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aComputer Science Department, University of British Columbia
2366 Main Mall, Vancouver, BC, V6T 1Z4, Canada
Phone: +1 604 822-1964, Fax: +1 604 822-5485

bIRIDIA, CoDE, Université Libre de Bruxelles (ULB)
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Abstract

The travelling salesman problem (TSP) is one of the most prominent NP-hard

combinatorial optimisation problems. After over fifty years of intense study, the

TSP continues to be of broad theoretical and practical interest. Using a novel ap-

proach to empirical scaling analysis, which in principle is applicable to solvers

for many other problems, we demonstrate that some of the most widely studied

types of TSP instances tend to be much easier than expected from previous the-

oretical and empirical results. In particular, we show that the empirical median

run-time required for finding optimal solutions to so-called random uniform Eu-

clidean (RUE) instances – one of the most widely studied classes of TSP instances

– scales substantially better than Θ(2n) with the number n of cities to be visited.

The Concorde solver, for which we achieved this result, is the best-performing

exact TSP solver we are aware of, and has been applied to a broad range of real-

world problems. Furthermore, we show that even when applied to a broad range
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of instances from the prominent TSPLIB benchmark collection for the TSP, Con-

corde exhibits run-times that are surprisingly consistent with our empirical model

of Concorde’s scaling behaviour on RUE instances. This result suggests that the

behaviour observed for the simple random structure underlying RUE is very sim-

ilar to that obtained on the structured instances arising in various applications.

Keywords: Combinatorial optimisation, travelling salesman problem, concorde,

empirical scaling analysis

1. Introduction

The travelling salesman problem (TSP) is one of the most prominent combi-

natorial optimisation problems [2, 16]. It has been studied for over fifty years

by mathematicians, computer scientists and researchers from various other fields,

largely motivated by the fact that it is conceptually simple (and can be easily ex-

plained to anyone unfamiliar with it), yet computationally very challenging. As a

result, an extraordinary amount of work has been dedicated to this problem, com-

prising both, theoretical analyses as well as empirical investigations [3, 5, 13, 21].

In addition, the TSP has played, and continues to play, a pivotal role in the de-

velopment of algorithmic techniques for solving hard combinatorial optimisation

problems.

Of the many types of TSP instances that have been studied, two-dimensional

Euclidean instances represent the most commonly considered case. These in-

stances arise in various transportation and logistics applications, as well as in the

optimisation of production processes (such as drill-path optimisation in the fabri-

cation of printed circuit boards), and can be easily visualised. TSPLIB, a collec-

tion of benchmark instances for the TSP that has been used extensively to evaluate
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TSP algorithms [22], contains predominantly 2D Euclidean TSP instances, and

the same holds for a more recent collection of benchmark instances maintained

by William Cook [6].

Numerous theoretical results exist regarding the computational complexity of

the TSP and various special cases [5, 11, 20, 24]. The general TSP is NP-hard

[8], and the same holds for the special case of 2D Euclidean TSP instances [19].

However, while for the general TSP, no polynomial-time approximation algorithm

exists (unless P = NP), for Euclidean distances, a polynomial-time approximation

scheme is known; still, the time required for finding good solutions increases ex-

ponentially as the gap to optimality narrows (unless P = NP) [5]. Therefore, it

is commonly believed that the run-time of any exact TSP algorithm scales expo-

nentially with instance size n, even when applied to (non-trivial) 2D Euclidean

TSP instances. Smith & Wormald [24] and Hwang et al. [11] have established a

worst-case time-complexity ofO(n
√
n) for solving Euclidean TSP instances using

geometric separator techniques;1 it appears, however, that these techniques have

not been exploited in any TSP solver currently available [25].

Knowledge of the empirical complexity of the TSP is considerably sparser.

State-of-the-art solvers can solve many types of TSP instances with n > 1 000

within hours of CPU time on commodity hardware (see, e.g., [2]), but relatively

little is known about the scaling of their run-time with n for interesting distribu-

tions of TSP instances. Arguably the most prominent empirical scaling analysis

for the TSP is found in the recent book by Applegate et al. [2], who investigated

the mean run-time required by Concorde, the state-of-the-art exact solver for the

1As clearly acknowledged by Hwang et al., the complexity result for the Euclidean TSP can

be traced back to earlier work by W.D. Smith.
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TSP, for solving random uniform Euclidean (RUE) instances. Based on a graph-

ical analysis of empirical mean run-times observed for Concorde on large sets of

RUE instances, illustrated in Figure 16.1 of their book and reproduced in Figure 1

here, Applegate et al. [2] observed (p. 496):

The plot of mean values in Figure 16.1 indicates that the running

times are increasing as an exponential function of n, [...]

