Using Stochastic Local Search to Solve Quantified
Boolean Formulae

lan P Genit, Holger H Hoo$, Andrew G D Rowley, and Kevin Smyth

fUniversity of St. Andrews *University of British Columbia
Fife, Scotland Vancouver, Canada
{ipg, agd} @dcs.st-and.ac.uk {hoos, ksmyth@cs.ubc.ca

Abstract. We present a novel approach to solving Quantified Boolean Formulae
(QBFs), exploiting the power of stochastic local search methods for SAT. This
makes the search process different in some interesting ways from conventional
QBF solvers. First, the resulting solver is incomplete, as it can terminate without
a definite result. Second, we can take advantage of the high level of optimisa-
tions in a conventional stochastic SAT algorithm. Our new solver, WalkQSAT,
is structured as two components, one of which controls the QBF search while
the other is a slightly adapted version of the classic SAT local search proce-
dure WalkSAT. The WalkSAT component has no knowledge of QBF, and sim-
ply solves a sequence of SAT instances passed to it by the QBF component. We
compare WalkQSAT with the state-of-the-art QBF solver QUBE-BJ. We show
that WalkQSAT can outperform QuUBE-BJ on some instances, and is able to solve
two instances that QUBE-BJ could not. WalkQSAT often outperforms our own
direct QBF solver, suggesting that with more efficient implementation it would
be a very competitive solver. WalkQSAT is an inherently incomplete QBF solver,
but still solves many unsatisfiable instances as well as satisfiable ones. We also
study run-time distributions of WalkQSAT, and investigate the possibility of tun-
ing WalkSAT's heuristics for use in QBFs.

1 Introduction

Stochastic local search (SLS) methods are an area of continuing interest in the satisfi-
ability (SAT) community. While not guaranteed to return a solution (nor to determine
unsatisfiability), they can often be more effective than complete methods, as they are
not restricted by the need to cover the entire search space systematically. It is natural to
wonder if SLS methods can be applied to Quantified Boolean Formulae (QBF) prob-
lems. QBF is a generalisation of SAT with applications in areas such as hardware ver-
ification, planning, and games. Variables in a QBF instance can be either existentially
or universally quantified. Put simply, with details to follow below, a QBF problem is
satisfiable if the existential variables can be set to satisfy the instance, in SAT terms, for
all possible instantiations of the universal variables.

Unfortunately, the application of SLS methods to QBF is problematic. The most
pressing problem is that individual search states are not simply assignments of variables
to the two truth values. Instead, the most natural representation of a search state is as a
strategy, defining the values of the existential variables for each possible instantiation of



the universals. However this is an infeasibly large object except when there are a very
small number of universal variables. Despite the difficulties in applying SLS techniques
to QBF solving, there are compelling reasons for doing so. Search in a QBF is a search
for many satisfying assignments for a variety of very closely related SAT instances. Not
only can SLS methods often perform these searches very fast, they can naturally take
advantage of solutions to previous instances as starting points for the current search.

Our incomplete QBF solver, called WalkQSAT, is structured as a collaboration be-
tween two components. The first component, the QBF engine, performs a backjumping
search based on a successful method from the literature called Conflict and Solution
Directed Backjumping (CSBJ) [1]. The second component, the SAT engine, is used as
an auxiliary search procedure to find satisfying assignments quickly (details of these
components, and how they interact are given later in the paper). We use WalkSAT [2]
as the SAT engine for WalkQSAT, although a whole family of QBF algorithms can be
designed by using other algorithms for the SAT engine. WalkQSAT has the follow-
ing properties. If it returns Tru€l() or False §) given an instance, that instance is
guaranteed to be true or false respectively. If it returns UnkndWnthen the truth or
falsity of the instance could not be verified within the given constraints. WalkQSAT is
naturally more likely to successfully solve true instances, given that false instances are
more likely to contain more states in which WalkSAT will not be able to find a solution,
but some false instances can be solved nevertheless. As we will see, WalkQSAT can
outperform state-of-the-art solvers on some instances.

