more complex approaches that support trading off performance against (description) complexity
of algorithms.

Furthermore, we believe that the following features are especially important when designing such a
system:

• component-based architecture with simple, clearly defined and well-documented interfaces be-
tween all components — this facilitates concurrent and independent development of components;
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• clear separation between the user interface (which we envision to be web-based, possibly using
Java applets) and other components of the system, in particular, the meta-algorithmic procedures
used for algorithm construction, configuration, tuning and simplification — this makes it possible
to separate the development and integration of new components to a large degree from work on
the user interface;

• effective utilisation of parallel computation in the form of multi-core and multi-processor sys-
tems, compute clusters and possibly large-scale distributed computation in the form of CPU
cycle-scavenging (cf. SETI@home) — given the compute-intensive nature of most computer-
aided algorithm design tasks and the trend towards parallel computing environments, this is an
indispensable requirement.

To be widely used, such a system would need to be easy to install and run on a range of commonly
used compute platforms, in particular, on MS-Windows- and Unix-based systems (including Mac OS
X). Furthemore, it should make it easy to perform conceptually simple tasks, such as parameter tuning
or configuration of a given solver (provided as an executable) on a set of benchmark instances.

Finally, such a software environment for computer-aided algorithm design could and should make use
of the functionality afforded by widely used utilities such as Sun Grid Engine (or similar distributed
computing environments), mySQL (or similar database systems), CVS (or similar version control sys-
tems), R (or similar statistics packages) and Gnuplot (or similar graph plotting software). We see also
potential for integration with software development environments, such as Eclipse, in the context of
support for target algorithm component development and management, as well as for design space
specification.

Based on these considerations, we are currently designing a system called High-performance Algorithm
Laboratory (HAL), which will support both, computer-aided design of high-performance algorithms,
as well as empirical analysis of such algorithms (where the latter includes comparative performance
analysis, performance scaling analysis, robustness analysis and parameter response analysis). A first
version of HAL will likely support design space specifications in the form of black-box parametric
target solvers, along with a number of meta-algorithmic optimisation procedures, including ParamILS
(Hutter et al., 2007, 2008), F-Race (Birattari et al., 2002), Iterated F-Race (Balaprakash et al., 2007),
Active Configurator and likely also SPO (Bartz-Beielstein, 2006), as well as one or two gradient-free
continuous optimisation procedures, such as Nelder-Mead Simplex (Bűrmen et al., 2006; Nelder and
Mead, 1965) or CMA-ES (Hansen and Kern, 2004; Hansen and Ostermeier, 2001). It will also provide
some support for managing sets of benchmark instances and for archiving experimental results.

In subsequent versions, we plan to additionally support algorithm design patterns based on GLSMs
as well as on per-instance algorithm selectors and algorithm portfolios; an automated simplification
procedure (dubbed Razor); and finally, tools for target algorithm performance analysis based on widely
used concepts and methods from empirical algorithmics, such as solution quality distributions, run-time
distributions, solution cost distributions and parameter response curves (see, e.g., Hoos and Stützle,
2004, Ch. 4).

5 Related work

Work on automated algorithm selection, algorithm configuration, parameter tuning and algorithm port-
folios is motivated to a large extent by considerations similar to those presented here (see, e.g., Rice,
1976; Leyton-Brown et al., 2003; Guerri and Milano, 2004; Carchrae and Beck, 2005; Hutter et al.,
2007; Adenso-Diaz and Laguna, 2006; Huberman et al., 1997; Gomes and Selman, 2001; Gagliolo and
Schmidhuber, 2006); focussed on particular design techniques, it is typically more limited in scope, but
has very useful applications in the broader context of our more general approach. Work on general-
purpose optimisation techniques (see, e.g., Powell, 1998; Hansen and Kern, 2004; Hansen and Os-
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termeier, 2001; Bűrmen et al., 2006; Nelder and Mead, 1965) is similarly directly applicable in the
context of our approach, but is typically focussed on solving problems with characteristics that can
differ considerably from those arising in the context of searching for high-performance algorithms in
large, combinatorial design spaces.

Existing work on algorithm synthesis is mostly focussed on automatically generating algorithms that
satisfy a given formal specification or that solve a specific problem from a large and diverse domain (see,
e.g., Westfold and Smith, 2001; Van Hentenryck and Michel, 2007; Monette et al., 2009; Di Gaspero
and Schaerf, 2007), while the approach we consider is focussed on performance optimisation in a large
space of candidate solvers for a given problem that are all guaranteed to be correct by construction.
Clearly, there is complementarity between both approaches; at the same time, because of the significant
difference in focus, the methods considered in algorithm synthesis and performance-oriented computer-
assisted algorithm design, as considered here, are quite different.

Work on algorithm engineering is mostly focussed on the empirical performance of algorithms for
polytime-solvable problems, and involves manual exploration of relatively modest numbers of algo-
rithm variants, obtained by including various heuristic mechanisms and speed-up techniques (see, e.g.,
Sanders and Schultes, 2007; Maue and Sanders, 2007). Our approach, on the other hand, deals mostly
with performance-optimisation by means of search in much larger combinatorial design spaces; it is,
in principle, applicable to problems of arbitrary computational complexity, but expected to be most
effective on NP-hard problems. Again, there is complementarity between the two research direc-
tions; e.g., work in algorithm engineering could benefit from the meta-algorithmic procedures used in
our approach for searching large design spaces, while the theoretical insights that often guide partic-
ular algorithm engineering efforts may be very useful in the context of defining design spaces in our
approach.

