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1 Introduction

The task in the Traveling Salesman Problem (TSP) is to find a minimum length closed tour
through a given set of n cities with known inter-city distances such that each city is visited
exactly once. The TSP has played a central role in the development of many Stochastic Local
Search (SLS) algorithms, such as Ant Colony Optimization [5], or Simulated Annealing [9].
Currently, the best performing SLS algorithms for the TSP strongly rely on the exploitation
of high-performing local search algorithms, and most top-performers are iterated local search
(ILS) algorithms [1, 3, 8, 7] or memetic algorithms [4, 11]. While most ILS algorithms are based
on the Lin-Kernighan algorithm (LK) [10], Glover [6] and Rego [13] present an approach based
on an edge based ejection chain method, which, compared to LK, tends to find better tours
while requiring more computation time. Small and medium size TSP instances ranging from
a few hundred to several thousand cities are also solved rather efficiently by exact algorithms,
the best example being the branch & cut code of Applegate, Bixby, Chvátal, and Cook [2].
However, a disadvantage of exact algorithms is that they show a very strong variability in
computation time between different TSP instances. Performance variability among instances
can also be observed for SLS algorithms, in addition to the variability in the performance on
any given instance that is caused by the stochastic nature of these algorithms.

It is clear that the structure of TSP instances influences the amount of time needed to
solve them to optimality. For the scope of this article, our investigation of structure focuses on
the distribution of the cities in the Euclidean plane. In particular, the instances we study are
derived from highly structured TSP instances that can be solved in polynomial time, by either
removing cities or by perturbing city coordinates. We analyze the impact of these variations in
the structure of TSP instances on the run-time of two high-performance algorithms: Applegate
et al.’s branch & cut code (concorde) [2] and Helsgaun’s iterated Lin-Kernighan algorithm
lkh [7]. concorde is currently the best performing exact algorithm for the TSP using state-of-
the-art B&C methods and is freely available for academic purposes. Helsgaun’s lkh algorithm
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is currently one of the top performing SLS algorithms for the TSP [7, 8]; it is based on an
innovative implementation of the well-known Lin-Kernighan heuristic [10] and uses candidate
edge sets that are built by a so-called α-nearness measurement based on 1-trees and are updated
upon success in the search algorithm.

2 TSP instances

Probably the best known set of benchmark instances is that of TSPLIB [14] which consists
mainly of map instances and drilling problems with up to 85 900 cities. Almost all of these
instances are metric instances, where the cities correspond to points in some metric space.
The most important property of (metric) TSP instances besides their size is the distribution
of cities in the given space. In particular, cities may be distributed in a clearly structured way,
which in several cases even allows finding the optimum in polynomial time. Such instances
are usually easily solvable by heuristics.

In this article, we study the change in algorithmic behavior when in response to transition-
ing from highly structured, polynomially solvable TSP instances to instances with increasingly
random distributions of cities. We consider two different classes of structured instances: Frac-

tal instances have been described and solved to optimality by Moscato and Norman using
simple constructive heuristics [12]. Here, Koch, David, MPeano and MNPeano instances in
several sizes were built by a Lindenmayer system. Grid instances have their cities arranged in
a chess board pattern. Here again, optimal solutions can be easily constructed. To introduce
randomness into these instances, two perturbation operations were applied. The central idea
for the first approach is that by increasingly destroying the structure of the instances, the cost
of finding optimal solutions can be expected to increase. For fractal instances, the reduction

operation removes randomly selected cities from the instance. The strength of this operator
is characterised by the fraction of cities removed. Different levels of preservation resulted in
instances, where 99%, 98%, 95%, 90%, 85%, 75%, 50%, or 25% of the original instances’ cities
were kept (cf. Fig. 1). The shake operator moves cities from their original position by applying
an offset for each coordinate that is determined by a normally distributed random variable
with zero mean. The amount of perturbation is determined by the standard deviation of the
normal distribution. On the grid instances, we used values of 5%, 10%, 25%, 50%, 75%, 100%,
150%, and 200% of the horizontal (or vertical) distance between two neighboring cities on the
original instance’s grid. The shake operator was only applied to grid instances, as the exact
chess board like arrangement of cities is used for optimal tour construction in polynomial time.
For fractal instances optimal tour construction depends on the existance of certain cities, hence
removing is an adequate perturbation operator.