This paper introduces for the first time the study of SLS methods for solving QBF
instances. Even so, we are in some instances able to outperform the state-of-the-art
solver QUBE-BJ. While typically our performance is not as good as QuUBE-BJ, we have
shown the potential of stochastic local search methods for QBF.

2 Background

A QBF is presented as a Boolean formula in conjunctive normal form (CNF) with
a prefix of quantifiers. More formally, a QBF is of the for®@ = QB where the
prefix @ = q1z19222 ... ¢z, IS @ sSequence of pairs of quantifiers € {V, 3} and
propositional variableg;, and B is a propositional formula in CNF. A CNF formula

is a conjunction of clauses; each clause is a disjunction of literals, and each literal is a
propositional variable in negated or unnegated form. Within the pégixery variable

in B is quantified exactly once by either an existential or universal quantifier. These
variables are then known as existentials and universals respectively.

The satisfiability of the CNF parB of a QBF is defined just as in SAT, i.& is
satisfied if every clause contains a true literal. However, the QBF is only satisfied if
appropriate values can be given to the existentials to albow be satisfied for any
instantiation of the universals. For this, the order of variables in the prefix is critical.
We can define the truth of a QBF recursively. A QBFwith an empty prefix is true iff
its CNF partB is satisfied. IfQ has a non empty prefix, there are two cases. A QBF
Jz1Q is true iff eitherQ, [z1 := T] or Q1 [z := F|istrue; while a QBF/z1 Q) is true
iff both @1 [x1 := T]) andQ@, [z, := F] are true. For example, a QB 3xoVr33zy B
is true if and only if for both True®) and False ¥) assignments ta;, there is an



assignmentT® or F) to x5, where for both assignments g there is an assignment to
x4 for which B is satisfied.

Solving a QBF can be seen as finding a winning strategy in a two player game be-
tween universal and existential quantifiers. The variables are the pieces and the assign-
ments the moves. Existential wins if the assignments to the variables leaves a satisfied
literal in every clause (i.eB is satisfiable) and universal if the assignments leave a
clause containing all negative literals. The order of the moves are dictated by the order
in which the variables appear in the prefix of the QBF. The QBF is satisfiable if the
existential player can find a strategy in which she can win no matter what moves the
universal player makes; it is unsatisfiable if this is not the case.

2.1 Stochastic Local Search for SAT

Stochastic Local Search (SLS) algorithms for satisfiability (SAT) attempt to solve a
given CNF formulaB by iteratively changing, or flipping, the value assigned to vari-
ables inB such that the number of clauses that remain unsatisfied by the assignment is
minimised. The selection of the variable to be flipped in each search step is typically
performed using a randomised greedy mechanism. The WalkSAT family [2, 3] com-
prises some of the most widely studied and best-performing SLS algorithms for SAT;
it is based on a randomised greedy local search procedure that flips a variable from an
unsatisfied clause in each search step.

SLS-based solvers for SAT are typically incomplete, i.e., they cannot determine the
unsatisfiability of a given formula, but may find a satisfying assignment, if it exists,
rather efficiently. Thus, applied to an unsatisfiable formula, they will eventually ter-
minate and return Unknown. For satisfiable formulae, True is returned (along with the
respective assignment) if a satisfying assignment is found within the given resource lim-
its and Unknown is returned otherwise. The latter particularly happens if the algorithm
gets stuck in a local minimum of the underlying evaluation function.

2.2 Backtrack Search for QBFs

Backtrack search attempts to determine the truth of a QBF by assigning truth values to
variables and simplifying the formula until it is vacuously true or vacuously false. Then,

if false is found, all variables up to and including the last existential variable assigned
are unassigned, and the last existential is assigned to the opposite value and the process
is repeated. Similarly if true is found, all variables up to and including the last universal
are unassigned and the last universal is assigned to the opposite value and the process
is repeated. Once a variable has been assigned both True and False, the combination
of the results of these two assignments is returned dependant on the quantification of
the variable. These can be seen in Figure 1. The point at which the decision is made to
assign a variable True or False is known as a branch point.

