MIC 2013: The X Metaheuristics International Conference 21-1

Analysing differences between algorithm configurations
through ablation

Chris Fawcett, Holger H. Hoos

Computer Science Department
University of British Columbia
201-2366 Main Mall, Vancouver, BC, Canada
{fawcettc,hoos} @cs.ubc.ca

Abstract

Developers of high-performance algorithms for hard computational problems increasingly take ad-
vantage of automated algorithm configuration tools, and consequently often create solvers with many
parameters and vast configuration spaces. However, there has been very little work to help these al-
gorithm developers answer questions about the high-quality configurations produced by these tools,
specifically about which parameter changes contribute most to improved performance. In this work,
we present an automated technique for answering such questions by performing ablation analysis
between two algorithm configurations. We perform an extensive empirical analysis of our technique
on five scenarios from propositional satisfiability, mixed-integer programming and Al planning, and
show that in all of these scenarios more than 95% of the performance gains between default con-
figurations and configurations obtained by using automated configuration tools can be explained by
modifying the values of a small number of parameters (1—4 in the scenarios we studied).

1 Introduction

High-performance solvers for hard computational problems such as propositional satisfiability or mixed-
integer programming are typically run by users on classes of problem instances from different application
domains (such as random 3-SAT, hardware verification or software verification). The existence of such
varied domains provides an incentive to the developers of such solvers to parameterise aspects of their
implementation to customise the behaviour on each target problem domain. Finding good values man-
ually for these algorithm parameters is difficult, as even human experts have trouble predicting which
configurations will result in high performance due to interactions between parameters and the sheer size
of the combinatorial configuration spaces involved.

While tools specifically designed for automatically tuning the parameters of such algorithms have
been in use for at least a decade (see, e.g., [3]), the introduction of advanced procedures capable of
dealing with dozens of parameters, such as ParamILS [14, 15], GGA [1], irace [16] and SMAC [11],
has generated great interest in the area of automated algorithm configuration. The success of these auto-
matic algorithm configurators in practice has inspired a software design paradigm called Programming by
Optimisation (PbO) [8], which encourages developers to expose design choices and actively seek alter-
natives for key parts of their algorithms, leading to highly parametric designs that are then automatically
optimised for specific use contexts.

However, many configurations are sampled by these configuration tools, and developers are often
left wondering why their algorithm parameters were set to specific values by the automated configuration
process, or whether the modification of some parameters from their default settings was truly necessary to
achieve substantially improved performance. Given a highly parameteric algorithm, after making many
parameter changes as a result of automated configuration, how can an algorithm developer know which
of the parameter changes were actually important? The ability to answer questions like these will allow
developers to focus their efforts on the aspects of their solvers that are providing the most performance
gains (or losses), in an iterative algorithm development process.

In this work, we introduce the concept of ablation analysis, a procedure investigating the path of
configurations obtained by iteratively modifying parameter settings from a source configuration (e.g.,
an expert-defined default) to those from a target configuration (e.g., one obtained from an automatic
configurator). Parameter values are modified one at a time, and at each stage the configuration with the

Singapore, August 5-8, 2013
Page 123

212 MIC 2013: The X Metaheuristics International Conference

best performance is retained. We present a brute-force approach to this analysis, as well as an accelerated
version that takes advantage of racing methods for algorithm selection. We demonstrate the effectiveness
of this approach with an empirical study on five well-studied algorithm configuration scenarios that
involve high-performance solvers for propositional satisfiability, mixed integer programming and Al
planning problems, and we show that for these scenarios, more than 95% of the performance gains
from automated configuration can be obtained by the modification of at most 4 (out of 26-76) algorithm
parameters.

The remainder of this paper is structured as follows: In Section 2, we place our contribution in
context with related work in parameter importance, and we then provide an in-depth explanation of both
variants of our ablation analysis procedure in Section 3. Section 4 presents the details of the experimental
study that we performed, with the results of that study shown and discussed in Section 5. Finally, we
conclude in Section 6 with a discussion of possible extensions and future work in this area.