In the machine learning community, meta-algorithmic techniques are used for improving the perfor-
mance of machine learning procedures. This area is commonly referred to as meta-learning, and the
meta-algorithmic procedures used in this context are typically based on machine learning approaches
(see, e.g., Vilalta and Drissi, 2002); examples include stacked generalisation and dynamic bias selection
as well as, under a broad definition of meta-learning, model-combination techniques, such as bagging
and boosting. Meta-learning can be seen as a special case of computer-assisted algorithm design in that,
while being motivated very similarly, it is more restricted in scope. (At the same time, meta-learning
addresses issues well outside of the context considered here.) Doubtlessly, commonly used machine
learning procedures constitute a very important class of algorithms that can benefit enormously from
computer-assisted algorithm design methods, and the specific methods used in meta-learning may well
be useful in the context of designing other types of algorithms. At the same time, it is likely that meta-
algorithmic procedures different from those already used in meta-learning may prove to be useful in
the design of high-performance machine learning algorithms.

Another area in which approaches that fall under the umbrella of computer-aided algorithm design
can be found is evolutionary computation. In a subarea known as genetic programming (GP) (see,
e.g., Poli et al., 2008), evolutionary algorithms are typically used to construct algorithms (or related
formalisms, such as automata or functions) with specific properties. For example, Fukunaga (2002,
2004) used an evolutionary algorithm to search for high-performance SAT algorithms in an unbounded
space of stochastic local search algorithms for SAT. Similarly, Bölte and Thonemann (1996) optimised
the performance of a simulated annealing for the quadratic assignment problem by means of evolving
annealing schedules. In genetic programming, the specification of design spaces and the evolutionary
algorithms used for exploring these spaces are closely linked; furthermore, the design spaces are typi-
cally unbounded, and the target algorithms comprising these spaces are typically represented as trees.
(However, there is now an increasing amount of work that uses other representations). Considering its
focus on meta-algorithmic search procedures based on evolutionary algorithms and on unbounded de-
sign spaces, when applied to the design of high-performance algorithms, genetic programming can
be seen as a special case of computer-aided algorithm design. Although there are contexts (such
as the algorithm configuration and parameter tuning problems mentioned previously) in which other
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computer-aided algorithm design methods may be considerably more effective than standard genetic
programming techniques, we expect the latter to be useful for exploring potentially unbounded, highly
structured design spaces, as encountered, for example, in the context of constructing GLSM-based
designs of stochastic local search algorithms.

Work on so-called hyper-heuristics (see, e.g., Cowling et al., 2002; Burke et al., 2003) and on reactive
search methods (see, e.g., Battiti and Protasi, 1997; Battiti et al., 2008) is also motivated by the goal of
building high-performance algorithms using generic methods. However, this work is largely orthogonal
to our approach, since it is typically focussed on using traditional design methods to design algorithms
that use some higher-level control strategy in order to modify the behaviour of a given algorithm at
run-time. Specific methods from both areas can, however, give rise to interesting design spaces; these
spaces could then be searched for high-performance hyper-heuristics or reactive search methods using
standard meta-algorithmic optimisation methods.

The feasibility and potential of using automated methods for constructing high-performance algorithms
has been demonstrated in various application contexts. For example, Li et al. (2005) have used a ge-
netic programming approach to create hybrid sorting algorithms that outperform those provided by
several widely used libraries, including the C++ STL. Whaley et al. (2001) describe a general ap-
proach for optimising the performance of algorithms termed Automated Empirical Optimization of
Software (AEOS) and its application to computing-platform-specific performance optimisation of lin-
ear algebra routines. The meta-algorithmic search procedure used in this work is very specific to the
code-level tuning task studied by the authors; their more general AEOS approach, while focussed on
performance-optimisation of libraries of fundamental computing routines for given computing plat-
forms on the code-generation level, is very similar to the computer-aided algorithm design approach
advocated here in terms of its nature and motivation. Conceptually similar work can also be found in
compiler optimisation (see, e.g., Pan and Eigenmann, 2006; Cavazos et al., 2007) and database query
optimisation (see, e.g., Stillger and Spiliopoulou, 1996; Dong and Liang, 2007).

6 Conclusions

The computer-aided approach for the design of high-performance algorithms discussed in this report
has many advantages compared to the traditional, manual design processes commonly used today.
These advantages are especially pronounced in the context of designing heuristic algorithms for hard
computational problems that increasingly arise in many application areas as a consequence of resource
limitations and competition in large, tightly coupled markets. However, the computer-aided algorithm
design approach is also applicable to computationally easier problems that need to be solved in real-
time or near-real-time scenarios. In contexts where several types of problem instances with different
characteristics need to be solved, computer-aided algorithm design is particularly attractive, since it can
be used to automatically adapt algorithms that perform well on one instance distribution to other distri-
butions with little or no human intervention, as long as a sufficiently rich design space and sufficiently
powerful meta-algorithmic search procedures are available.

