
Information Processing Letters 111 (2011) 326–333
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A note on improving the performance of approximation algorithms
for radiation therapy

Therese Biedl a, Stephane Durocher b, Holger H. Hoos c, Shuang Luan d, Jared Saia d,
Maxwell Young a,∗
a David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada
b Department of Computer Science, University of Manitoba, MB, Canada
c Department of Computer Science, University of British Columbia, BC, Canada
d Department of Computer Science, University of New Mexico, NM, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2010
Received in revised form 1 October 2010
Accepted 11 December 2010
Available online 14 December 2010
Communicated by M. Yamashita

Keywords:
Approximation algorithms
Radiation therapy

The segment minimization problem consists of representing an integer matrix as the
sum of the fewest number of integer matrices each of which have the property that
the non-zeroes in each row are consecutive. This has direct applications to an effective
form of cancer treatment. Using several insights, we extend previous results to obtain
constant-factor improvements in the approximation guarantees. We show that these
improvements yield better performance by providing an experimental evaluation of all
known approximation algorithms using both synthetic and real-world clinical data. Our
algorithms are superior for 76% of instances and we argue for their utility alongside the
heuristic approaches used in practice.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Intensity-modulated radiation therapy (IMRT) is an ef-
fective form of cancer treatment in which the region to be
treated is discretized into a grid. A treatment plan spec-
ifies the amount of radiation to be delivered to the area
corresponding to each grid cell. A device called a multileaf
collimator (MLC) is used to administer treatment in several
steps. In each step, two banks of metal leaves in the MLC
are positioned to cover certain portions of the body sur-
face, while the exposed portions are subjected to a specific
amount of radiation.

A treatment plan is represented as an m × n inten-
sity matrix T of non-negative integer values, whose entries
represent the amount of radiation to be delivered to the

* Corresponding author.
E-mail addresses: biedl@uwaterloo.ca (T. Biedl),

durocher@cs.umanitoba.ca (S. Durocher), hoos@cs.ubc.ca (H.H. Hoos),
sluan@cs.unm.edu (S. Luan), saia@cs.unm.edu (J. Saia),
m22young@uwaterloo.ca (M. Young).
0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.12.011
corresponding grid cells. The MLC leaves partially cover
rows of T ; for each row i there are two leaves, one which
slides inward from the left and one which slides inward
from the right. After each step, the amount of radiation
applied in that step (this can differ per step) is subtracted
from each entry of T that is exposed. The treatment is
complete when all entries are 0. In many cases, the num-
ber of segments does not have significant bearing on whether
overdosing/underdosing occurs; therefore, approximation algo-
rithms are suitable. Setting leaf positions in each step re-
quires time. We aim to minimize the number of steps as
this increases patient throughput and reduces the proce-
dure cost.

Formally, a segment is a matrix S such that non-zeroes
in each row of S are consecutive, and all non-zero entries
of S are the same integer, which we call the segment-value.
A segmentation of T is a set of segment matrices that sum
to T , and we call the cardinality of such a set the size of
that segmentation. The segmentation problem is, given an
intensity matrix T , to find a minimum-size segmentation
of T .

http://dx.doi.org/10.1016/j.ipl.2010.12.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:biedl@uwaterloo.ca
mailto:durocher@cs.umanitoba.ca
mailto:hoos@cs.ubc.ca
mailto:sluan@cs.unm.edu
mailto:saia@cs.unm.edu
mailto:m22young@uwaterloo.ca
http://dx.doi.org/10.1016/j.ipl.2010.12.011

T. Biedl et al. / Information Processing Letters 111 (2011) 326–333 327
Related work. The segmentation problem is known to
be NP-complete, even for a single row [3], and APX-
complete [4]. A number of heuristics are known (see [2,
3,11,16] and references therein). Approaches for obtain-
ing optimal solutions also exist (see [8,12] and references
therein); these approaches do not necessarily terminate
in polynomial time. Bansal et al. [4] provide a 24/13-
approximation algorithm for the single-row problem. Most
relevant to our current work, Luan et al. [13] give two
approximation algorithms for the full m ×n problem; how-
ever, they do not confirm the performance of their algo-
rithms with experiments. Finally, we note that other im-
portant metrics for treatment planning exist, such as total
irradiation time (see [1,7,12]).

