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Abstract
Progress in practical Bayesian optimization is hampered by the fact that the only
available standard benchmarks are artificial test functions that are not representative
of practical applications. To alleviate this problem, we introduce a library of
benchmarks from the prominent application of hyperparameter optimization and
use it to compare Spearmint, TPE, and SMAC, three recent Bayesian optimization
methods for hyperparameter optimization.

1 Introduction
The performance of many machine learning (ML) methods depends crucially on hyperparameter
settings and thus on the method used to set hyperparameters. Recently, Bayesian optimization
methods have been shown to outperform established methods for this problem (such as grid search
and random search [1]) and to rival—and in some cases surpass—human domain experts in finding
good hyperparameter settings [2, 3, 4]. As a result, hyperparameter optimization has become
an active research area within Bayesian optimization, with characteristics such as low effective
dimensionality [1, 5, 6] and problem variants, such as optimization across different data sets [7] being
explored.

One obstacle to further progress in this nascent field is a dearth of hyperparameter optimization
benchmarks and comparative empirical studies. It can be difficult to evaluate a new optimizer on
benchmarks used in previous papers because (1) optimizers are written in different programming
languages and use different search space representations and file formats; (2) hyperparameter opti-
mization benchmarks that have been developed jointly with an optimizer are not typically packaged
as black boxes (including the respective machine learning algorithm and its input data) that can be
used with other optimizers.

To alleviate these problems, we have collected and made available a library of hyperparameter
optimization benchmarks from the recent literature and used it to empirically evaluate the respective
strengths and weaknesses of three prominent Bayesian optimization methods for hyperparameter
optimization: SPEARMINT [2], TPE [8], and SMAC [9]. We thereby hope to provide an empirical
foundation to facilitate the development and evaluation of future methods for this problem.

2 Bayesian Optimization Methods for Hyperparameter Optimization
Given a machine learning algorithm A having hyperparameters �1, . . . ,�n with respective domains
⇤1, . . . ,⇤n, we define its hyperparameter space ⇤ = ⇤1 ⇥ · · · ⇥ ⇤n. For each hyperparameter
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setting � 2 ⇤, we use A� to denote the learning algorithm A using this setting. We further use
L(A�,Dtrain,Dvalid) to denote the validation loss (e.g., misclassification rate) that A� achieves on data
Dvalid when trained on Dtrain. The hyperparameter optimization problem under k-fold cross-validation
is then to minimize the blackbox function

f(�) =
1

k

kX

i=1

L(A�,D(i)
train,D

(i)
valid). (1)

We note that an alternative to optimizing hyperparameters is to marginalize over them in a Bayesian
model averaging framework; however, in most cases the costs of doing so are prohibitive, and we
therefore do not consider that alternative here.

Hyperparameters can be continuous, integer-valued, or categorical. Following [10] and [8], we
say that a hyperparameter �i is conditional on another hyperparameter �j if �i is only active if
hyperparameter �j takes values from a given set Vi(j) ( ⇤j . These conditional parameters are, for
example, common in deep architectures, or in frameworks including many alternative algorithms,
and some hyperparameter optimizers exploit knowledge about these conditionalities in their models
to improve their performance [9, 8, 11, 12].

Bayesian optimization (see [13] for a detailed tutorial) constructs a probabilistic model M of f
based on point evaluations of f and any available prior information, and uses that model to select
subsequent configurations � to evaluate. In order to select its next hyperparameter configuration �
using model M, Bayesian optimization uses an acquisition function aM : ⇤ ! R, which uses the
predictive distribution of model M at arbitrary hyperparameter configurations � 2 ⇤ to quantify
how useful knowledge about � would be. This function is then maximized over ⇤ to select the most
useful configuration � to evaluate next. Several well-studied acquisition functions exist [14, 15, 16];
all aim to trade off exploitation (locally optimizing hyperparameters in regions known to perform
well) versus exploration (trying hyperparameters in a relatively unexplored region of the space). The
most popular acquisition function is the expected improvement [15] over the best previously-observed
function value fmin attainable at a hyperparameter configuration � (where expectations are taken
over predictions with the current model M):

EM[Ifmin(�)] =

Z fmin

�1
max{fmin � f, 0} · pM(f | �) df. (2)

One main difference between existing Bayesian optimization algorithms lies in the model classes
they employ. In this paper, we empirically compare three popular Bayesian optimization algorithms
for hyperparameter optimization that are based on different model types.