2 Background and Related Work

Compared to the work on algorithm configuration, there has been little progress on addressing the ques-
tion of parameter importance. The most closely related area of related work is that of sensitivity analysis
in statistics, especially analysis of variance (ANOVA) and functional ANOVA [7] approaches to de-
composing model or function response variance into low-order components. There has also been other
related work on interactive parameter exploration using contour plot visualization [2], on evolutionary
algorithms for parameter relevance estimation [18] and on experimental design for analysing optimiza-
tion algorithms [4]. These techniques each have difficulties with the high dimensionality and discrete
nature of the configuration spaces of typical highly-parameterised algorithms. Many individual applica-
tions of automated algorithm configuration to specific solvers include statements from the authors about
the modified parameters, as a post-hoc subjective justification without formal analysis. Examples of this
include the configuration of a state-of-the-art industrial SAT solver [9], as well as the automated design
of general-purpose frameworks for Al planning [20].

Very recently, Hutter ef al. have been using model-based techniques to investigate the problems of
parameter importance and parameter interaction directly, using forward selection [13] and functional
ANOVA [12]. Both approaches require an initial data-gathering step to obtain algorithm performance
data, which is then partitioned into training and test sets. In [13], this data was obtained by sampling
1000 — 10000 pairs of configurations and instances uniformly at random, while in [12] 10 000 randomly
sampled runs were combined with the algorithm runs performed during 25 executions of the SMAC
configurator (62 861 — 1354 189 additional runs).

In the forward selection approach [13] this performance data is used to iteratively build a regression
model by greedily adding, at each iteration, the parameter or instance feature which results in a model
with the lowest root mean squared error on the validation set. The work in [12], on the other hand,
introduces an efficient technique for applying functional ANOVA to random forest models. This variance
decomposition takes a random forest model constructed from the precomputed data, and expresses the
performance variation in terms of components, with one component for every subset of parameters of
size up to k (for small k). These two contributions differ from our own in several fundamental ways.

Current versions of the forward selection and functional ANOVA approaches construct models wholly
or partially based on thousands of configurations sampled uniformly at random from the configuration
space. The CPU time required to obtain this data, as well as the time required to build the models them-
selves, can be significant. The CPU time requirements for model construction are especially significant
for forward selection, which typically requires the construction of thousands of models.

More importantly, this random sampling of configurations means that many of the configurations
used to build the model are from parts of the configuration space that are unlikely to contain high quality
configurations. Furthermore, both methods have so far been used only to measure parameter importance
globally on expectation across the entire configuration space, with the exception of one set of functional

"Personal communication with the authors.

Singapore, August 5-8, 2013
Page 124

MIC 2013: The X Metaheuristics International Conference 21-3

Algorithm 1: Ablation (A, Osource, Orarget, I, m)

Input: Parameterised algorithm A, two parameter configurations of \A, Osource and Grarget, benchmark instance set I,
performance metric m
Output: An ordered list (6o, 01,02,03, . ..,0;) of configurations of A chosen during each round of ablation.
60 - esource and el - etarget
0 esource
activeParameters < set of parameters of A with different values in Osource and Grarget
ablationRoundsBest <+ (Osource)
while activeParameters # () do
A’ + set of algorithms with configurations obtained from 6 via flipping 1 parameter in activeParameters to the
value in Ocarget, ignoring configurations that are prohibited in the configuration space or that are equal to 6 due to
parameter conditionality.
6" « determine_best (A’, I, m)
0+ 0
activeParameters < set of parameters of A with different values in 6 and Grarget
append (ablationRoundsBest, 6")

end
return ablationRoundsBest

ANOVA results where model samples were restricted to configurations with better performance than the
default configuration. The importance values derived from those experiments are still global measures,
and can be averages across many regions of very different high-performance configurations. There is no
guarantee that these importance measures apply to any individual algorithm configuration, specifically to
any high-performance configuration and the local neighbourhoods around such configurations. Finally,
the functional ANOVA work relies on the assumption that accurate models of algorithm performance can
be obtained at a reasonable computational cost. This appears to be the case for the experiments reported
by Hutter et al. [12], but there is no guarantee that on other scenarios, models with similar parameter
importance accuracy can be practically obtained. Our approach does not require model construction, and
is therefore not constrained by this assumption.

The most important distinguishing factor between our work presented here and these earlier studies
lies in the fact that we are interested in explaining the importance of differences between two algorithm
configurations that are of interest to an algorithm developer and user — for example, between the de-
fault configuration and one produced by applying an automated algorithm configuration tool such as
PARAMILS. Using ablation analysis, we can quantify the performance losses (or gains) along the “abla-
tion path” (see Section 3.3) from one configuration to another. This allows algorithm developers or users
to find a minimal set of parameter modifications from a given default configuration, while maintaining
most or all of the performance gains achieved by automated algorithm configuration. We believe that
this approach can be complementary to the recent model-based techniques of Hutter e al. [12, 13], as
the local information provided by our approach can strengthen and validate (or invalidate) the results
obtained with those techniques. We also believe that there are ways to combine the two lines of work
(see Section 6).

