
Algorithm Configuration in the Cloud:
A Feasibility Study

Daniel Geschwender1(B), Frank Hutter2, Lars Kotthoff3, Yuri Malitsky3,
Holger H. Hoos4, and Kevin Leyton-Brown4

1 University of Nebraska-Lincoln, Lincoln, USA
dgeschwe@cse.unl.edu

2 University of Freiburg, Freiburg im Breisgau, Germany
fh@informatik.uni-freiburg.de

3 INSIGHT Centre for Data Analytics, Cork, Ireland
{larsko,y.malitsky}@4c.ucc.ie

4 University of British Columbia, Vancouver, Canada
{hoos,kevinlb}@cs.ubc.ca

1 Introduction and Related Work

Configuring algorithms automatically to achieve high performance is becom-
ing increasingly relevant and important in many areas of academia and indus-
try. Algorithm configuration methods take a parameterized target algorithm, a
performance metric and a set of example data, and aim to find a parameter
configuration that performs as well as possible on a given data set. Algorithm
configuration systems such as ParamILS [5], GGA [1], irace [2], and SMAC [4]
have achieved impressive performance improvements in a broad range of applica-
tions. However, these systems often require substantial computational resources
to find good configurations. With the advent of cloud computing, these resources
are available readily and at moderate cost, offering the promise that these tech-
niques can be applied even more widely. However, the use of cloud computing
for algorithm configuration raises two challenges. First, CPU time measurement
could be substantially less accurate on virtualized than on physical hardware,
producing potentially problematic noise in assessing the performance of target
algorithm configurations (particularly relevant when the performance objective
is to minimize runtime) and in monitoring the runtime budget of the configura-
tion procedure. Second, by the very nature of the cloud, the physical hardware
used for running virtual machines is unknown to the user, and there is no guar-
antee that the hardware that was used for configuring a target algorithm will
also be used to run it, or even that the same hardware will be used throughout
the configuration process. Unlike many other applications of cloud computa-
tion, algorithm configuration relies on reproducible CPU time measurements;
it furthermore involves two distinct phases in which a target algorithm is first
configured and then applied and relies on the assumption that performance as
measured in the first phase transfers to the second. Previous work has investi-
gated the impact of hardware virtualization on performance measurements (see,

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 41–46, 2014.
DOI: 10.1007/978-3-319-09584-4 5

42 D. Geschwender et al.

e.g., [6–8]). To the best of our knowledge, what follows is the first investiga-
tion of the impact of virtualization specifically on the efficacy and reliability of
algorithm configuration.

2 Experimental Setup

Our experiments ranged over several algorithm configurators, configuration sce-
narios and computing infrastructures. Specifically, we ran ParamILS [5] and
SMAC [4] to configure Spear [3] and Auto-WEKA [9]. For Spear, the objec-
tive was to minimize the runtime on a set of SAT-encoded software verification
instances (taken from [3], with the same training/test split of 302 instances
each). For Auto-WEKA, the objective was to minimize misclassification rate
on the Semeion dataset (taken from [9], with the same training/test set split of
1116/447 data points). The time limit per target algorithm run (executed during
configuration and at test time) was 300 CPU seconds (Spear) and 3600 CPU
seconds (Auto-WEKA), respectively. We used the following seven computing
infrastructures:

– Desktop: a desktop computer with a quad-core Intel Xeon CPU and 6 GB
memory;

– UBC: a research compute cluster at the University of British Columbia, each
of whose nodes has two quad-core Intel Xeon CPUs and 16 GB of memory;

– UCC: a research compute cluster at University College Cork, each of whose
nodes has two quad-core Intel Xeon CPUs and 12 GB of memory

– Azure: the Microsoft Azure cloud, with virtual machine instance type medium
(2 cores, 3.5 GB memory, $0.12/hour)

– EC2-c1: theAmazonEC2 cloud,with virtualmachine instance typec1.xlarge
(8 cores, 7 GB memory, $0.58/hour)

– EC2-m1: theAmazonEC2cloud,withvirtualmachineinstancetypem1.medium
(1 core, 3.5 GB memory, $0.12/hour)

– EC2-m3: the Amazon EC2 cloud, with virtual machine instance type
m3.2xlarge (8 cores, 30 GB memory, $1.00/hour)