While the precise nature of the exponential function has not been further investi-

gated, it is tempting to conclude that the scaling curve asymptotically approaches

a straight line in the semi-logarithmic plot, indicating simple exponential scaling

of the form a ·bn, and that systematic deviations for small nmay reflect the effects

of preprocessing performed by the solver (Concorde carries out a limited number

of iterations of the Chained Lin-Kernighan heuristic local search procedure during

the initial stages of its computation).

Concorde [2, 3] is of special interest, because it is currently the best-

performing exact TSP solver. For example, it has been used to solve the largest

non-trivial TSP instances for which provably optimal solutions are known. (As

of this writing, the largest non-trivial TSP instance for which a provably opti-

mal solution is known is TSPLIB instance pla85900, a 2D Euclidean instance

with n = 85 900 cities derived from a real-world circuit design application – see

[2, 4].) Concorde is based primarily on a complex branch & cut algorithm that

uses a multitude of heuristic mechanisms to achieve good performance on a wide

range of TSP instances.

Overall, we are interested in using empirical methods to characterise the com-

putational complexity of problems and the performance achieved by state-of-the-

art algorithms, with a focus on practically relevant combinatorial problems. We
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Figure 1: Scaling of mean run-time required by the Concorde solver for solving RUE TSP in-

stances with instance size n. This plot reproduces Figure 16.1 from p. 496 of the book by Apple-

gate et al. [2] and has been generated based on data from their Table 16.6; mean run-times for

n ≤ 1000 are based on 10 000 instances per instance size and those for n > 1000 are based on

1 000 instances per instance size.

see such methods as complementary to theoretical approaches that can yield more

rigorous, general results, but are often not applicable to algorithms that show state-

of-the-art performance in practice. The empirical characterisations we aim for

typically take the character of models that are based on the observed behaviour of

an algorithm and that are capable of producing predictions that can be critically

assessed using further computational experiments. Aside from their practical util-

ity (e.g., for assessing the suitability of a given algorithm in a particular applica-

tion context or guiding algorithm development), such models can in principle also
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inform theoretical research [see, e.g., 12, 23].

In this work, we chose to study the empirical complexity of the 2D Euclidean

TSP, primarily because of its status as a particularly prominent and well-studied

NP-hard computational problem with a clearly established state-of-the-art solver

of considerable practical importance, Concorde. In particular, we were interested

in building parametric models for the scaling of Concorde’s run-time with instance

size. We developed and thoroughly tested such models for the widely studied class

of RUE instances and subsequently evaluated them on a variety of benchmark

instances from TSPLIB. In doing so, we originally intended to make more precise

the claim by Applegate et al. [2], and to test to which extent it applies to more

structured TSPLIB instances.

To our surprise, we found that exponential scaling models of the form a · bn

for Concorde’s mean and median run-time over sets of RUE instances are not

significantly more precise than a polynomial model (of degree about 3.78). A

scaling model of the form a · b
√
n, on the other hand, turned out to be surprisingly

accurate, even when evaluated on instance sizes up to three times larger than those

used for fitting its parameters. (To the best of our knowledge, this is the first time

that such a root-exponential scaling model has been used to model the run-time of

a state-of-the-art algorithm for TSP or any other NP-hard problem.) Furthermore,

we found that Concorde’s run-time on RUE instances of a given size n appears

to be log-normally distributed with a coefficient of variation (standard deviation

over mean) that is independent of n, which implies that even high quantiles of

these distributions show root-exponential scaling. Finally, we observed that the

simple scaling model for Concorde’s run-time thus obtained agrees surprisingly

well with the run-times observed on more structured instances from TSPLIB.
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The remainder of this article is structured as follows. In Section 2, we give

technical details on the computational experiments that form the core of our study

and describe the method we developed for conducting empirical scaling analyses

in a statistically rigorous way. Section 3 presents the results from these experi-

ments, and Section 4 provides additional discussion of those findings. Finally, in

Section 5, we draw some general conclusions from our results and outline several

directions for further investigation.