3 Ablation Analysis

Given a parameterised algorithm A with d parameters and configuration space ©, along with a source
and target configuration (fsource, Orarget € ©) of that algorithm, our ablation procedure works as follows.
Given a set of benchmark instances I and a performance metric m (e.g., penalised average runtime or
mean solution quality), we first compute the set of parameters whose values differ between Osoyrce and
Otarget- Then, beginning from 6source, We proceed through a series of rounds: in each round, we use a
subprocedure determine_best to choose a configuration from the set of all configurations obtained by
flipping one parameter in the current configuration to its value in Oarger. Algorithm 1 further outlines the
details of this procedure.

In each round of ablation, i.e., in each iteration of the while-loop in Algorithm 1, the procedure

Singapore, August 5-8, 2013
Page 125

214 MIC 2013: The X Metaheuristics International Conference

determine_best (A’, I, m) selects the configuration in A" with the best performance on I w.r.t. m. In
the case where the source configuration has better performance on [than the target configuration, each
configuration selected by determine_best (A’, I, m) will be the one with minimum loss compared to the
configuration 6 from the previous round. Conversely, when 0yarger has better performance than Osoyrce
on I, the configuration selected by determine_best will be that with maximum gain over the previous 6.
Some parameterised algorithms have conditional parameters, i.e., parameters that only exist (or whose
values only affect algorithm performance) if one or more other parameters (parents) are set to specific
values. Configurations obtained by modifying the values of inactive conditional parameters are ignored
in our procedure, as these configurations are by definition identical to the configuration from which they
were produced.

In the experiments we present in Section 4, we perform ablation analysis in both directions for
every pair of configurations. By performing ablation in the direction of minimum loss, we can gauge the
relative extent (by number of parameter modifications) of the local area around 5o, e With roughly equal
performance. In the direction of maximum gain, we find the minimal number of parameter modifications
required to achieve roughly equal performance to Oiarget. As a greedy approach (not unlike forward
selection), ablation in either direction may produce suboptimal results at any distance except 1 from
Osource- In light of this, performing the analysis in two directions provides additional robustness. In the
following, we describe two variants of determine_best (A’, I, m): a naive brute-force method, which is
easy to implement but slow, and a greatly accelerated version based on a racing method.

3.1 Brute-Force Ablation

Our brute-force implementation of determine_best (A’, I, m) involves performing a full empirical per-
formance evaluation for every configuration in A’, by running each configuration in A’ on every instance
in I and recording the value of the performance metric m thus obtained. The configuration in A" with
the best metric value is selected as the best and returned by determine_best.

Given that one parameter is eliminated from consideration in every round, ablation on instance set
I with p differing parameters between Osource and Giarger Using this brute-force approach will require
up to || - p - (p+ 1) /2 individual runs of algorithm A. Therefore, this procedure can be extremely
time-consuming in the presence of high runtime cutoffs or large instance sets. Consider a typical case
of ablation between a source and target configuration with 25 differing parameters, and an instance set
I with 1000 benchmark instances. Over the course of ablation using the brute-force method, 325 000
algorithm runs will be performed. Even with a mean CPU time of only 30 seconds per run of A for
any instance from [for all configurations considered in the analysis, this implies an overall runtime
requirement of 9750 000 CPU seconds or 112 CPU days. We note that, by parallelizing runs across
a cluster of machines (as we do in our experiments), this does not necessarily render ablation using
this method completely impractical, it represents a formidable computational burden. Clearly, a more
efficient ablation procedure would be highly desirable.

3.2 Acceleration via Racing

Based on early work for solving the model selection problem in memory-based supervised learning [17],
F-Race is a prominent racing method for algorithm selection [3]. Given a benchmark instance set and
performance metric, F-Race takes a set of candidate algorithms (or configurations of a parameterised al-
gorithm) and iterates between gathering performance data by running the candidate algorithms on bench-
mark instances, and eliminating candidates once there is enough statistical evidence to justify removing
them. The algorithms remaining at the end of the procedure are the winners of the race.