When moving from traditional algorithm design methods to computer-aided algorithm design, the role
of human designers changes fundamentally: instead of sequentially testing a series of candidate de-
signs, the emphasis is now on specifying design spaces that are then explored automatically. This
approach is scalable and benefits from readily available computing power: Given a large design space,
additional computational resources can be expected to help in finding better algorithms as a result of
more thorough exploration within that space; alternatively, an increase in computational resources can
prompt further extensions of the design space. We note that parallel computation can easily be har-
nessed in this context. In many cases, a given design space can be partitioned into disjoint subspaces
in obvious ways, for example, by splitting on a number of binary or discrete design choices, or by
partitioning the domains of continuous algorithm parameters. (This seems particularly useful in cases
where some top-level design choices precede and determine later, lower-level choices, and where there
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is no a priori knowledge regarding which top-level choice might be best.) Furthermore, stochastic local
search procedures, which are among the most attractive and best suited methods for exploring complex
combinatorial spaces, tend to be parallelisable easily and efficiently by means of performing multiple
independent runs (see, e.g., Hoos and Stützle, 2004; Hutter et al., 2007).

Overall, computer-aided algorithm design can lead to higher-performance and simpler algorithms. As
a design approach, it is also more principled than the ad-hoc methods currently used, which makes it
easier to disseminate and support, in the form of software systems for computer-aided algorithm design.
Because of their more formalised nature, computer-aided algorithm design methods are also easier to
evaluate and to improve. Their development and application therefore constitutes a key step in trans-
forming the design of high-performance algorithm from a craft that is based primarily on experience
and intuition to an engineering effort involving formalised procedures and best practices.

Existing work in various areas has followed similar goals and, in some cases, has led to methods that
will doubtlessly be useful in the context of the approach advocated here. However, by framing the
computer-aided design approach in a general way, by pointing out how it naturally encompasses and
builds on existing concepts, such as parameter tuning, algorithm configuration, algorithm portfolios
and algorithm selection, and by outlining how it can be supported by a general-purpose system that
includes existing meta-algorithmic procedures, we believe that the vast potential this approach brings
to the notoriously difficult task of designing high-performance algorithms can be realised more effec-
tively and in a principled way. Our work aims to bring together related research efforts from a number
of areas — including artificial intelligence, empirical algorithmics, algorithm engineering, operations
research, numerical optimisation, machine learning, statistics, databases, parallel computing and soft-
ware engineering — to leverage commonalities and exploit complementarities, to articulate and realise
a vision that will change the way in which we design high-performance algorithms. As a result, human
experts will be able to more easily design effective algorithms for solving computational problems en-
countered in application domains ranging from bioinformatics to industrial scheduling, from compiler
optimisation to robotics, from databases to production planning.
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local search algorithms. In Stützle, T., Birattari, M., and Hoos, H. H., editors, Proc. International
Workshop on Engineering Stochastic Local Search Algorithms (SLS 2007), volume 4638 of Lecture
Notes in Computer Science, pages 177–181. Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271.

Dong, H. and Liang, Y. (2007). Genetic algorithms for large join query optimization. In GECCO
’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages
1211–1218, New York, NY, USA. ACM.

Fukunaga, A. S. (2000). Genetic algorithm portfolios. In Proc. of the 2000 Congress on Evolutionary
Computation, pages 1304–1311, Piscataway, NJ. IEEE Service Center.

Fukunaga, A. S. (2002). Automated discovery of composite sat variable-selection heuristics. In Pro-
ceedings of the Eighteenth National Conference on Artificial Intelligence, pages 641–648.

Fukunaga, A. S. (2004). Evolving local search heuristics for SAT using genetic programming. In Deb,
K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster,
J., Harman, M., Holland, O., Lanzi, P. L., Spector, L., Tettamanzi, A., Thierens, D., and Tyrrell, A.,
editors, Genetic and Evolutionary Computation – GECCO-2004, Part II, volume 3103 of Lecture
Notes in Computer Science, pages 483–494, Seattle, WA, USA. Springer-Verlag.

Gagliolo, M. and Schmidhuber, J. (2006). Dynamic algorithm portfolios. In Amato, C., Bernstein, D.,
and Zilberstein, S., editors, Ninth International Symposium on Artificial Intelligence and Mathemat-
ics (AI-MATH-06).

Gomes, C. P. and Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62.

Guerri, A. and Milano, M. (2004). Learning techniques for automatic algorithm portfolio selection. In
Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pages 475–
479. IOS Press.

14



Hansen, N. and Kern, S. (2004). Evaluating the CMA evolution strategy on multimodal test functions.
In Yao, X. et al., editors, Parallel Problem Solving from Nature PPSN VIII, volume 3242 of LNCS,
pages 282–291. Springer.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation, 9(2):159–195.

Hoos, H. (1999). Stochastic Local Search – Methods, Models, Applications. infix-Verlag, Sankt Au-
gustin, Germany.
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