A QBF is vacuously true if it consists of an empty set of clauses. It is vacuously
false if the set of clauses contains either a clause with no literals (empty clause) or a
clause with only universal literals (all universal clause). An all universal clause cannot
be satisfied since the clause must be true for all assignments to the universals and so
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Fig. 1. The possible branching and return values for CSBJ. In the first column the second assign-
ment is not tried since the first assignment yields enough information.

it will be unsatisfied if all the literals are assigned false. (The exception is tautologous
clauses, but we remove these during preprocessing.)

If a variable is assigned True, any clause containing the literal of the variable with
the positive sign can be removed, and the variable can be removed from any clause
containing the literal of the variable with the negative sign. Additionally, the variable
can be removed from its quantifier and empty quantifiers can be removed. In a backtrack
search, variables are assigned in turn until the QBF is vacuously true or vacuously
false. If true (respectively false), the variables are then unassigned until a universal
(respectively existential) assignment is undone. This assignment is then reversed and
the variables are again assigned until true or false is found and the process is repeated.

A unit clause is a clause that contains only one literal. This literal must be assigned
true to eventually get a vacuously true state, otherwise the clause will be empty. A
single existential clause is a clause that contains only one existential literal and in which
all universal literals are quantified further right in the prefix than the existential. The
existential literal must be assigned true because if it is assigned false the clause will
become all universal and thus unsatisfied. A pure literal is found when every occurrence
of a literal within the set of clauses has the same sign. An existential pure literal can be
assigned true. If we reach the vacuously false state then we can be sure that we could
have done no better in assigning the literal false, and so backtracking is unnecessary on
the variable. A universal pure literal can be assigned false. If we reach the vacuously
true state then we can be sure that we would have done no worse in assigning the pure
literal true, and so again, no backtracking is required.

Conflict and Solution Directed Backjumping (CSBJ) for QBFs [1] reduces the num-
ber of backtracks performed. This is done by calculating either a conflict set or a solu-
tion set. A conflict set is a set of existential variables that caused the conflict, i.e. the
empty or all universal clause. A solution set is a set of universal variables such that all
clauses not satisfied by the current existential assignment are satisfied by at least one
of the universal variables. On returning to an existential branch point (in the case of a
conflict), or a universal branch point (in the case of a solution), a backtrack need only
be performed if the variable assigned at the branch point is in the set. This technique has
been shown to be useful in the solving of QBFs [4], in particular on random instances
with three or more quantifiers, and on ‘real world’ instances. The cover set used in so-



lution directed backjumping is not unique [5]. It is important that a small cover set is
chosen, to reduce the number of universal backtrack points.

Finally, we mention the Trivial Truth method [6]. This is a method for using a SAT
algorithm within a QBF solver. With this technique a counterfiatb the QBFQ is
kept whereE is the same af), but with the universals removed. If a solution b
can be found, this is also a solution@ however, if no solution td& can be found,
nothing has been gained, sin@ecould still be true. If no solution is found, the results
are discarded. This SAT search is potentially wasteful since the results of useful search
are discarded if the result is false.

3 WalkQSAT

WalkQSAT is in essence an implementation of conflict- and solution-directed back-
jumping (CSBJ) in QBF. However, it uses an auxiliary stochastic SAT solver, WalkSAT,
to guide its search. WalkSAT is used to solve the current reduced QBF instance viewed
purely as a SAT problem, i.e. treating each universal variable as an existential (unlike
trivial truth where the universal variables are removed). This solution is used to set the
values of variables in the CSBJ search; when a variable is heuristically chosen in the
QBF solver, the value assigned to the variable is the value assigned by WalkSAT in
this returned solution. This has two consequences. First, it is possible for WalkSAT to
fail to find a solution, either because there is none or because WalkSAT times out. This
leads to the inherent incompleteness of WalkQSAT. The second consequence is more
positive. Where WalkSAT finds a satisfying assignment, this guarantees that if the same
assignments are given to the variables in the QBF search, the vacuously true state will
be reached. Thus WalkSAT is being used for more than purely heuristic guidance. From
avacuously true QBF found this way, we continue as CSBJ normally would. That is, we
backjump to the most recent universal variable in the solution set. After backjumping,
WalkSAT is called to determine the next set of assignments to guarantee a vacuously
true state.