2. Materials and Methods

TSP solver. The algorithm we study in this work is Applegate et al.’s well-

known branch & cut solver, Concorde, version Concorde-03.12.19 [3], the best

performing exact algorithm for the TSP available today. Concorde makes use of

an external linear-programming (LP) solver, and in the experiments reported here,

we used it in conjunction with QSopt 1.01, an LP solver specifically designed to

be used with Concorde. All parameters were left at their default settings, and the

random number seed was always set to 23.

TSP instance sets. We performed experiments on two widely studied classes

of 2D Euclidean TSP instances: RUE instances, and instances from TSPLIB.

RUE instances are generated by placing a number of points uniformly at ran-

dom within a unit square; those points represent the cities to be visited in the

corresponding TSP instance, and the distances between those are simply deter-

mined as the Euclidean distances between the respective points. For each in-

stance size n, this random generation method induces a probability distribution

over RUE instances. The RUE instances used in our study were generated us-

ing the portgen generator from the 8th DIMACS Implementation Challenge.
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For n = 500, 600, . . . , 2000, we generated 1000 instances and for n = 2500,

3000, 3500, 4000 and 4500, 100 instances per instance size. Smaller instances

are too easy for Concorde and result in floor effects, i.e., inaccurate CPU time

measurements due to limited resolution of commonly used methods for process

timing and distortions in scaling behaviour (as running time becomes dominated

by Concorde’s preprocessing stages); larger instances require infeasibly long runs

of Concorde. In addition, we have selected all instances from the TSPLIB web

site [22] of 500 to 4500 cities that had edge types EUC 2D, CEIL 2D and ATT

(these are all derived from 2D Euclidean distances); this resulted in a set of 29

instances.

Execution environment. All runs of Concorde were performed on a cluster

of identical machines, each equipped with two dual-core 2.4 GHz AMD Opteron

2216 processors with 2× 1MB L2 cache and 4GB main memory, running Cluster

Rocks Linux version 4.2.1/CentOS 4. The programme was compiled with gcc-

3.4.6-3, and only one CPU core was used for each run. The CPU time required

by solving a given TSP instance with Concorde was directly taken from Con-

corde’s standard output. The run-time measurements thus obtained for individual

instances were collected for each set of instances of a given size n, and descrip-

tive statistics of the distribution of run-times over the instances in each set were

computed from these data. Unless explicitly stated otherwise, we ensured that

Concorde runs on all instances of a given set completed (i.e., for each instance, an

optimal solution was found and proven to be optimal).

Scaling analysis. Given instance sizes n1, n2 . . . , nk = 500, 600, . . . , 1500

and m = 1000 RUE instances per size, we used the following bootstrapping pro-

cedure to assess the predictions made by an empirical scaling model, M : For
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each instance size ni, we independently drew r = 1000 samples Ii,1, . . . , Ii,r,

where each Ii,j consists of m instances and is determined by independent uniform

random sampling with replacement from the full set of size ni instances. Then,

for each of the 1000 series of instance sets I1,j, I2,j, . . . , Ik,j , j = 1, . . . , 1000,

we fitted a parametric scaling model Mj to the corresponding observed run-times

B(I1,j), using the nonlinear least-squares Marquardt-Levenberg algorithm as im-

plemented in the widely used Gnuplot software. Next, for a given instance size

n, we used models Mj to obtain a set of predictions P := {P1(n), . . . , Pr(n)},

where Pj(n) is the prediction obtained from model Mj . From the set of predic-

tions P , we determined the bootstrap percentile confidence interval for a given

confidence level α as CI := [q(0.5−α/2), q(0.5+α/2)] [see, e.g., 7], where q(x) denotes

the x-quantile of the empirical distribution of the values in P ; we used a standard

value of α = 0.95. Confidence intervals on the model parameters were obtained

analogously from the sets of parameter values for the models Mj . Finally, we

compared the actual run-times observed for the original set of instances for size

n against the confidence intervals thus obtained. To the best of our knowledge,

this is the first use of this type of bootstrap analysis, which has been developed

by Hoos [9] for this purpose, for characterising the empirical behaviour of an

algorithm for any NP-hard problem.

3. Results

We started our scaling analysis by a visual inspection of the mean and median

run-time of Concorde for the RUE instance sets with n = 500, . . . , 1500. As can

be seen in Figure 2 (top pane), contrary to what could be expected based on the

results from the book by Applegate et al. [2], the fact that those scaling curves
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appear as straight lines in a log-log plot suggests polynomial scaling behaviour.