We apply F-Race to ablation analysis round winner determination, adhering very closely to the sta-
tistical framework described by Birattari et al. [3]. In this context, F-Race starts with a set of candidate
configurations containing all configurations in A" and subsequently performs a sequence of stages. In
stage k, the remaining candidate configurations C' = (¢, ca, . . ., ¢,) are evaluated on a new instance iy,
from 1, and the results are then combined with the results of the previous stages for each configuration.

Singapore, August 5-8, 2013
Page 126

MIC 2013: The X Metaheuristics International Conference 21-5

These results are then organised into k blocks, with the jt" block containing the n performance metric
values resulting from running the configurations in C' on 7;.

On these blocks, a Friedman two-way analysis of variance by ranks, also known as the Friedman
test, is performed [5]. If the null hypothesis of this test is rejected, we can conclude that at least one
configuration in C has statistically significantly better performance than at least one other configuration.
In this case, we proceed to pairwise testing to identify which configurations should be removed from
the candidate list C. We use the same pairwise test here as described by Birattari et al. for F-Race, by
comparing the configuration with the best sum of ranks across all blocks with the other n — 1 configu-
rations in C' using a modified ¢-test with n — 1 degrees of freedom [3]. After culling any configurations
deemed to be statistically significantly worse, we proceed to the next phase. The race terminates when
only one configuration remains, or when a specified maximum number of rounds have been performed.
In the latter case, the configuration with the best mean metric score across all rounds is selected as the
winner. In the case of further ties, tie-breaking is performed uniformly at random. (Further details on the
statistical tests used in this procedure can be found in [3, 5]).

To measure the speed-ups of this racing approach to ablation analysis, compared to the brute-force
approach described earlier, we performed experiments using two of the scenarios described in Section 4.
We examined two alternatives for our racing approach, first with the maximum number of rounds set to
the number of instances in the benchmark instance set (302 for SPEAR and 1 000 for CPLEX), and second
with the maximum number of rounds set to 200. Determining the optimal value for this parameter
is not straightforward, but in general it can be expected to depend on the homogeneity of the given
set of benchmark instances. We used our conservative choice of 200 after subsampling runs from the
full instance sets, and choosing the lowest value that did not change the distribution of runtime over
the resulting set in any substantial way for any of our scenarios. In these two examples, racing with the
maximum number of rounds set to 200 reduced the runtime required for our SPEAR and CPLEX scenarios
to 23% and 14% of the brute-force runtime, respectively. We also note that every algorithm run used by
our racing approach inside each call of determine_best can be performed in parallel, which in our case
resulted in wall-clock times of merely a few hours, a further 25% and 11% of the total CPU time.

While it is possible that racing will return different ablation paths than the brute-force approach, we
do not consider this to be a problem, since the brute-force approach is also not guaranteed to compute
the optimal path between two configurations. Furthermore, in all of our experiments, the brute-force and
racing results were closely aligned.

3.3 Ablation Paths

We call the path of configurations (6, . . ., ;) obtained between Osource and Oiarger computed by our ab-
lation procedure along with the respective performance values on set I (or an independent test set of
instances similar to those in I) an ablation path. These paths can take several qualitatively different
forms, depending on the relative performance of Osource and Orarger and characteristics of the response
surface that captures the functional dependency of the performance of A on its parameter settings. Fig-
ure 1 illustrates these cases; each point represents the performance of one of the configurations 6;, from
Osource O the left-hand side to O:arger 0N the right. Figure 1(a) illustrates one extreme case, where Osource
and Ocarger differ in performance on [and all parameters are of equal importance. A case at the oppo-
site extreme (not shown) would be if the performance difference between Osource and Oiarger Was fully
explained by the modification of a single parameter.

A more realistic case lies between these extremes, with the modification of a small number of pa-
rameters explaining most of the difference in performance between Osource and Orarger (Figure 1(b)). Fig-
ures 1(c) and 1(d) show two additional cases that may occur when the source and target configurations
have roughly equal performance on I. In 1(c), Osource and Orarger are connected by a path of configura-
tions that all have the same performance; this could arise in a situation where both lie on a large plateau
of the response surface. However, it is also possible that the two configurations lie in separate basins of
the response surface, such that a “saddle” of worse performance must be surmounted along the ablation
path from Osource t0 Orarget, as illustrated in 1(d). We note that the results from all of our experiments

Singapore, August 5-8, 2013
Page 127

21-6 MIC 2013: The X Metaheuristics International Conference

1000 1000

100 100

Performance
Performance

10 10

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of parameters modified Number of parameters modified

(a) parameters contribute equally (b) small number of parameters dominate

1000 1000

100 100

10

Performance
Performance

10

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of parameters modified Number of parameters modified

(c) region of equal performance (d) saddle of worse performance

Figure 1: Ablation paths can take several qualitatively different forms, illustrated by these (idealised)
runtime examples. Lower values indicate better performance (for details, see text).

performing ablation from algorithm defaults to configurations obtained from automated configurators
fall into case 1(b).