SPEARMINT [2, 17]. SPEARMINT uses a Gaussian process (GP) to model pM(f | �) and performs
slice sampling over the GP’s hyperparameters [18]. It supports continuous and discrete parameters
(by rounding), but does not provide a mechanism to exploit knowledge about conditional parameters.

Sequential Model-based Algorithm Configuration (SMAC) [9, 19]. SMAC uses random forests
to model pM(f | �) as a Gaussian distribution whose mean and variance are the empirical mean
and variance over the predictions of the forest’s trees. For hyperparameter optimization problems
with cross-validation, SMAC evaluates the loss of configurations at single folds at a time in order to
save time. Different configurations are compared based only on the folds evaluated for both. SMAC
supports continuous, categorical, and conditional parameters. It was the best-performing optimizer for
Auto-WEKA [3] and has also been used to configure many combinatorial optimization algorithms.

Tree Parzen Estimator (TPE) [8, 20]. TPE is a non-standard Bayesian optimization algorithm.
While SPEARMINT and SMAC model p(f | �) directly, TPE models p(f < f⇤), p(� | f < f⇤),
and p(� | f � f⇤), where f⇤ is defined as a fixed quantile of the losses observed so far, and the latter
two probabilities are defined by tree-structured Parzen density estimators. With these distributions
defined, a term proportional to the expected improvement from Equation (2) can be computed in
closed form [8]. TPE supports continuous, categorical, and conditional parameters, as well as priors
for each hyperparameter over which values are expected to perform best. It has been used succesfully
in several papers beyond the one in which it was introduced [4, 21, 3].
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Table 1: Hyperparameter optimization benchmarks used. The loss function is the function value for Branin and
Hartmann 6d, perplexity for LDA and misclassification rate for all the others. The runtime column gives the 0.1
and 0.9 quantiles over all function evaluations performed by all optimizers, in minutes. For benchmarks with
crossvalidation these are the runtimes for one fold.

Algorithm #hyp.params continuous/ Dataset Size (Train/Valid/Test) Citation Runtime [min]
(conditional) discrete q0.1 / q0.9

Branin 2(-) 2/- - - [22] trivial
Hartmann 6d 6(-) 6/- - - [22] trivial

Log. Reg. 4(-) 4/- MNIST 50k/10k/10k [2, 23] 0.3/12.5
LDA ongrid 3(-) -/3 Wikipedia articles 200k/24560/25k [2, 24] table lookup
SVM ongrid 3(-) -/3 UniPROBE ⇡ 20k/-/⇡ 20k [2, 25] table lookup

HP-NNET 14(4) 7/7 MRBI 10k/2k/50k [8, 26] 0.9/13.4
HP-NNET 14(4) 7/7 convex 6.5k/1.5k/50k [8, 26] 0.7/16.7
HP-DBNET 38(29) 19/17 convex 6.5k/1.5k/50k [8, 26] 0.7/46.3

Auto-WEKA 786(784) 296/490 convex 10 fold cv, 8k Train, 50k Test [27, 3, 26] 0.4/15.2

Log. Reg. 5CV 4(-) 4/- MNIST 5 fold cv, 60k Train, 10k Test [2, 23] 0.3/12.1
HP-NNET 5CV 14(4) 7/7 MRBI 5 fold cv, 12k Train, 50k Test [8, 26] 0.9/10.8
HP-NNET 5CV 14(4) 7/7 convex 5 fold cv, 8k Train, 50k Test [8, 26] 0.7/10.7

3 Hyperparameter Optimization Benchmarks
Table 1 summarizes all of the benchmarks we collected for the first version of our hyperparameter
optimization library, HPOlib, which is available at www.automl.org/hpolib/. HPOlib includes
simple test functions (used for convenience in many papers) as well as the following benchmarks:

Low-dimensional benchmarks. We collected three benchmarks with few parameters from [2]:
simple LOGISTIC REGRESSION to classify the popular MNIST dataset; ONLINE LATENT DIRICHLET
ALLOCATION (LDA) for Wikipedia articles, and STRUCTURED SUPPORT VECTOR MACHINES
(SVM). The latter two benchmarks are defined on a grid of hyperparameter values: for each of the
grid points (288 for LDA; 1400 for SVM), algorithm performance data has been precomputed by [2]
to allow for very rapid experiments. Another advantage of such precomputed data is that anyone can
use these benchmarks without having to compile and run the respective ML algorithms.

Medium-dimensional benchmarks. We collected two types of benchmarks of intermediate di-
mensionality from [8]. HP-NNET and HP-DBNET are implementations of a simple neural network
and a deep neural network, respectively. Both run faster on GPUs than CPUs, and both include
continuous and categorical parameters, some of which are conditional. For each hyperparameter in
these benchmarks, an expert-defined prior over good values is defined. Since these priors cannot be
expressed in SMAC’s and SPEARMINT’s formats, they get lost in translation, as does conditionality
information in the case of SPEARMINT.

High-dimensional benchmarks. To test the limits of current optimizers, we also investigated
the AUTO-WEKA framework [3], which encodes combined model selection and hyperparameter
optimization into an enormous hierarchical (i.e., highly conditional) space with 768 hyperparameters.

All benchmarks in HPOlib can be called through the command line. This both allows for the support
of optimizers written in arbitrary programming languages and allows us to control their use of
resources. HPOlib includes python scripts that offer a common interface to the three Bayesian
optimization algorithms used throughout this paper (and can convert between the optimizers’ different
input formats). These scripts call the optimizers and wrap their calls to the machine learning algorithm
being optimized with a tool called runsolver [28] to ensure that they respect given time and memory
limits. If they do not do so (consider, e.g., a call to a neural network setting the number of layers
to 1 000), they are terminated (using SIGTERM, 200 seconds grace period, and then SIGKILL; this
process allows partially trained models to return the quality of their current model). Terminated
or otherwise crashed calls to the machine learning algorithm without valid output yield the worst
possible result for the hyperparameter setting being evaluated. All calls to the machine learner and
their results are stored in a uniform optimizer-independent format, to facilitate the analysis of results.
Finally, the HPOlib scripts also allow restarting interrupted optimizer runs from their last state.

Since overfitting is a critical issue in hyperparameter optimization (especially as hyperparameter
optimization methods improve), HPOlib supports k-fold cross-validation, either by evaluating all k
folds at once, or by evaluating one fold at a time. Out of the benchmarks above only Auto-WEKA
used cross-validation, so to study the importance of cross-validation we added additional versions of
the LOGISTIC REGRESSION and HP-NNET benchmarks with 5-fold cross-validation.
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Table 2: Losses obtained for all optimizers and benchmarks . We report means and standard deviation across 10
runs of each optimizer. For each benchmark, bold face indicates the best mean loss, and underlined values are
not statistically significantly different from the best according to an unpaired t-test (with p=0.05). For HP-NNET
we also provide results for half the function evaluation budget to quantify the improvement over time.

SMAC Spearmint TPE
Experiment #evals Valid. loss Best loss Valid. loss Best loss Valid. loss Best loss

branin (0.398) 200 0.655±0.27 0.408 0.398±0.00 0.398 0.526± 0.13 0.422
har6 (-3.322) 200 -2.977±0.11 -3.154 -3.133±0.41 -3.322 -2.823±0.18 -3.039

Log.Regression 100 8.6±0.9 7.7 7.3±0.2 7.0 8.2±0.6 7.5
LDA ongrid 50 1269.6±2.9 1266.2 1272.6±10.3 1266.2 1271.5±3.5 1266.2
SVM ongrid 100 24.1±0.1 24.1 24.6±0.9 24.1 24.2±0.0 24.1