The same observation was made for the scaling of the 0.1- and 0.9-quantiles of

the distribution of Concorde’s run-time over the sets of instances for each n. An-

other surprising observation is that the slope of the scaling lines for the mean and

the three quantiles considered here appears to be the same, which indicates that,

regardless of instances size, those statistics differ only in a constant factor.

We then fitted three parametric scaling models to the median run-time data

for n = 500, . . . , 1500. We chose the median for this and many of the subse-

quent analyses, because medians generally tend to be statistically more stable

than means and, more importantly in our context, can be estimated reliably in the

presence of censored data: here, runs of Concorde that have timed out after some

large cut-off time without solving a given instance. We considered the following

three scaling models:

• a 2-parameter exponential model: Exp[a, b](n) := a · bn

• a 2-parameter polynomial model: Poly[a, b](n) := a · nb

• a 2-parameter square-root-exponential, or short, root-exponential model:2

RExp[a, b](n) := a · b
√
n

The first model was chosen based on the results of Applegate et al. [3], the second

based on our earlier observation, and the third was chosen based on a preliminary

2In computing science, this scaling is sometimes referred to as sub-exponential (see, e.g., [15]);

more precisely, is has occasionally also been called weakly or mildly exponential. In physics, the

term stretched exponential is used to refer to a very similar type of function. We chose the term

root-exponential, which is also commonly used for this type of function in physics and geography,

because it characterises our model more precisely.
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manual assessment of several models that would produce scaling behaviour in-

between the first two models. We note that all three models have two degrees of

freedom, and we generally fit these models on at least 11 data points (obtained

from a total of at least 11 000 independent runs of Concorde); we therefore see no

risk of unfair comparisons between models and only minimal risk of overfitting

the data.

As can be seen in the bottom pane of Figure 2, while both, the exponential and

polynomial models approximate the data they were fitted on quite well (RMSE =

12.81 and 15.38, respectively), the root-exponential model produces a much better

fit (RMSE = 8.83), especially for small instance sizes. When we challenged these

models by using them to predict median run-times for n = 1600, 1700 . . . , 2000

and n = 2500, 3000, . . . , 4500, we found that, while the exponential and polyno-

mial models are similarly inaccurate, the predictions made by the root-exponential

model match the observed median run-times for these instance sets very accu-

rately. Table 1 further illustrates these results. The exponential model severely

overpredicts median run-times (up to a factor of 30 for n = 4500), while the

polynomial model consistently underpredicts the actual median run-times. The

root-exponential model, in contrast, is always within a factor of slightly below

1.6 of the observed median run-times, and there is no evidence that its accuracy

deteriorates with increasing instance size.

We note that, although we allowed very long run-times of Concorde on each

instance, for instance sizes n = 4000 and n = 4500, not all instances could be

solved. However, because in both cases we managed to solve substantially more

than 50% of the instances in these sets, we were able to correctly estimate median

run-times.
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Figure 2: Scaling of run-time required by the Concorde solver for finding optimal solutions to RUE

TSP instances and proving their optimality. The best-fit exponential model is 8.90 · 1.00311n, the

root-exponential model is 0.21 · 1.24194
√
n and the polynomial model is 8.83 · 10−10 · n3.78. The

run-time statistics for each instance size used for the curves on the top pane and for the fits are

based on 1000 randomly generated instances; the data points used in the bottom pane to illustrate

the predictive accuracy of the three scaling models are based on 1000 instances up to n = 2000

and on 100 instances for larger n.
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predicted median run-time

instance size polynomial model exponential model root-exponential model observed median run-time

2 000 2 709.80 4 446.53 3 393.90 3 400.82 (1000/1000)

2 500 6 302.61 21 020.46 10 651.96 8 855.28 (100/100)

3 000 12 561.47 99 371.86 29 957.63 30 024.49 (99/100)

3 500 22 505.10 469 769.31 77 531.36 49 476.78 (100/100)

4 000 37 294.77 2 220 781.76 187 871.30 143 334.46 (90/100)

4 500 58 229.53 10 498 496.81 431 400.74 344 131.05 (65/100)

Table 1: Predicted median run-times from polynomial and exponential fits for Concorde on RUE

instances (finding optimal solutions and proving optimality) vs observed median run-times; the

instance sizes shown here are larger than those used for fitting the models. The numbers in the last

column shown in parentheses indicate the fraction of instances within each set that were solved by

Concorde; the remaining instances could not be solved within time much larger than that of the

longest completed run on the same set, but have no impact on median run-time.