It is straightforward to deal with the case that WalkSAT fails to solve an instance.
When WalkSAT times out, it returns the valdgfor unknown. No further attempt is
made to solve the corresponding node in the CSBJ search, but Figure 2 shows the ad-
ditional possibilities and the associated return states allowing for Unknown values at
branch points in the QBF search procedure. Itais returned for the first assignment,
WalkQSAT always tries the second assignment, sometimes being able to determine the
result. If not,U is passed back.

It might seem that it is impossible for WalkQSAT ever to determine the falsity of
a QBF instance, as WalkSAT cannot determine unsatisfiability of SAT instances. How-
ever, as any CSBJ algorithm does, WalkQSAT implements single-existential propaga-
tion, which can lead to a contradiction. From this a conflict set can be calculated for
backjumping, and if the first variable assigned is ever backjumped over, the problem
has been proved false. Thus, with QBFs, we encounter a different kind of incomplete-
ness than that of WalkSAT. Specifically: if False is returned, the problem is definitely
false; if True is returned, the problem is definitely true; but the solver can still return
Unknown if no proof is found. In practice, we found that WalkQSAT was often able to
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Fig. 2. The additional branching and return values for WalkQSAT. Note how the solver recovers
in the last column.

determine falsity of QBF instances. For this, the use of conflict-directed backjumping
is a help, as an unknown value returned at a node not in the conflict set does not prevent
falsity being proved.

The key issue in design and implementation was to keep WalkSAT and WalkQSAT
in step. At any node in its search tree, WalkQSAT needs to get a satisfying assignment
to B that is consistent with the values of variables that have been set by branching or
propagation at higher levels of the search tree. So we cannot let WalkSAT continue
solving the original instance of the QBF viewed as a SAT problem. Instead, we notify
WalkSAT each time a variable is assigned, via an interfaceFog(literal). We imple-
mented a variant of WalkSAT in which fixed variables could not be changed. After each
variable is set either by branching or propagatiéin,is called. This means that when-
ever WalkQSAT calls WalkSAT, the SAT search is only on variables free at this node
in the search tree. When WalkQSAT backtracks over a fixed variable, a corresponding
Release(literal)call is made. This results in two data structures being maintained to
keep the current search state, one of which is a data structure optimised for efficient
complete search, while the other is optimised for efficient local search.

One aspect of WalkSAT we found to affect performance was the starting position of
its second and later searches. Instead of a random position each time, we found it much
more effective to start the search from the last assignment visited during the previous
search, except for changes forced Ky calls. This is natural, as often there will be
relatively fewFix calls between calls to WalkSAT, so a solution at the last node is likely
to be a near-solution at the next node. However, since in normal use WalkSAT (for
sufficiently high noise settings) is insensitive to whether it is restarted or simply left to
run [7, 8], it may be surprising that this use of starting position seemed to be necessary.
However, this insensitivity to restarts does not hold for very short runs, particularly if
these are started very close to a solution.

Figure 3 shows pseudocode for WalkQSAT. This is similar to the pseudocode for
QuBE-BJ [1] since WalkQSAT is also a backjumping algorithm. A calCtwooseLit-
eral additionally passes the assignments returned by WalkSAT, and these are used to
determine the sign of the literal to be used in the next assignment. The actual literal
chosen can be independent of the results of Walk3ATtWr calculates the conflict
or solution set, given the falsé'f or true (") result respectively. [fnitWr is called
with the unknown U) result, it should return the empty set, since backtracking must
be performed instead. The functiddack Jump correctly deals with the case where



unknown has been returned, as shown in Figure 2, by immediately backtracking on the
last literal assigned, or if the literal has already been backtracked upon, passing back
the unknown result. The variablest is used to determine the last action performed

by the algorithm. This way, WalkSAT is only called after backjumping has been per-
formed. Other functions have the same meaning as was described in [1], repeated here
for completeness:

— Qis a global variable storing the QBF in the current state, initially set to the input
QBF.