Our contributions. Luan et al. [13] made two observa-
tions: (1) T can be decomposed into a particular set P of
0/1 matrices where the segmentation size of each p ∈ P
can be related to the optimal segmentation size of T , and
(2) segmentations for the single-row problem can be used
to obtain good segmentations for the full-matrix problem.
By exploiting these properties, they obtained two algo-
rithms with respective approximation factors of 1 + log2 h
and 2(1 + log2 D) where h is the largest value in T , and D
is roughly the largest difference between consecutive row
elements. Throughout, logb x denotes � logb x�. Our first
contribution is:

• We extend the ideas of [13] to achieve three fast al-
gorithms with approximation factors of (roughly) 3

2 ·
(1 + log3 h), 11

6 · (1 + log4 h) and (24/13) log D . Since
11
6 log4(h) < 3

2 log3(h) < log2(h), for sufficiently large
OPT and h, our first two algorithms improve on pre-
vious work by a factor of ≈ 1.057 and 12

11 , respec-
tively, while our third algorithm improves by a factor
of 13/12.

While admittedly these improvements are not large, the
hope is that they translate into improved performance in
practice. Previous approximation algorithms have not been
tested; therefore, our second contribution is:

• We provide the first experimental evaluation of known
approximation algorithms for the full segmentation
problem, using both synthetic and real-world clinical
data. Our approximation improvements yield signifi-
cant performance gains. Together, our new algorithms
are superior for 76% of test instances.

We remark that our experimental evaluation has prac-
tical value. While newer approaches in radiation therapy
exist [14], the delivery method as described in this pa-
per is the mainstream in current clinics and will likely
stay because of its simplicity and less machine wear and
tear. In current MLCs, segment minimization is performed
by heuristics available in commercial software such as the
CORVUS system manufactured by the NOMOS Corpora-
tion [10]. However, heuristics do not offer solution-quality
guarantees and the run-time for exact methods can be pro-
hibitively high. Instead, fast approximation algorithms can
be used in parallel with heuristics to catch poor-quality
solutions. Finally, we expect that as intensity matrixes
become larger, approximation algorithms will become in-
creasingly useful due to the high running time of exact
methods.

2. Improved approximation algorithms

Let T = (T [i, j]) for i = 1, . . . ,m and j = 1, . . . ,n be
the target-matrix. Define a marker as an index j for which
T [i, j − 1] �= T [i, j], or j = 1 and T [i,1] �= 0, or j = n + 1
and T [i,n] �= 0 (alternatively, one can imagine an addi-
tional column of 0s on the left and the right of T). Let
ρ i be the number of markers in row i of T , and let
ρ = maxAll rows i{ρ i}, i.e. the number of markers in the row
of T having the most markers over all rows. We reiter-
ate the following observation noted in [13]: ρ � 2 · OPT
where OPT is the size of a minimal segmentation of T .
The first approximation algorithm given by Luan et al. [13]
works as follows. Split the intensity matrix T into matrices
P0, . . . , Pk such that T = ∑k

�=0 2� · P� where k = log2 h and
each P� is a 0/1-matrix. A segmentation for T can then be
obtained by taking segmentations of each P� , multiplying
their values by 2� , and taking their union. Since each P� is
a 0/1-matrix, an optimal segmentation of it can be found
easily, and an approximation bound of 1 + log2 h holds.

FIRST IMPROVED ALGORITHM. We extend this approach by
increasing the base to b = 3,4, i.e. writing T = ∑k

�=0 b� ·
P� . But this raises a crucial question: Can we efficiently
solve the segmentation problem in a matrix with values
in {0,1, . . . ,b − 1} such that the resulting segmentation is
a good approximation of the optimal segmentation? Re-
solving this question is non-trivial and requires new tech-
niques over those used in [13].

For b = 3, we wish to segment an intensity matrix P�

that has all entries in {0,1,2}; we call this a 0/1/2-matrix.
Let ρ i

� denote the number of markers in the ith row of P� .

Lemma 1. There exists a segmentation of row i of a 0/1/2-
matrix P� such that the number of 1-segments is at most 1

2 ·ρ i
� ,

and the number of 2-segments is at most 1
4 · ρ i

� + 1
2 .