To further validate our scaling results, we computed bootstrap confidence in-

tervals for the predictions. Table 2 shows that the observed run-times for instance

sizes n ≥ 2000 are not consistent with confidence intervals for the predictions

made by the exponential and the polynomial models. The accuracy of the root-

exponential model, on the other hand, is confirmed by the results from this analy-

sis: For all instance sizes except n = 3500, the observed run-times fall within the

confidence intervals obtained for the respective predictions, and for n = 3500, the

observed run-time is less than 5% below the lower limit of the confidence interval.

Next, we investigated in more detail the distribution of Concorde’s run-time

over RUE instances of the same size n. Figure 3 shows the empirical cu-

mulative distribution functions for the observed run-times on instances of size

n = 500, 1000 and 1500. We refer to these distributions as solution cost distri-

butions (SCDs). Examining these empirical SCD curves, it appears that, while
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predicted median run-time

instance size polynomial model exponential model root-exponential model observed median run-time

2 000 [2 298.22 , 3 160.39] [3 793.00 , 5 266.68] [2 854.21 , 3 977.55] 3 400.82 (1000/1000)

2 500 [4 987.78 , 7 870.81] [16 378.03 , 28 010.39] [8 266.46 , 13 601.02] 8 855.28 (100/100)

3 000 [9 430.35 , 16 615.93] [70 584.38 , 147 716.74] [21 549.28 , 41 271.35] 30 024.49 (99/100)

3 500 [16 087.86 , 31 246.26] [304 354.12 , 780 313.20] [51 883.73 , 114 841.57] 49 476.78 (100/100)

4 000 [25 552.92 , 54 042.99] [1 305 365.53 , 4 110 129.86] [117 547.77 , 298 973.70] 143 334.46 (90/100)

4 500 [38 431.20 , 87 841.09] [5 616 741.54 , 21 733 073.57] [253 401.82 , 734 363.20] 344 131.05 (65/100)

Table 2: Bootstrap confidence intervals for α = 0.95 for median run-time predictions for Concorde

on RUE instances (finding optimal solutions and proving optimality); the instance sizes shown

here are larger than those used for fitting the models. The α = 0.95 bootrap confidence intervals

for the model parameters are [8.69 · 10−11, 8.44 · 10−9], [3.46, 4.11] for the polynomial model,

[6.71, 11.21], [1.00292, 1.00334] for the exponential model and [0.115, 0.373], [1.2212, 1.2630]

for the root-exponential model.

there is substantial variation of run-time for each given instance size (the ratio

between the 0.9- and 0.1-quantiles is roughly 20), there is no significant change

in the shape of the distributions (when run-time is plotted on a log-axis) as n in-

creases. Consistent with our earlier observation, this suggests that the quantiles of

these distributions are related to each other by a factor that does not depend on n,

and therefore show the same scaling behaviour as the median.

Further examination suggested that these empirical SCDs closely resemble

log-normal distributions. In fact, at the α = 0.05 significance level, the Shapiro-

Wilk test of normality on the log-transformed run-times fails to reject the hypothe-

sis that the log-transformed run-time data were normally distributed for n = 1000

and n = 1500 (for n = 500, the hypothesis was rejected, mostly due to a decay

in the tails of the distributions that was faster than that of a best-fit log-normal

distribution). The same test on the instance sets for n = 2000 and 2500 could also
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not be rejected and a visual inspection of the truncated SCDs for n = 3500, 4000

and 4500 (where the truncation results from the fact that exact run-times for some

instances could not be measured, as previously explained) further supported our

hypothesis that Concorde’s run-times for sufficiently large instance sizes are log-

normally distributed.

Furthermore, when examining various quantile ratios and the coefficient of

variation of the empirical SCDs, we found no evidence that would suggest an in-

crease in variance of the log-transformed data with n. This supports our earlier

observation that on RUE instances, not only does Concorde’s median run-time

scale according to our 2-parameter square-root-exponential model with n, but the

same holds for all quantiles of the distributions of Concorde’s run-time over in-

stances of size n, as well as for mean run-time.