— Stack is a global variable storing the search states so far, initially empty.

— T, F, U, UNDEF, SINGLE3F, PURE, L-SPLIT, R-SPLIT, CHOOSEand Back are
constants.

— Extend(l) removesl from all clauses in which it appears, removes all clauses
containing! and pushegandQ onto the stack.

— Retract() gets! and Q from the top of the stack and undoes all work done by
Extend(l).

Note that WalkSAT is only one example of a solver that could be used: any SAT
solver can be used as long as it implements the interface defined here, and that it never
returns an incorrect value. While in this paper we restrict ourselves to the use of Walk-
SAT, it will be interesting to see if other SAT solvers can perform well in this frame-
work.!

The method described here could easily be mistaken for trivial truth, in that a truth
assignment is found by WalkSAT. This is not the case however, since trivial truth finds
a truth assignment only involving the existentials. WalkSAT finds a truth assignments
assuming the universals are existentials. It is this key difference that allows WalkQSAT
to get more information from the SAT solver than trivial truth. If trivial truth finds a
satisfying assignment, search can be cut off on the current branch. However, if trivial
truth fails to find such an assignment, the results of the SAT search are disregarded and
search continues. When WalkQSAT finds a satisfying assignment, the results are used
to guide search, and are not just discarded. This is clearly different to trivial truth and
less wasteful of resources. Another difference with trivial truth is that, if WalkSAT fails
to find a satisfying assignment, we stop searching and backtrack, returning Unknown.

4 Experimental Methodology

We explored the performance of WalkQSAT, both in its own terms and against an ex-
isting state-of-the-art solver for QBF. To test WalkQSAT experimentally, we need both
a good set of benchmark instances, and a good methodology which gives a fair under-
standing of WalkQSAT with respect to the state of the art. This is particularly important
given that there are a number of parameters which can affect WalkQSAT’s performance,
and that as a randomised procedure it gives different performance on each run. To com-
pare against the state of the art, we compare results with the complete solver QUBE-
BJ [1], an implementation of CSBJ. We chose QUBE-BJ because, like WalkQSAT, it is

1 This is why we deal correctly with the possibility of WalkSAT returnifign our pseudocode:
while WalkSAT can never returf, other SAT solvers can.



function WalkQSAT(QBR))
Q=@Q;
Stack := Empty stack;
last := CHOOSE
(res,assignments) := WalkSAT();
if (res # T) return res;
do
res := Simplify();
if (last = BACK and res = UNDEF)
(res,assignments) := WalkSAT();
if (res =T) res := UNDEF;
if (res = UNDEF)
1 := ChooseLiteral(assignments); last := CHOOSE
else
1 := Backjump(res); last := BACK;
if (I # UNDEF)
Extend(l); Fiz(l);
while (I # UNDEF);
return res;

function BackJump(res)
wr = InitWr(res)
while (Stack is not empty)
[ := Retract(); Release(l);
if (I € wrorres=U)
if (res = F and|l|.type = 3) or
(res = Tand |l|.type = ¥) or
(res =U)
if (|I|.mode = SINGLET) or (|I|.mode = R-SPLIT)
wr = (wr U |l|.reason)/{l,1}
if (|I].result = U) res := |l|.result;
if (|I].mode = L-SPLIT)
|I|.result = res;
|{|.mode = R-SPLIT;
|{|.reason := wr;
return [;
elsewr := wr/I;
return UNDEF