4 Experiment design

In order to empirically evaluate our ablation methods, we performed experiments on five scenarios using
state-of-the-art solvers for SAT, MIP and Al planning. We implemented the brute-force and racing-
based ablation methods as plugins for HAL, a Java-based platform for distributed experiment execution
and data management [19]. All runs were performed using machines in the Compute-Calcul Canada /
Westgrid Orcinus cluster, equipped with two Intel Xeon X5650 6-core 2.66Ghz processors, 12MB of
cache and 24GB of RAM, running CentOS 5 Linux. For each target algorithm run, we used a single core
and enforced a maximum of 2GB (SPEAR and CPLEX) or 6GB (LPG) of RAM.

Using the existing PARAMILS plugin for HAL 1.1.6, we performed 10 independent runs of PARAMILS
for each scenario, with each configurator run allocated 48 CPU hours of total runtime. In each case, we
minimised penalised average runtime (PAR10), a standard performance metric for configuration and em-
pirical analysis; under PAR10, each run that terminates successfully is assigned a score equal to the CPU
time used, and runs that crash or do not produce a valid solution on a given instance are assigned a score
of 10 times the runtime cutoff (this heavily penalises these cases to attempt to enforce good instance set
coverage.) Of the 10 configurations produced in our PARAMILS runs, we selected the one with the best
PAR10 performance on the full training set for that scenario. (This corresponds to one of the standard
protocols for using PARAMILS.)

We then performed two ablation experiments using our racing variant on the training set for each
scenario, with the maximum number of rounds set to 200. Ablation was performed in two directions,
first from the default to the optimised configuration obtained through automated configuration using
maximum gain, and then from the optimised configuration to the default using minimum loss. Each
configuration on the resulting ablation paths for each scenario was subsequently evaluated using the
independent test set for that scenario. (Performing ablation directly on test sets produced very similar
results.)

SAT using SPEAR. The propositional satisfiability problem, or SAT, is the prototypical N P-hard problem
with important real-world application, including circuit design as well as hardware and software verifica-

Singapore, August 5-8, 2013
Page 128

MIC 2013: The X Metaheuristics International Conference 21-7

tion. SAT has also been widely studied in the context of automated algorithm configuration [11, 14, 15].
We chose to analyze the industrial SAT solver SPEAR 1.2.1, winner of one category of the 2007 Satis-
fiability Modulo Theories Competition [9]; SPEAR has 26 configurable parameters, creating a space of
8.34 x 10'7 configurations. SPEAR has also been used in two recent investigations of parameter impor-
tance using forward selection [13] and functional ANOVA [12]. We analyzed the performance of SPEAR
on the SWV software verification instance set used in several previous investigations. This set, consisting
of 604 software verification conditions produced by an automated static checker, is partitioned into a
training set (used for configuration and ablation analysis) and test set (used for evaluation of the ablation
paths) consisting of 302 instances each. Following previous work, we used a 300 CPU-second runtime
cutoff for automated configuration and all analysis runs.

MIP using CPLEX. Mixed integer programming (MIP) is another widely-studied problem with many
prominent real-world applications. IBM ILOG CPLEX is one of the most widely used MIP solvers, both
in academia and industry, and has a highly-parameterised configuration space containing 76 configurable
parameters that directly impact solver performance (a total of 1.90 x 10*” configurations). Automated
configuration of CPLEX has proven successful in past work [10, 11], and CPLEX has also been used in the
same parameter importance investigations as mentioned for SPEAR. We chose to use CPLEX 12.1 and the
CORLAT instance set for this scenario [6]; CORLAT is a set of computational sustainability MIP instances
based on real data used for wildlife corridor construction for grizzly bears in the Northern Rockies region.
This set has been used both in previous work on algorithm configuration and on parameter importance,
and is partitioned into a training and test set containing 1 000 instances each. A 300 CPU-second runtime
cutoff was used for all runs.