For each of 13 fractal and 3 grid instances, 100 instances were built for each of 8 per-
turbation levels resulting in a total of 12 816 instances. To compare the performance of the
algorithms on these instances, for each occuring instance size (total of 111), we constructed
100 random Euclidean TSP instances. In these random Euclidean TSP instances the cities are
uniformly distributed within a square.

3 Computational study

The TSP instances were solved on a dual processor machine (AMD Athlon 1.2 GHz, SuSE
Linux 7.1) by Helsgaun’s lkh and the concorde code using cplex6 (B&C algorithm). Different
analyses were performed on the algorithms’ results. First, we studied the distribution of search
costs over each set of 100 instances for lkh and concorde in order to analyze instance hardness.
The resulting search cost distributions illustrate the variation of the computation time required
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Figure 1: Shape
of optimal tours
for MNPeano in-
stances with different
preservation levels.
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Figure 2: Search cost distribution (concorde) for David and Koch instances at different preser-
vation levels.

for solving differently sized instances generated through the same process. Second, we plotted
the size of these instances that were generated by using the reduction operator with various
preservation rates versus their search cost; these plots illustrate how the perturbation influences
the computation times. Furthermore, the number of 2-exchange steps required to reach a
local optimum starting from a random tour (gradient analysis) were put into relation to the
computation times of the instances.

3.1 Influence of structure on computation time

Computation times for instances based on fractal curves solved by concorde show two kinds of
behaviors for different preservation levels. The solution times of David, MPeano and MNPeano
instances grow steadily from the original or only marginally perturbated instances to lower
preservation levels that keep only 50% to 75% of the original cites. However, removing even
more cities leads then to reductions in computation times. This behavior can be observed in
Fig. 2(a). On the other side, Koch instances show a linear relationship between instance size
and computation time. Additionally, computation times within the set of Koch instances were
very homogenous with a very small deviation (see Fig. 2(b)).

For grid instances subject to shaking roughly similar behavior to David instances was
observed: Computation times increase with the degree of shaking reaching a maximum at
a shaking level of about 25%; for higher shaking levels the computation times were found
to decrease slightly. The shape of the search cost distribution was similar for all sets of
grid instances. Within the group of 100 instances, most instances were solved within small
computation times, while the last 5% to 10% required significantly more time. Instances with
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high computation times required many branches in the branch & bound tree during their
search. For example, two grid instances with 625 cities and a shaking level of 100% required in
one case 1211 CPU seconds and 77 branches, in the other case only 9 seconds and one branch.
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Figure 3: Median run-times (concorde) for
MNPeano instances compared to random
Euclidean instances of the same size.

Computation times for the instances men-
tioned above were compared with random
Euclidean instances of the same size. In-
terestingly, the computation times grow ex-
ponentially for the random instances. In
contrast, fractal and grid instance in their
original form or with only slight variations
through reduction or shaking had much lower
solving times. Hence, minor modifications
in strongly structured instances lead only to
rather minor effects on the required compu-
tation times. Only for high degrees of reduc-
tion/shaking the computation times reach a
similar level as those for random instances of
the same size; hence, a strong change in the
structure of the instances makes them more
difficult to solve (see Fig. 3).

All instances were also solved using Helsgaun’s lkh. As the lkh program was not able to
solve instances to optimality in every run, time penalties ϕr(s, tmax) = (r/(r − s) − 1) · tmax

were introduced. Here r denotes the total number of runs (always 100), s denotes the number
of successful runs (0 ≤ s < 100) and tmax denotes the largest time for a single, successful
run. David fractals required the same amount of computation time, regardless of instance
size, if the instance could be solved by lkh. With decreased preservation levels the instances
became harder for lkh and caused increased computation times due to the penalties caused
by unsuccessful runs. Koch instances were much harder for lkh than for concorde, requiring
5 to 10 times higher computation times. However, this effect may be mainly due to the costly
preprocessing steps applied by lkh. MPeano and MNPeano instances required less than 3 CPU
seconds for instances with less than 1000 cities, although instances with preservation levels
between 75% and 90% were not solved in every run. The search cost distribution for most
fractal instance sets are similar, and about 70 out of 100 instances within a group were solved
to optimality rapidly. The remaining instances had significantly smaller or larger computation
times (due to unsuccessful runs). As is the case for the computation times measured by
concorde, run-times for lkh are also higher for random Euclidean instances than for their
fractal counterparts with the same size. Generally, the more the instances are perturbated,
and, hence, the more structure is lost, the closer the computation times for perturbated fractal
instances approach these random Euclidean instances. Computation times for shaken grid
instances increase with the shaking level up to a level of 50%. Higher shaking levels do not
result in further increases in difficulty, and lkh computation times stay below those required
for solving random Euclidean instance of the same size.