For each of our two configuration scenarios, we executed eight independent
runs (differing only in random seeds) of each of our two configurators on each
of these seven infrastructures. Each configuration run was allowed one day of
compute time and 2 GB of memory (1 GB for the configurator and 1 GB for
the target algorithm) and returned a single configuration, which we then tested
on all seven infrastructures. On the larger EC2-c1 and EC2-m3 instances, we
performed 4 and 8 independent parallel configuration/test runs, respectively.
Thus, compared to EC2-m1, we only had to rent 1/4 and 1/8 of the time on
these instances, respectively. This almost canceled out with the higher costs of
these machines, leading to roughly identical total costs for each of the machine
types: roughly $100 for the 2 · 2 · 8 configuration runs of 24 h each, and about
another $100 for the testing of configurations from all infrastructures.

Algorithm Configuration in the Cloud 43

3 Results

We first summarize the results for the Auto-WEKA scenarios, which are in
a sense the “easiest case” for automatic configuration in the cloud: in Auto-
WEKA, the runtime of a single target algorithm evaluation only factors into the
measured performance if it exceeds the target algorithm time limit of 3600 CPU
seconds; i.e., target algorithm evaluations that run faster yield identical results
on different infrastructures. Our experiments confirmed this robustness, showing
that configurations resulting from configuring on infrastructure X yielded the
same performance on other infrastructures Y as on X. While SMAC yielded
competitive Auto-WEKA configurations of similar performance on all seven
infrastructures (which turned out to test almost identically on other infrastruc-
tures), the local search-based configurator ParamILS did not yield meaningful
improvements, since Auto-WEKA’s default (and its neighbourhood) consistently
led to timeouts without even returning a classifier.

We turn to the Spear configuration scenario, which we consider more inter-
esting, because its runtime minimization objective made it less certain whether
performance would generalize across different infrastructures. In Fig. 1, we visu-
ally compare the performance achieved by configurations found by ParamILS
on three infrastructures. We note that the variance across different seeds of
ParamILS was much larger than the variation across infrastructures, and that
the performance of configurations found on one infrastructure tended to general-
ize to others. This was true to a lesser degree when using SMAC as a configurator
(data not shown for brevity); SMAC’s performance was quite consistent across
seeds (and, in this case, better than the ParamILS runs).

Table 1 summarizes results for configuration with SMAC, for each of the 49
pairs of configuration and test infrastructures. Considering the median perfor-
mance results, we note that configuring on some infrastructures yielded better
results than on others, regardless of the test infrastructure. For each pair (X,Y)
of configuration infrastructures, we tested whether it is statistically significantly
better to configure on X or on Y , using a Wilcoxon signed-rank test on the 56
paired data points resulting from testing the eight configurations found on X and
Y on each of our seven infrastructures. Using a Bonferroni multiple testing cor-
rection, we found that UBC and EC2-m3 yielded statistically significantly better
performance than most other infrastructures, EC2-c1 performed well, Desktop
and UCC performed relatively poorly, and Azure and EC2-m1 were significantly
worse than most other infrastructures. An equivalent table for ParamILS (not
shown for brevity) shows that it did not find configurations as good as those of
SMAC within our 1-day budget. Since the variation across configurations dom-
inated the variation due to varying testing platforms, the relative differences
across test infrastructures tended to be smaller than in the case of SMAC.

A prime concern with running algorithm configuration in the cloud is the
potentially increased variance in algorithm runtimes. We therefore systemati-
cally analysed this variance. For each pair of configuration and test infrastruc-
ture, we measured test performances of the 8 configurations identified by SMAC
and computed their 25 % and 75 % quantiles (in log10 space). We then took

44 D. Geschwender et al.

10

100

10 100

configuration performance [CPU s]

va
lid

at
io

n
pe

rfo
rm

an
ce

 [C
P

U
 s

]

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(a) Configured on UCC

1

10

100

10 100

configuration performance [CPU s]
va

lid
at

io
n

pe
rfo

rm
an

ce
 [C

P
U

 s
]

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(b) Configured on Azure

10

100

10 100

configuration performance [CPU s]

va
lid

at
io

n
pe

rfo
rm

an
ce

 [C
P

U
 s

]

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(c) Configured on EC2-m3

Fig. 1. Test performance (log10 runtime) for Spear configurations found in 8 ParamILS
runs with different random seeds on 3 different infrastructures. The shapes/colours
denote the infrastructure the configuration was tested on.

their difference as a measure of variation for this particular pair of configuration
and test infrastructure. As Table 1 (numbers in parentheses) shows, configuring
on the UBC cluster gave the lowest variation, followed by UCC and the two
bigger cloud instances, EC2-c1 and EC2-m3 (all with very similar median vari-
ations). Configuring on the Desktop machine led to somewhat higher variation,
and configuring on Azure or EC2-m1 to much higher variation.