function Simplify()
do
Q=0Q;
if (Q is vacuously falsedeturn F
if (Q is vacuously truejeturn T
if (Q contains a single existential litergl
|I|.mode := SINGLET; Extend(l); Fixz(l);
if (Q contains a pure existential litergl
|I|.mode := PURE; Extend(l); Fix(l);
if (Q contains a pure universal litergl
|l|.mode := PURE; Extend(l); Fixz(l);
while (Q" # Q)

return UNDEF

Fig. 3. The WalkQSAT algorithm. This is similar to the pseudocode for QUBE-BJ [1], but with
modifications made to account for SAT solver calls, and dealing with Unkndiyngturn values.
Q andStack are global variables.



a backjumping algorithm and so makes for a good comparison. We do not know of a
solver which is known to be better than QUBE-BJ, so our comparison is with the state
of the art. We undertook benchmark tests on both random and structured problems. The
latter came from QBFLib (http://www.mrg.dist.unige.it/QBFLIB/), and we used all in-
stances except the robot problems. For randomised instances, we used Gent and Walsh's
Model A [9], because it has been commonly used in previous literature and is well un-
derstood. The parameters used were 20 variables per quantifier, 4 quantifier alternations
with the universal outermost, 5 variables per clause and a number of clauses from 25 to
450 in steps of 25.

WalkQSAT has a number of parameters that must be set for each run. These af-
fect how the search performed by WalkSAT is carried out. In particular, there is the
MaxFlips parameter, which is the number of flips WalkSAT will perform before re-
turningU, and the noise parametewhich affects the level of randomisation vs. hill-
climbing. In SAT, MaxFlips is not an important parameter because when using close-to-
optimal noise settings, very large MaxFlips settings generally work well [8]. The setting
of MaxFlips affects performance in QBF because there is a tradeoff between allowing
WalkSAT enough time to solve each instance and spending too much time in wasted
searches. Many of the tested subinstances will be unsatisfiable, and extra flips are en-
tirely wasted. The noise parameter is often critical for applications of WalkSAT, and the
default value of 0.5 sometimes gives very poor performance. To set these parameters
to poor values could give an unduly bad impression of how WalkQSAT performs. On
the other hand, to optimise performance on all instances would give an unduly good
impression: in practice we cannot optimise parameters when presented with an instance
that needs to be solved just once.

To resolve this dilemma, we follow a practice suggested by Hoos [7], of performing
a coarse optimisation on a small subset of the instances. To this end, we varied MaxFlips
from 1 x n to 50 x n, wheren is the number of variables in the instance, and noise
from 0 to 0.75 on a random instance and an individual structured instance. In neither
case did performance seem particularly sensitive to the settings of these parameters. We
observed that settings @0 x n and0.5 gave good performance in both cases, and we
use these values in all experiments we report for WalkQSAT in this paper.

Since WalkQSAT is a randomised procedure, through its use of WalkSAT, data from
an individual run could be misleading. Instead we are interested in the entire distribution
of data from a number of runs. Throughout this paper we report results on 100 runs of
WalkQSAT on each instance we test. The only exceptions are those that QUBE-BJ failed
to solve in 20 minutes on a 1GHz PC: for these we tested WalkQSAT in only 25 tries
of 20 minutes.

The purpose of this work is to introduce a method for implementing an incomplete
solver for QSAT, which has never been done before. We have therefore not investigated
different variants of WalkSAT and it is unknown how these will work for QBF solv-
ing. It is hypothesised that the variant will not be too important, since the work done
by WalkSAT after the first run appears minimal. For all the experiments, we used the
Novelty™ variant of WalkSAT [7]. This variant has been shown to perform very well
on many SAT problems, and it is left as further work to examine the performance of
other variants in WalkQSAT [7, 8]. All experiments were performed on a cluster of 1
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Ghz computers with 512MB RAM running Linux kernel 2.4.7-10 and GNU gcc version
2.96. We used QuUBE-BJ version 1.0 (http://www.mrg.dist.unige.it/"qube/Download/download.html).
The timeout was 20 minutes (1200 seconds) for all runs.