AI Planning using LPG. The design and configuration of highly-parameterised solvers has recently proven
successful in the Al planning community, contributing to both the winner and runner-up in the Learning
Track of the 7th International Planning Competition (IPC-2011) [20]. Highly-parameterised general-
purpose planners represent ideal candidate scenarios for studying parameter importance, because intu-
itively, the benefits to be gained by exploiting the structure and differences between various planning
domains suggest that high-performance configurations will vary widely between such domains. We
chose to investigate the configuration space of LPG td-1.0, a state-of-the-art local search based planner,
and a key component in the winner of the IPC-2011 Learning Track. LPG has 66 configurable parameters,
with a total of 9.11 x 1036 possible configurations. We analyzed LPG’s performance on three planning
domains: depots, satellite, and zenotravel. These three domains have been used in previous planning
competitions, as well as in previous work on automated configuration for planning. Each instance set
contains disjoint 2 000-instance training and test sets generated using the same parameter settings of a
randomised instance generator. Consistent with previous work, a 60 CPU-second runtime cutoff was
used for configuration, while a 300 CPU-second cutoff was used for all test-set evaluation and ablation
analysis runs.

5 Results

Table 1 shows the training and test set performance for the default configurations and automatically
optimised configurations in all five scenarios considered; as expected, and consistent with previously
published results for these solvers, we observed 3- to 422-fold speedups after configuration. Interestingly,
nearly every SPEAR parameter was changed from the default, while for the CPLEX and LPG scenarios,
approximately one-third to one-half of the parameters were modified.

Figure 2(a) illustrates the mean PAR10 score on the SWV test set for every configuration along the
path found through racing-accelerated ablation analysis of SPEAR on the SWV training set. Expressing
the performance gain from a single ablation round as a percentage of the total gain between Osoyrce and
Otarget> 99.92% of the performance gain between the default configuration and the chosen configuration
can be achieved by modifying the value of a single parameter, sp-var-dec-heur. This parameter controls
the choice of variable decision heuristic in SPEAR, which is known to be an important parameter in
most state-of-the-art SAT solvers. Furthermore, if we modify only four parameters (sp-var-dec-heur,

Singapore, August 5-8, 2013
Page 129

MIC 2013: The X Metaheuristics International Conference

Training set performance (PAR10, s) Test set performance (PAR10, s)
solver instance set | 25 q50 q75 mean q25 q50 q75 mean
SPEAR default SWV 0.122 0.528 23.649 573.649 | 0.102 0.499 11.392 569.645
SPEAR configured | SWV 0.122 0.592 1.279 1.359 0.079 0.531 1.114 1.321
CPLEX default CORLAT 0.101 3.563 90.596 556.531 | 0.097 3.551 70.602 471.722
CPLEX configured | CORLAT 0.110 1.220 5.812 5.511 0.112 1.238 5.650 5411
LPG default depots 0.551 1.086 8.182 43.245 0.535 1.055 7.194 38.097
LPG configured depots 0.220 0.318 0.510 0.671 0.220 0.324 0.511 0.658
LPG default satellite 15232 17.580 20.595 17.962 15.173 17.575 20.514 17.940
LPG configured satellite 4.827 5.645 6.404 5.662 4.943 5.760 6.529 5.783
LPG default zenotravel 20.092 26377 34.642 29.671 19.792 26.026 34.929 29.361
LPG configured zenotravel 1.414 1.826 2.490 2.065 1.407 1.841 2.556 2.092

Table 1: Training and test set performance results for all 5 of our scenarios, for both the default configu-
rations and those selected by PARAMILS. Runtime cutoffs in all cases were 300 CPU seconds.

1000 1000

100

100

100 10

10

1

Performance (PAR10, s)
Performance (PAR10, s)
Performance (PAR10, s)

Default to configured
Configured to default

Default to configured
Configured to default
0.1 1
0 5 10 15 20 25 0 5

Number of parameters modified

(a) SPEAR on SWYV test set

Default to configured

0.1 Configured to default

10 15 20

Number of parameters modified

(b) CPLEX on CORLAT test set

1 Default to configured
Configured to default

25 0 5 10 15 20

Number of parameters modified

25

(c) LPG on depots test set

100

10

Default to configured
Configured to default

20 30
Number of parameters modified

Performance (PAR10, s)

Performance (PAR10, s)