HP-NNET convex 100 19.5±1.5 17.0 20.6±0.3 20.1 19.5±1.6 17.4
HP-NNET convex 200 18.3±1.9 15.2 20.0±0.9 17.3 18.5±1.4 16.2
HP-NNET MRBI 100 51.5±2.8 46.1 52.2±3.3 46.5 50.0±1.7 47.3
HP-NNET MRBI 200 48.3±1.80 46.1 51.4±3.2 46.5 48.9±1.4 46.9
HP-DBNET convex 100 16.4±1.2 14.5 20.74±6.9 15.5 17.29±1.7 15.3
HP-DBNET convex 200 15.4±0.8 14.0 17.45±5.6 14.6 16.1±0.5 15.3

Auto-WEKA 30h 27.5±4.9 22.3 40.64±7.2 31.9 35.5±2.9 28.8

Log.Regression 5CV 500 folds 8.1±0.2 7.8 8.2±0.1 7.9 8.9±0.5 8.1
HP-NNET convex 5CV 500 folds 18.2±1.5 16.9 23.0±5.0 19.7 20.9±1.3 18.6
HP-NNET MRBI 5CV 500 folds 47.9±0.7 47.2 52.8±5.1(9) 46.6 50.8 ±1.4 48.2

4 Experiments
We ran each optimizer with its default settings 10 times on each benchmark for the number of function
evaluations used in the paper introducing the benchmark. We used a runsolver timeout of one hour
for individual runs (in case of cross-validation, for individual folds); this only took effect for a few
runs on the HP-NNET and HP-DBNET experiments. The HP-NNET and HP-DBNET experiments were
run on a cluster of NVIDIA Tesla M2070s GPUs, which imposed a wall time limit of 24 hours per
optimizer run. Since this did not suffice to perform a sufficient number of function evaluations, we
used HPOlib’s scripts to restart the optimizers from their last saved state until the target number of
function evaluations was achieved.

Table 2 summarizes our results. Overall, SPEARMINT performed best for the low-dimensional contin-
uous problems.1 For the higher-dimensional problems, which also include conditional parameters,
SMAC and TPE performed better. However, we note that based on the small number of 10 runs per
optimizer, many differences are not statistically significant.

For benchmarks including k-fold cross-validation, SMAC evaluated one fold at a time while the
other methods (which do not yet support single fold evaluations) evaluated all k folds. SMAC thus
managed to consider roughly 4 times more configurations than either TPE or SPEARMINT in the
same budget of fold evaluations. Since the budget for each optimizer was expressed as a number of
function evaluations, they were not penalized for choosing costly-to-evaluate hyperparameters, and
in our experiments, SPEARMINT runs were sometimes up to a factor of three slower than those of
TPE; in the future, we plan to use time budgets and SPEARMINT’s time-sensitive EI criterion [2]. We
also studied the CPU time required by the optimizers. SMAC’s and TPE’s overhead was negligible
(< 1 second), but due to the cubic scaling behaviour of its GPs, SPEARMINT required > 42 seconds
to select the next data point after 200 evaluations. This would prohibit its use for the optimization of
cheap functions, but here this overhead was dominated by the expensive function evaluations.

5 Conclusion and Future Work
This work introduces a benchmark library for hyperparameter optimization and provides the first
extensive comparison of three optimizers. To support further research, our software package and
benchmarks are publicly available at www.automl.org/hpolib/. It offers a common interface for
the three optimization packages utilized in this paper and allows the easy integration of new ones. Our
benchmark library is only a first step, but we are committed to making it easy for other researchers to
use it and to contribute their own benchmarks and optimization packages.

1However, it showed some robustness problems, e.g., crashing on 1 of 10 runs for the HARTMANN-6 function
because of a singular covariance matrix. It also had problems with discrete parameter values: by maximizing
expected improvement over a dense Sobol grid instead of the discrete input grid, it sometimes repeatedly chose
values that were rounded to the same discrete values for evaluation (leading to repeated samples).
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