When re-examining the data on the scaling of Concorde’s mean run-time on

sets of RUE instances from the book by Applegate et al. [2] (Table 16.6 on p. 496),

we obtained results that are fully consistent with those from our previous analysis:

fitting our three parametric models to their data produced clear indication that

the best-fit root-exponential model fits the observed mean run-times much better

(RMSE = 61.43) than either, the exponential and polynomial models (RMSE =

214.80 and 246.83, respectively). Furthermore, when fitting our models to the data

for n = 500, . . . , 1500 only, we obtained rather accurate predictions for n = 2000

and 2500 for the root-exponential model, while the polynomial model, and even

more so the exponential model, give substantially poorer predictions.

Finally, we compared the scaling of Concorde’s observed run-times on the ear-

lier mentioned TSPLIB instances to those of the RUE instances. We found that

Concorde could not solve instances u1817 and d2103 within 3 CPU days. For
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Figure 3: Distributions of run-time required by the Concorde solver for finding an optimal solution

to a given TSP instance and proving its optimality over three sets of RUE instances (1000 instances

per set). For n = 1000, 1500 (as well as for n = 2000, 2500), the log-transformed data pass the

Shapiro-Wilk normality test for α = 0.05.

the remaining 27 instances, we compared Concorde’s observed run-times with

the run-times predicted by our best-fit root-exponential scaling model. We also

considered predictions obtained from our scaling model under the additional as-

sumption that the 0.05- and 0.95-quantiles of Concorde’s run-time for each n are

located at constant factors from the median (we estimated this factor as 9.27 from

the data obvserved for n = 2000, the largest set of 1000 instances used in our

study). As can be seen in Figure 4, of the 29 TSPLIB instances considered, 21 fell

within the band between our predictions for the 0.05- and 0.95-quantiles of Con-

corde’s run-time, while 5 were higher than the 0.95-quantiles (instances fl1400,
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d1291, u2319 in addition to d2103 and u1817), and 3 were lower than the 0.05-

quantile (instances pr1002, pr2392, d1655). It is remarkable that the predictions

based on our model are accurate for 72% of the instances from TSPLIB, espe-

cially when considering that the model is solely based on Concorde’s behaviour

on RUE instances, which differ markedly from the Euclidean instances in TSPLIB

in terms of the distribution of the cities to be visited. 3

We performed an analogous analysis for the National instances with 500 to

5000 nodes and VLSI instances with 500 to 4500 nodes from the TSP webpage

at http://www.math.uwaterloo.ca/tsp/index.html. The National

instances are based on the locations of cities within individual countries, while the

VLSI instances are from applications in VLSI circuit design. While all seven Na-

tional instances in the indicated size range fell within the 0.05- and 0.95-quantiles

of our predictions for Concorde’s run-time, this was not the case for the VLSI

instances, most of which turned out to be harder to solve than RUE instances of

similar size (see Figure 5). Of the 54 VLSI instances in the indicated size range,

Concorde could not solve 31 within 7 CPU days, indicating that our predictions

are unreliable in this case. However, it seems that these instances are particularly

hard for Concorde, as for many of the instances we could not solve, no provably

optimal solution is currently known.4

3Independently from our work, David Applegate has conducted a similar investigation, based

on RUE instances up to size n = 2500, using the scaling model a · b 4
√
n [1]. When fitting and

assessing this model on our data, we found that for n ≥ 3000, it usually underestimates observed

median running times, and that for n = 3000, 4000 and 4500, those running times fell outside of

the confidence intervals for the predictions obtained from this model.
4Note that these VLSI instances have a significant number of same-length edges and thus show

edge-length distributions markedly different from those of RUE and many other types of Euclidean
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Figure 4: Run-times required by the Concorde solver for solving TSPLIB instances with size

n = 500 . . . 4500. The dashed lines represent the best-fit root-exponential scaling determined on

RUE instances and estimates of the 0.05- and 0.95-quantiles of the distributions of run-times over

sets of RUE instances of a given size. Two TSPLIB instances that also fall within the range of

sizes considered here could not be solved by Concorde within 7 CPU days, and are therefore not

shown in this plot.