The fact that configuring on the two bigger cloud instances, EC2-c1 and EC2-
m3, yielded both strong configurations and relatively low variation suggests that

Algorithm Configuration in the Cloud 45

Table 1. Test performance (median of log10 runtimes, and in parentheses, interquartile
range) of the 8 Spear-SWV configurations identified by SMAC on the infrastructure in
the row, tested on the infrastructure in the column. All numbers are medians of log10

runtimes over 8 runs, rounded to two decimal places. For each test infrastructure, we
bold-face the entry for the configuration infrastructure yielding the best performance.

Desktop UBC UCC Azure EC2-c1 EC2-m1 EC2-m3 median

Desktop 0.54 (0.67) 0.52 (0.76) 0.96 (0.46) 0.59 (0.68) 0.59 (0.57) 0.80 (0.62) 0.59 (0.54) 0.59 (0.62)
UBC 0.07 (0.21) 0.01 (0.11) 0.17 (0.21) 0.22 (0.45) 0.19 (0.18) 0.19 (0.16) 0.15 (0.31) 0.17 (0.21)
UCC 0.54 (0.51) 0.53 (0.52) 0.56 (0.09) 0.60 (0.07) 0.59 (0.61) 0.58 (0.42) 0.58 (0.42) 0.58 (0.42)
Azure 0.78 (1.14) 0.78 (1.11) 0.81 (1.03) 0.81 (1.02) 0.81 (1.00) 0.81 (1.01) 0.82 (0.99) 0.81 (1.02)
EC2-c1 0.53 (0.52) 0.16 (0.51) 0.59 (0.43) 0.58 (0.40) 0.26 (0.41) 0.22 (0.41) 0.55 (0.52) 0.53 (0.43)
EC2-m1 0.58 (0.99) 0.58 (1.01) 0.59 (0.93) 0.65 (0.92) 0.62 (0.85) 0.62 (0.88) 0.57 (0.89) 0.59 (0.92)
EC2-m3 0.00 (0.55) -0.02 (0.59) 0.56 (0.51) 0.18 (0.44) 0.30 (0.42) 0.16 (0.46) 0.16 (0.42) 0.16 (0.46)

bigger cloud instances are well suited as configuration platforms. As described
earlier, their higher cost per hour (compared to smaller cloud instances) is offset
by the fact that they allow the parallel execution of several independent parallel
configuration runs.

4 Conclusion

We have investigated the suitability of virtualized cloud infrastructure for algo-
rithm configuration. We also explored the related issue of whether configurations
found on one machine can be used on a different machine. Our results show that
clouds (especially larger cloud instances) are indeed suitable for algorithm con-
figuration, that this approach is affordable (at a cost of about $3 per 1-day
configuration run) and that often, configurations identified to perform well on
one infrastructure can be used on other infrastructures without significant loss
of performance.

Acknowledgements. The authors were supported by an Amazon Web Services
research grant, European Union FP7 grant 284715 (ICON), a DFG Emmy Noether
Grant, and Compute Canada.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009)

2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Empirical Methods for the Analysis of Optimization Algorithms. Springer, Heidel-
berg (2010)

3. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Formal Methods in Computer Aided Design, pp.
27–34 (2007)

46 D. Geschwender et al.

4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683,
pp. 507–523. Springer, Heidelberg (2011)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

6. Kotthoff, L.: Reliability of computational experiments on virtualised hardware.
JETAI (2013)

7. Lampe, U., Kieselmann, M., Miede, A., Zöller, S., Steinmetz, R.: A tale of millis
and nanos: time measurements in virtual and physical machines. In: Lau, K.-K.,
Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 172–179.
Springer, Heidelberg (2013)

8. Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime measurements in the cloud:
observing, analyzing, and reducing variance. VLDB Endow. 3, 460–471 (2010)

9. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: KDD,
pp. 847–855 (2013)

	Algorithm Configuration in the Cloud: A Feasibility Study
	1 Introduction and Related Work
	2 Experimental Setup
	3 Results
	4 Conclusion
	References