When comparing the computation times of lkh and concorde (concorde’s times here
only include the time to find the optimum), we can note that for about 18% of all instances
concorde was faster than lkh. The instances that concorde solved faster than lkh were
mainly Koch curves (78% faster with concorde), MNPeano and MPeano (each 43%). This
time comparison includes time penalties for incomplete lkh runs.
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3.2 Influence of instance properties on computation time

Local search steps required to reach an optimum in the 2-exchange neighborhood are a criterion
to estimate the difficulty for some instance types. For comparison purposes, the number of
steps was scaled by the number of cities in a given instance. Independent of the algorithm used
(lkh or concorde), Koch instances are harder the more local search steps (normalized) are
required. For example, for instances with 1.5n steps, the lkh algorithm needs less than 0.15
CPU seconds on average, while for instances with 3n steps about 5 CPU seconds are needed.
For MPeano and MNPeano, a similar exponential relation can be observed. But for concorde,
there is a broad distribution of computation times, and lkh times are somewhat obscured by
the additional penalties for unsuccessful runs. For David instances, no clear relation between
number of steps and computation times is observed. Interestingly, grid instances of the same
size all have nearly the same number of steps to reach a local optimum, regardless of structure
perturbation (shaking level). In contrast, random Euclidean instances show a clear relation
between number of steps and computation times, although the distribution gets broader as
more steps are required. For more than 2n steps the computation times for concorde and lkh

for the same type of instance differ up to a factor 100 and 1000, respectively.

The classical nearest neighbor relation for successors has been also investigated. Less than
3.4% of all instances’ cities required a neighbor for their optimal tour that has a nearest
neighbor list position above 20. Instances having successors above list position 20 include
strongly shaked grid instances, David curves as well as large MNPeano and MPeano instances.
Considering all instances, the 0.95 quantile over the list indices has a maximum of 110, but
the third quartile is only 7. In a statistical analysis, however, we did not find a significant
correlation between the maximum of the nearest neighbor list positions and computation times
(both lkh and concorde).

A total of 64 instances (0.4% of all instances) were not solved to optimality in all 10 lkh

runs. Possible reasons for this behavior have been investigated. Instances that are hard to
solve for lkh have in their optimal tour city neighbors that are more distant than neighbors
of the other instances. For an average instance, the average tour successor is the 10th nearest
neighbor, compared to the 32nd nearest neighbor for instances with incomplete runs. Per-
forming a statistical analysis of all successors within the tours shows that all quantiles are
significantly higher for hard instances than for average instances.

4 Conclusions

The structure of a TSP instance has an important impact on its hardness. As shown, frac-
tal and grid instances without any modification are solved efficiently by both concorde and
lkh. Subjecting these instances to an increasing amount of perturbation, and hence reducing
their structure, renders them significantly harder to solve, which leads ultimately to instances
whose hardness (and structure) approaches that of random Euclidean instances. This also
suggests that random Euclidean TSP instances can be relatively hard to solve compared to
more structured instances.

When subjected to very strong perturbations, instances tend to become easier again. For
reduction, this effect can be explained by the decrease in the number of cities. As for any
combinatorial problem, reduced problem size has a strong effect on solving time; this affects
both fractal and grid instances for lkh and concorde.

To summarize the analysis of properties, it is clear that there is no single attribute that
determines the hardness of an instance. Nevertheless, it is possible to estimate lkh’s or
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concorde’s computation times for certain types of instances. For Koch instances, there is a
strong relation between problem size and the computation times for both lkh and concorde.
The exact algorithm’s running times grow linear with the number of cities, while the running
times for Helsgaun’s program increase much more strongly. For fractal and random Euclidean
instances, the number of 2-exchange steps to a local optimum provides a basis for run-time
estimation. However, for instances with larger number of steps (scaled by the instance size)
this estimation becomes increasingly unreliable. Especially the occasional occurrence of un-
successful runs make it hard to predict running times for Helsgaun’s program.
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