Proof. We use induction on ρ i
� . The base case is where

none of the cases for the induction can be applied; we
treat this last. For the induction, we identify a subsequence
of the row for which we can add segments, resulting in the
removal of many markers. We detail this for the first of the
cases in the induction step and illustrate them all in Fig. 1:

1. Assume that the row contains a subsequence of the
form 12+1. Here, we use regular expression notation:
12+1 denotes an entry 1, followed by � 1 entries 2,
followed by an entry 1. Let s be a 1-segment that
covers exactly the subsequence of 2s, and consider
P ′ = P − s. Then P ′ has two fewer markers in the ith
row (at the endpoints of s), and so by induction the
ith row can be segmented using at most 1

2 · (ρ i
� − 2)

1-segments, and 1
4 · (ρ i

� − 2) + 1
2 2-segments. Adding

the 1-segment s yields the result.

328 T. Biedl et al. / Information Processing Letters 111 (2011) 326–333
2. If there exists a subsequence of the form 01+0, then
apply a 1-segment to the subsequence of 1s. This re-
moves 2 markers, and adds a 1-segment, and no 2-
segment to the inductively obtained segmentation.

3. If there exists a subsequence of the form 02+1+2+0,
then similarly apply a 2-segment at the first subse-
quence of 2s, then two 1-segments to remove the re-
maining 1+2+ . This removes 4 markers, and adds two
1-segments, and one 2-segment to the inductively ob-
tained segmentation.

4. If there exist two subsequences of the form 02+1+0
or 01+2+0, then similarly apply one 1-segment to one
subsequence of 2s, and one 2-segment to the other
subsequence of 2s, then apply two 1-segments to the
two remaining sequences of 1s. This removes 6 mark-
ers, and adds three 1-segments and one 2-segment to
the inductively obtained segmentation.

5. If there exist two subsequences of the form 02+0, then
similarly apply one 2-segment to one of them, and two
1-segments to the other. This removes 4 markers, and
adds two 1-segments and one 2-segment to the induc-
tively obtained segmentation.

6. If there exists one subsequence of the form 02+1+0
or 01+2+0, and one subsequence of the form 02+0,
then apply one 2-segment to the subsequence 02+0,
and two one 1-segments to the other. This removes 5
markers, and adds two 1-segments and one 2-segment
to the inductively obtained segmentation.

In all the above cases, we have removed at least 2
markers per 1-segment and at least 4 markers per 2-
segment. Thus, counting only segments created and mark-
ers removed 1 thus far, we have at most (1/2) · pi

� 1-
segments and (1/4) · pi

� 2-segments. All that remains to
do is to consider any markers that are remaining.

Assume that none of the above cases can be applied
(i.e., the base case), we argue that now at most three mark-
ers are left. Let 0(1 + 2)+0 be a subsequence that has
markers in it where (1 + 2) denotes the presence of a 1
or a 2. Assume first that the leftmost non-zero is a 1. Then
the subsequence must contain a 2 somewhere (otherwise
we’re in case 2), so it has the form 01+2+(1 + 2)+0. But
after the 2s, no 1 can follow (otherwise we’re in case 1),
so this subsequence has the form 01+2+0. Likewise, if
the rightmost non-zero is 1, then the subsequence has the
form 02+1+0. If the first and last non-zero are 2, then the
subsequence has the form 02+0 (otherwise we’re in case 1
or 3).

If we had two subsequences 0(1 + 2)+0, then each
would have the form 01+2+0 or 02+1+0 or 02+0, and this
is case 4, 5 or 6. So there is only one of them, and it has
at most three markers. We can now eliminate either three
remaining markers with a 1-segment and a 2-segment,
or two remaining markers with a 2-segment. In either
case, the bound on the number of 1-segments used is still
(1/2) · pi

� and the 2-segments is used is (1/4) · pi
� + 1/2

(tight for the case of 02+0). �
There exists a simple algorithm GreedyRowPacking for

combining segmentations of rows of a matrix P� with val-
ues in 1, . . . ,b − 1 into a segmentation of the whole ma-
trix P� . For each value v ∈ {1, . . . ,b − 1}, check whether
any segment in any row has value v . If so, remove a seg-
ment of value v from each row that has one. Combine
these segments into one segment-matrix (also with value
v), and add it to S . Continue until all segments in all rows
have been used in a segment-matrix. Clearly, if each row
has at most ni i-segments (i.e., segments with value i), this
gives a segmentation of P� with at most ni i-segments and
n1 + · · · + nb−1 segments in total. Using the segmentations
of each row obtained with Lemma 1, and combining them
with GreedyRowPacking, gives a segmentation S� of each
0/1/2-matrix P� .