0 5 10 15 25 40 0 5 10 15 20

Number of parameters modified

25

(d) LPG on satellite test set (e) LPG on zenotravel test set

Figure 2: Ablation paths determined using racing with up to 200 rounds on the training sets of the five
configuration scenarios, with each configuration on the ablation path evaluated using the correspond-
ing test set. The horizontal lines indicate the PAR10 scores of the default (source) and automatically-
configured (target) configurations on the test set for each scenario.

sp-rand-var-dec-scaling, sp-res-cutoff-cls, and sp-first-restart) from their default values, we obtain a
configuration with slightly better performance on the test set than the target configuration obtained with
PARAMILS. In contrast, Hutter et al. noted in their functional ANOVA work [12] that sp-var-dec-heur
was important, but only 83% of the improvement over the default could be attributed to single-parameter
effects in their model. We hypothesize that sp-var-dec-heur is much more important in high-performance
parts of the SPEAR configuration space, a bias that is not taken into account by the Hutter ez al. models.
Similarly, Figure 2(b) shows the performance of configurations on the path found through racing-
accelerated ablation analysis of CPLEX on the CORLAT training set, evaluated on the test set. Here,
87.64% of the performance gain resulted from modifying the value of a single parameter, mip_cuts_covers,
which controls whether or not to generate cover cuts. 99.58% of the gain can be achieved by modifying
just three CPLEX parameters (mip_cuts_covers, mip_strategy_heuristicfreq and simplex_dgradient). We
note that simplex_dgradient was not in the top 10 important parameters found in the CPLEX CORLAT
scenario in [12], although 6 of the 10 most important CPLEX parameters as identified in that work were
not changed from their default values in our experiments (this effect was also noted by Hutter et al.).
Finally, Figures 2(c), 2(d) and 2(e) illustrate the performance along the ablation paths for each of the
three LPG scenarios: depots, satellite and zenotravel. For the depots and satellite scenarios, the top three
parameters were the same. Modifying the value of cri_intermediate_levels resulted in 97.7% and 84.55%

Singapore, August 5-8, 2013
Page 130

MIC 2013: The X Metaheuristics International Conference 21-9

of the target configuration performance over the default, respectively. Furthermore, modifying the values
of three parameters (cri_intermediate_levels, vicinato (the neighbourhood choice), and hpar_cut_neighb)
resulted in 99.22% of the performance gain for the depots scenario.

For the zenotravel scenario (Figure 2e), we observed different choices for the two most important
parameters, depending on the direction in which ablation was performed. Modifying triomemory and
fast_best_action_evaluation from their default values resulted in 85.99% of the overall performance
gain over the default, while modifying vicinato and hpar_cut_neighb (similar to the other two LPG
scenarios) resulted in 88.09% of the total performance gain. Four parameter modifications (vicinato,
hpar_cut_neighb, triomemory, and noise) accounted for 97.8% of the total performance gain.

It is interesting to note that there is a conditional parameter interaction between hpar_cut_neighb and
vicinato, as hpar_cut_neighb is only active when vicinato takes certain values. In the results, modifying
vicinato often does not produce large gains in performance by itself, but allows for modification of
hpar_cut_neighb, which in turn results in large performance improvements. The effect of conditional
parameters can also be seen in the “late” performance improvements in the three LPG scenarios in the
direction of maximum gain.

Due to space restrictions, we have included the full set of experimental data in an online appendix 2.

6 Conclusions and future work

In this work, we have introduced a new procedure, ablation analysis, which allows developers of highly-
parameterised algorithms to ascertain which of their parameters contribute most to performance differ-
ences between two algorithm configurations. Using ablation analysis, it is possible to determine which
modifications of a given default configuration were truly necessary to achieve improved performance,
and which modifications can essentially be considered spurious side effects of an automated (or manual)
configuration process.

We validated our approach in an experimental study using five well-studied configuration scenarios
from propositional satisfiability, mixed-integer programming and Al planning, with 26 to 76 configurable
parameters. We showed that a variant of our approach accelerated by a racing method required 25% of the
CPU time needed by the brute-force variant, while achieving qualitatively similar results. In all of these
scenarios, we found that 95-99% of the performance improvements achieved by automated configuration
of the given, highly-parametric solver could be obtained with the modification of only 1-4 parameters, a
small fraction of total number of parameters for each algorithm. In two cases, we found that modification
of a single parameter could achieve 99.92% and 87.64% of the performance gain between the default
configuration and one found by PARAMILS. Similar results have been reported for the global impact of
parameters previously, but we show that this is true locally for high-performance configurations, and in
some cases the locally-important parameters are different from those that are important globally.