5 Experimental Results

WalkQSAT was compared to QUBE-BJ and QuBE-BJ with trivial truth. Figure 4 shows
the phase transition commonly observed for random problems. WalkQSAT performs
well here compared to QUBE-BJ but does not often outperform QuUBE-BJ with trivial
truth, although it often gives the same performance at the 10-percentile range. We con-
jecture that where WalkQSAT achieves the same performance as QUBE-BJ with trivial
truth, it finds the same assignments that trivial truth makes, and so solves the QBF
without the use of universals.

This last point can be seen even more clearly in Figure 5 where the 10-percentile
errorbar extends to the same run time as QuUBE-BJ with trivial truth on some instances.
This figure also shows that WalkQSAT can outperform QUBE-BJ without trivial truth,
even on false instances, which is a rather surprising result.

Figure 6 shows performance results of WalkQSAT on structured instances. Here,
WalkQSAT only performs better than QUBE-BJ near the 10-percentile and only on a
few problems. There are some sets of structured instances on which WalkQSAT shows
very little variation in run time; this can be seen in the diagonal lines of data points for
WalkQSAT for which errorbars are not visible, with corresponding crosses for QUBE-
BJ with trivial truth. (these correspond to the CHAIN instances). WalkQSAT can per-
form better than QUBE-BJ with trivial truth, which illustrates the differences between
WalkQSAT and backjumping with trivial truth. WalkQSAT outperforms QuUBE-BJ with
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trivial truth on 168 runs on 13 different instances (i.e. 168 runs out of 1300 runs of
WalkQSAT in total), and QuUBE-BJ on 340 runs on 20 different instances, out of the
257 structured instances we tested.

As was said previously, where QUBE-BJ and QuBE-BJ with trivial truth did not
solve a structured instance before the timeout, WalkQSAT was run on this instance to
see if it could solve it. On one problem, TOILET10.1.iv.20 (true), WalkQSAT was able
to solve itin 27.37 seconds only once out of 100 runs. On the other 99 runs, WalkQSAT
timed-out. On one other problem, szymanski-16-s, QUBE-BJ both with and without
trivial truth could not solve the problem due to insufficient memory. On this problem
WalkQSAT solved the instance 12 out of 100 times with a median run time of 16.595
seconds.

In order to understand the run-time behaviour of WalkQSAT in more detail, we
studied run-time distributions (RTDs) for individual problem instances following the
methodology by Hoos and &kle [8]. Since WalkQSAT, like WalkSAT, is a stochastic
algorithm, when applied to the same instance, its run-time will vary stochastically. It
is known that for WalkSAT, if sufficiently high noise parameter settings are used, the
RTDs are well approximated by exponential distributions [7]. As can be seen in Figures
7 and 8, this is not the case for WalkQSAT. Although considerable variability in run-
time can typically be observed, the right tail of the RTDs tends to be much skinnier,
indicating that the probability of very long runs (compared to the average or median run-
time) is very small. Interestingly, this appears to hold for satisfiable and unsatisfiable,
random and structured instances. It implies that, different from several state-of-the art
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Fig. 6. Performance of WalkQSAT vs. QUBE-BJ and QUBE-BJ+TT on structured QBFLIB in-
stances. See Figure 5 for more details. Where a circle appears without error bars, there is little or
no variation in run time over 100 runs.

randomised systematic search algorithms for SAT, simple restarting strategies will not
improve the performance of the algorithm.

We also note that when measuring only the total number of WalkSAT steps, we
obtain run-length distributions that have substantially higher variability. But as can be
seen from our RTD results, this large amount of variability present in the WalkSAT runs
is reduced, rather than amplified when WalkSAT is used within the CSBJ framework.