Theorem 1. Assume T = ∑k
�=0 3� P� , where k = 1 + log3 h

and h is the largest value in T , and each P� is a 0/1/2-
matrix. Combining the above segmentations S0, . . . , Sk for ma-
trices P0, . . . , Pk gives a segmentation S for T of size at most
3
2 · k · OPT + 1

2 · k. This segmentation requires O (m · n · log h)

time to find.

Proof. Recall that the segmentation of row i of P� has
at most 1

2 · ρ i
� 1-segments and at most 1

4 · ρ i
� + 1

2 2-
segments (Lemma 1). Let ρ� = maxi ρ

i
� be the maximum

number of markers within any row of P� . By algorithm
GreedyPacking segmentation S� of P� then has at most
1
2 · ρ� 1-segments and at most 1

4 · ρ� + 1
2 2-segments. So

|S�| � 3
4 · ρ� + 1

2 . Matrix P� can have a marker only if
matrix T has a marker in the same location, so ρ� � ρ
by [13]. Since ρ � 2 · OPT , we put it all together to get:

|S| =
k∑

�=0

|S�|

�
k∑

�=0

(
3

4
· ρ� + 1

2

)

�
k∑

�=0

(
3

4
· 2 · OPT + 1

2

)

=
(

3

2
· OPT + 1

2

)
· (1 + log3 h).

For each P� , finding the segmentation requires O (m · n)

time; thus, the entire algorithm runs in time O (m · n ·
log h). �

By extending these ideas, we can prove a 11
6 ·(1+ log4 h)

approximation when b = 4. In theory, our approach could
be taken further; however, the case-by-case analysis is in-
volved (see [6] for details for b = 4).

Example 1. Let

T =
⎛
⎝

1 7 2 6 0

6 2 4 8 2

2 1 3 7 2

⎞
⎠

= 30 ·
⎛
⎝

1 1 2 1 0

0 2 1 2 2

⎞
⎠ + 31 ·

⎛
⎝

0 2 0 2 0

2 0 1 2 0

⎞
⎠ .
2 1 0 1 2 0 0 1 2 0

T. Biedl et al. / Information Processing Letters 111 (2011) 326–333 329
Fig. 1. An illustration of cases 1 through 6 of the proof of Lemma 1.
By Lemma 1, the row segmentations for P0 are as follows:
row 1 belongs to case 1 and uses segments [0 0 1 0 0],
[1 1 1 1 0], row 2 belongs to case 3 and uses segments
[0 0 1 1 1], [0 0 0 1 1], [0 2 0 0 0], and row 3 belongs
to case 4 and uses segments [1 0 0 0 0], [0 0 0 0 2],
[1 1 0 0 0], [0 0 0 1 0]. Applying GreedyRowPacking first
to the value 1 and then to the value 2 gives the following
segmentation for P0:⎛
⎝

0 0 1 0 0

0 0 1 1 1

1 0 0 0 0

⎞
⎠ ,

⎛
⎝

1 1 1 1 0

0 0 0 1 1

1 1 0 0 0

⎞
⎠ ,

⎛
⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

⎞
⎠ and

⎛
⎝

0 0 0 0 0

0 2 0 0 0

0 0 0 0 2

⎞
⎠ .

For P1, the row segments are: row 1 belongs to Case 5
uses [0 1 0 0 0], [0 1 0 0 0], [0 0 0 2 0], row 2 belongs
to case 6 and uses [2 0 0 0 0], [0 0 1 1 0], [0 0 0 1 0],
and row 3 belongs to one of the remaining cases and uses
[0 0 1 0 0], [0 0 0 2 0]. Applying GreedyRowPacking first
to the value 1 and then to the value 2 gives the following
segmentation for P1:⎛
⎝

0 1 0 0 0

0 0 1 1 0

0 0 1 0 0

⎞
⎠ ,

⎛
⎝

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎠

and

⎛
⎝

0 0 0 2 0

2 0 0 0 0

0 0 0 2 0

⎞
⎠ .