4. Discussion

Considering widely known complexity results for the TSP and Euclidean TSP

instances and the fact that current TSP solvers do not exploit geometric separa-

TSP instances. Interestingly, the TSPLIB instances that fall outside the 0.05- and 0.95-quantiles of

our run-time predictions are instances from the drilling of PCB boards that show node distributions

similar to those encountered in the VLSI instances.
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tor techniques, we were surprised to find evidence for root-exponential scaling

of Concorde’s run-time with instance size on a class of widely used benchmark

instances, such as RUE. We note that even with the worst-case time-complexity

of O(n
√
n) result of Smith & Wormald [24] and Hwang et al. [11] in mind, there

remains a difference corresponding to a log factor in the exponent. In fact, we

also fitted a model of the form a · b
√
n · lnn; interestingly, when checking the me-

dian run-time predictions for large instances from this model fitted on instances

for n in 500 to 1500, we found that it usually overestimates the observed median

run-times and that – except for instance sizes 2000 and 3000 – those observed run-

times fell outside the confidence intervals of the bootstrap confidence intervals for

the predictions obtained from this model.

Still, we see no contradiction between our empirical result and theoretical

worst-case complexity results. Firstly, RUE instances are not truly Euclidean,

since the distances are rounded to the nearest integers; therefore, theoretical re-

sults for Euclidean instances do not strictly apply. Secondly, it is entirely possible

that a family of 2D Euclidean instances exists for which Concorde shows expo-

nential scaling of the form O(2n) or O(n
√
n). Our results suggest, however, that

if such instances existed within the RUE distribution, they would become increas-

ingly rare as n grows,5 and that, furthermore, such instances do not appear to have

structure that is commonly encountered, e.g., in TSPLIB.

When considering known results on Concorde’s run-time on larger, real-world

Euclidean TSP instances, we obtained further evidence for its root-exponential

scaling over an exponential scaling. The results for various large Euclidean TSP

5This follows from the scaling of median run-time and our observation that run-times over

instance sets with fixed n are log-normally distributed.
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instances published on the Concorde website [3] in many cases have been ob-

tained using different versions of Concorde, non-default parameter setting, a dif-

ferent linear programming solver (we used QSopt 1.01 for our experiments) and

an execution environment different from that considered in our study. Therefore,

these cannot be directly compared against the predictions made by our models

as was done for the TSPLIB instances considered in Section 3. However, we

note that on large TSPLIB instances the run-times reported by Cook et al. on the

Concorde website are many order of magnitudes below those predicted by the ex-

ponential model. For example, the solution of d15112 involved running Concorde

for about 22.6 CPU years, while the prediction of our best-fit exponential model

exceeds 1013 CPU years. In contrast, our best-fit polynomial model predicts a me-

dian run-time of slightly over 2 CPU months, while the best-fit root-exponential

model yields a prediction of slightly below 2500 CPU years. Similarly, the so-

lution of instance pla85900 took about 136 CPU years,6 which can be contrasted

with predictions of over 10109, about 125 and over 1019 CPU years obtained from

our exponential, polynomial and root-exponential models, respectively.

While, for the reasons mentioned earlier, these observations should not be

seen as direct support for our model of Concorde’s scaling behaviour, they cer-

tainly appear to be substantially more consistent with it than with the hypothesis

of exponential scaling of the form a · bn. They are also consistent with our hy-

pothesis that realistically structured 2D Euclidean TSP instances are not harder

to solve than RUE instances – a hypothesis that parallels earlier findings on sim-

ilarities in the gap between optimal tour length and the Held-Karp bound [14].

6see http://www.tsp.gatech.edu/pla85900/compute/cpu.htm; scaled to our

execution environment, this figure could be up to a factor of about two lower.
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Looking at the published run-time results for large TSPLIB instances, it seems

likely that large real-world instances are substantially easier for Concorde than

most similarly sized RUE instanced, but of course, this might be primarily due

to the differences in the way Concorde was used when solving instances such as

pla85900. In fact, the differences in run-time between our results for TSPLIB

instance and those reported in the book by Applegate et al. [2] (see their Table

16.8 on p. 503 vs our Figure 4) are too large and too inconsistent between problem

instances to be solely caused by differences in the respective execution environ-

ments; for example, on instance u2152 we measured a run-time of 34 209.43 CPU

seconds, while Applegate et al. [2] report 3 345.3 CPU seconds (also measured

on 2.4 GHz AMD Opteron CPUs, thus using similar hardware as ours). This sug-

gests that the LP solver used in the respective experiments, QSopt 1.01 in ours and

ILOG CPLEX 6.5 in theirs, has a substantial impact on the performance of Con-

corde (which is consistent with earlier findings by Mittelmann for CPLEX 12.3

[18]). Nevertheless, the close resemblance between the parameters of the scaling

models we derived from the RUE data by Applegate et al. [2] (which were mea-

sured using the CPLEX LP solver) and those fitted on our RUE data (which are

based on QSopt) suggests that at least the choice between those two LP solvers

has little or no impact on the scaling behaviour of Concorde.