6 A WalkSAT heuristic for QBF

The evaluation function of WalkSAT is usually the number of unsatisfied clauseés,

help reduce the number of universal variables assigned, and so help solution directed
backjumping, we alter the evaluation function of WalkSAT tahet (e, wheree is the
number of satisfied clauses not satisfied by an existential. This gives us two parameters
to tune,« andg. Since the important factor is/3, « is set at 10, ang is varied.

It is found that on Rintanen’s impl set of problems from QBFLIB, a valug of
0 provides some significant improvements in run time. For example, on impl14, the
median run time was 18.1 seconds with= 0 and 2.07 seconds with = 1. With
increasing values gf, the median run time does not vary greatly, e.g. itk 1000,
the median run time is 2.13 seconds.

Further analysis shows that QUBE-BJ with trivial truth is more effective on these
instances than without trivial truth. This is observed in Figure 6 as a set of points that
appear below the diagonal representing the impl problems. The reasoning for the effec-
tiveness of on these problems is therefore likely to be tlfat- 0 makes WalkSAT
behave more like trivial truth. Whilst this is the case, it has also been observed that
B > 0 on other problems has no detrimental effect; this suggests that it is safe to use a
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Fig. 7.WalkQSAT run-time distributions for typical satisfiable and unsatisfiable random instances
from the phase transition.

high value ofg just in case trivial truth helps on the problem. This is done with the risk
that with increasing values @f, the time spent by WalkSAT in optimising the solutions
may be better spent elsewhere and may result in WalkSAT not finding a solution at all.
Of course, we still do not throw away valuable search as is done in the trivial truth
method, but more unknown results may be returned.

7 Related Work

There has been an increase in interest in solving QBFs in recent years, starting with
the introduction of a backtracking algorithm [6], followed by its application to planning
problems translated to QBF [10]. The next big step was the introduction of backjump-
ing for QBF [1], in particular solution directed backjumping which led to significant
improvements in runtime. This gave rise to the next logical step of learning in QBF
solvers [5, 11, 12], which provided improvements on some problems, whilst making
others worse.

The WalkSAT algorithm family [2, 3, 8] comprises some of the most widely studied
and best-performing SLS algorithms for SAT. Noveéltythe WalkSAT variant used in
WalkQSAT, was proposed in [7] and is based on the Novelty algorithm from [3].

Some interest in QBF has been on translation of QBF into SAT [13, 14]. This is
naturally exponential in space, but the resultant SAT problem can be given to any SAT
solver, including WalkSAT and other SLS solvers. To our best knowledge, WalkQSAT
is the first QBF solver using SLS, except in this trivial sense.
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8 Conclusions and Future Work

In this paper, we have shown the potential of using stochastic local search methods in
QBFs. We introduced WalkQSAT, a new QBF solver that combines Conflict and So-
lution Directed Backjumping (CSBJ) with a Stochastic Local Search procedure. We
presented empirical evidence indicating that WalkQSAT, although an inherently incom-
plete algorithm, in most cases is able to correctly determine the satisfiability of a given
QBF, and in many cases correctly determines unsatisfiability. (Like incomplete SLS al-
gorithms for SAT and other problems, by design, WalkQSAT never gives an incorrect
result, but may return “Unknown”.) Although our implementation of WalkQSAT is not
optimised for efficiency, it can solve several of the tested benchmark instances faster
than QUBE-BJ, a state-of-the-art QBF solver based on CSBJ, and can even solve two
instances that QUBE-BJ cannot. Our implementation of WalkQSAT is based on a CSBJ
library that is known to be less efficient than QUBE-BJ. Improving this library should
help to provide even better results.

A key issue in solution-directed backjumping is obtaining solutions which use only
a small number of universal variables, minimizing the size of the solution sets. We
have started to facilitate this by providing a modification of the evaluation function of
WalkSAT, which improves WalkQSAT's performance on some instances. Furthermore,
when WalkQSAT finds a solution quickly, it may be worth continuing the search to see
if a better solution can be found, involving fewer universals. This could be seen as a
solution-directed version of Schiex’s ‘stubbornness’ for conflict-directed backjumping
[15].
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