This work can be extended in various directions, for example improved handling of conditional
effects and interdependencies between parameters. We believe that ablation analysis can also be used
for slightly different purposes — to investigate performance generalisation near a given configuration
or to obtain information regarding the region of configuration space between several configurations of
similarly high-performance. Furthermore, we believe that our approach and the model-based techniques
discussed in Section 2 are complementary and can be combined, e.g., by building functional ANOVA
models using configurations sampled along ablation paths or from the localised region between the two
input configurations.

Acknowledgements. The authors would like to thank Frank Hutter for providing us with the SPEAR and CPLEX scenario data,
as well as for useful feedback on an earlier draft of this work. We also thank Compute Canada for providing the computing
resources for our experiments and acknowledge funding provided by NSERC to HH under the Discovery Grant and Discovery
Accelerator Supplement Programs. This work was supported in part by the Institute for Computing, Information and Cognitive
Systems (ICICS) at UBC.

Zhttp://www.cs.ubc.ca/labs/beta/Projects/Ablation/mic2013/appendix.pdf

Singapore, August 5-8, 2013
Page 131

21-10 MIC 2013: The X Metaheuristics International Conference

References

[1] Carlos Ansétegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic algorithm for the
automatic configuration of algorithms. In Proceedings of CP 2009, pages 142-157, 2009.

[2] Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation—The New Exper-
imentalism. Natural Computing Series. Springer, Berlin, Heidelberg, New York, 2006.

[3] Mauro Birattari, Thomas Stiitzle, Luis Paquete, and Klaus Varrentrapp. A racing algorithm for
configuring metaheuristics. In Proceedings of GECCO’02, pages 11-18, 2002.

[4] Marco Chiarandini and Yuri Goegebeur. Mixed models for the analysis of optimization algorithms.
Experimental Methods for the Analysis of Optimization Algorithms, pages 225-264, 2010.

[5] W.J. Conover. Practical Nonparametric Statistics. John Wiley and Sons, New York, NY, USA,
1999. Third edition.

[6] Carla P. Gomes, Willem-Jan van Hoeve, and Ashish Sabharwal. Connections in networks: a hybrid
approach. In Proceedings of CPAIOR 2008, pages 303 — 307, 2008.

[7] Giles Hooker. Generalized functional ANOVA diagnostics for high dimensional functions of de-
pendent variables. Journal of Computational and Graphical Statistics, 16:709-732, 2007.

[8] Holger H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70-80, Febru-
ary 2012.

[9] Frank Hutter, Domagoj Babi¢, Holger H. Hoos, and Alan J. Hu. Boosting verification by automatic
tuning of decision procedures. In Formal Methods in Computer-Aided Design, pages 27-34, 2007.

[10] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated configuration of mixed integer
programming solvers. In Proceedings of CPAIOR 2010, pages 186-202, 2010.

[11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of LION-5, pages 507-523, 2011.

[12] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
algorithm parameter importance. 2013. Under review.

[13] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Identifying key algorithm parameters and
instance features using forward selection. In Proceedings of LION-7, 2013. To appear.

[14] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267-306, 2009.

[15] Frank Hutter, Holger H. Hoos, and Thomas Stiitzle. Automatic algorithm configuration based on
local search. In AAAI 07, pages 1152-1157, 2007.

[16] Manuel Lopez-Ibafiez, Jérémie Dubois-Lacoste, Thomas Stiitzle, and Mauro Birattari. The irace
package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

[17] Oded Maron and Andrew Moore. Hoeffding races: Accelerating model selection search for clas-
sification and function approximation. In Advances in Neural Information Processing Systems,
volume 6, pages 59-66, 1994,

[18] Volker Nannen and A.E. Eiben. Relevance estimation and value calibration of evolutionary algo-
rithm parameters. In Proceedings of IJCAI 2007, pages 975-980, 2007.

[19] Christopher Nell, Chris Fawcett, Holger H. Hoos, and Kevin Leyton-Brown. HAL: A framework
for the automated analysis and design of high-performance algorithms. In Proceedings of LION-5,
pages 600 — 615, 2011.

[20] Mauro Vallati, Chris Fawcett, Alfonso E. Gerevini, Holger H. Hoos, and Alessandro Saetti. Au-
tomatic generation of efficient domain-optimized planners from generic parametrized planners. In
Proceedings of IJCAI RCRA Workshop 2011, pages 111-123, 2011.

Singapore, August 5-8, 2013
Page 132