Finally, it is interesting to contrast the methods introduced here with those

used in other work on run-time prediction. There is, in fact, a growing body of

literature on predicting the run-time of high-performance algorithms for solving

difficult combinatorial problems, such as the TSP, based on instance features and,

in some case, also algorithm parameters (see, e.g., [10, 17]). These approaches

generally use machine learning techniques to construct complex statistical models
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of algorithm performance based on large sets of instance features; these models

are then used to predict performance on instances similar to those used for model

fitting. In contrast, the approach taken in our work here is focused on scaling of

performance with instances size, and specifically, with the ability of scaling mod-

els to produce accurate performance predictions for instance sizes much larger

than those used for model fitting. Furthermore, unlike other work on run-time

prediction, our study uses rigorous statistical techniques to assess the validity of

predictive models for the scaling of run-time.

5. Conclusions and Future Work

The empirical analysis presented in this work demonstrates that the state-of-

the-art exact TSP solver Concorde [2] shows scaling of run-time with instance size

n of the form a · b
√
n for the widely studied class of uniform random Euclidean

(RUE) instances; this is the case for the median run-time (with constants a ≈

0.21, b ≈ 1.24), and also appears to hold for the mean and all quantiles of the

distribution of run-time over instances of a given size n (although the evidence

for means and high quantiles is weaker, due to unsolved instances for n ≥ 3 000).

Interestingly, the scaling model for Concorde’s run-time thus obtained is in good

agreement with the run-times measured for Euclidean instances from TSPLIB,

whose structure differs in many cases substantially from that of RUE instances.

However, there are also classes of Euclidean TSP instances, such as the VLSI

instances from the TSP webpage at http://www.math.uwaterloo.ca/

tsp/index.html, for which Concorde shows significantly different scaling

behaviour; we believe that this is caused by distributions of cities that give rise to

many precisely identical edge lengths.
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From the methodological perspective, we believe that our work demonstrates

(i) that the root-exponential scaling model could serve as a standard alternative

hypothesis to simple exponential scaling and (ii) that the bootstrap approach used

here provides a general and statistically sound way for assessing the empirical

scaling behaviour for practically relevant algorithms.

Considering the more theoretical side, it would be intriguing to explain ana-

lytically the scaling behaviour we have observed here. Due to the many heuristic

components that are used in the actual codes, it seems unlikely that anyone would

be able to produce such results for a state-of-the-art algorithm such as Concorde.

However, it might be possible to prove at least the same asymptotic scaling (with

much larger constants) for more abstract and simpler exact TSP algorithm that are

more amenable to theoretical analysis. Previously mentioned work by Smith &

Wormald [24] could provide a good starting point for such an investigation; it may

also provide a route towards building a high-performance solver for 2D Euclidean

TSP instances that has theoretical worst-case time complexity O(n
√
n).

Overall, we feel that the results presented in this work challenge at least two

common beliefs: (1) that the run-time for a state-of-the-art exact solver for an

NP-hard optimisation problem such as the TSP should be expected to scale expo-

nentially, and (2) that empirical complexity results regarding the behaviour of a

state-of-the-art solver on a class of rather simplistic instances say little or nothing

about the empirical complexity of solving a diverse range of structured bench-

mark instances. Of course, the way in which our findings contradict both of these

intuitions might be quite specific to Euclidean TSP instances and to Concorde.

Even so, considering the status of Concorde as the long-standing champion of

among exact TSP solvers as well as the prominence of Euclidean TSP instances,
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we believe them to be of broad interest and expect them to stimulate a substantial

amount of further research on the TSP and other hard combinatorial problems.
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Figure 5: Run-times required by the Concorde solver for solving National instances with size n =

500 . . . 5000 (top pane) and VLSI instances with size n = 500 . . . 4500 (bottom pane). The dashed

lines represent the best-fit root-exponential scaling determined on RUE instances and estimates of

the 0.05- and 0.95-quantiles of the distributions of run-times over sets of RUE instances of a given

size. 31 of the 54 VLSI instances that fall within the range of sizes considered here could not be

solved by Concorde within 7 CPU days, and are therefore not shown in the plot.
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