SECOND IMPROVED ALGORITHM. Luan et al. showed that for
a single-row problem, if there is an α-approximate so-
lution where all segment-values are at most M , then an
α(log M + 1)-approximate segmentation of T can be found
in polynomial time. Using this property, the authors gave
a 2(log2 D + 1) approximation since any single-row prob-
lem has a 2-approximate solution. Here, the row-difference
D is the maximum difference between consecutive row
elements, or the maximum of the first and last entries
in the row, whichever is larger. We extend this approach
with two observations. First, any segmentation can be con-
verted into a segmentation of the same size with values at
most D . Secondly, values α < 2 are known.

Theorem 2. There exists an algorithm that, for an intensity ma-
trix T with maximum row-difference D, finds a segmentation of
size at most 24

13 ·(log D +1) ·OPT and runs in O (m ·n2 ·h · log D)

time.

Proof. Let S be any segmentation of a single-row inten-
sity matrix T with row-difference D . Modify S such that
no two segments meet, i.e., if some segment ends at in-
dex i, then no segment starts at i + 1. This can always be
done without increasing the number of segments (see [3]).
Any segment S must then have value v � D , for if S ends
at i, then T [i + 1] = T [i] − v since no segment starts at
i + 1. Therefore, we have a segmentation of T of size at
most |S| where all segments have value at most D . Given
that M = D , it follows from the observation of Luan et
al., that we have an α(log D + 1)-approximate segmenta-
tion. Since α � 24

13 is shown in [4], our result follows. The

α � 24
13 algorithm of [4] runs in O (n2 · h) time. Since we

run this over all m rows of each of the O (log D) matri-
ces specified in [13], the running time of our algorithm is
O (m · n2 · h · log D). �
3. Performance evaluation

In many areas, heuristics outperform approximation
algorithms in practice. However, heuristics can become
trapped in local optima and yield low-quality solutions. On
the other hand, as demonstrated by previous work [12],
and by our experiments, computing the optimum is com-
putationally intensive and only possible with matrices of
limited size and h values (hence the need for heuristics).
Therefore, approximation algorithms can play an important
role by providing a fast method for checking solution qual-
ity.

Preliminary work [5] shows that our algorithms fre-
quently catch poor quality solutions yielded by the popular
heuristic of Xia and Verhey [16] which is extensively used
as a benchmark in the literature (see [6] for details). That
said, we expect more recent and sophisticated heuristics
to outperform our algorithms most of the time. We stress
that we do not aim to beat heuristics, only to provide an effi-
cient safeguard against poor quality solutions. There is a vast
literature on segmentation heuristics and, while a compre-
hensive comparison involving these approaches would be
valuable, such an undertaking is outside the scope of this
work.

We implemented four algorithms in Java using roughly
3600 lines of code: (i) Ab=2, the (log2 h +1) approximation
algorithm of [13], (ii) Ab=3, our 3

2 · (log3 h + 1) approxima-
tion algorithm, (iii) Aα=2, the 2(log D + 1) approximation
algorithm of [13], (iv) Aα= 24

13
, our 24

13 · (log D + 1) which

utilizes our implementations of algorithms from [4]. Ex-
perimentation with the 11

6 · (1 + log4 h) approximation al-
gorithm did not yield improved performance over Ab=3,
so we do not consider it further. Finally, we compare
against OPT using the recent state-of-the-art exact algo-
rithms by Cambazard et al. [9] which are shown to com-
pare favourably with another recent exact algorithm [15].
Cambazard et al. provide two exact algorithms: the short-
est path constraint programming algorithm (CPSP) and the
Branch-and-Price (BP) algorithm. We use the following test
data:

330 T. Biedl et al. / Information Processing Letters 111 (2011) 326–333
Table 1
The number of instances where each of approximation algorithms achieves the smallest segmentation with ties included. The largest value in each row is
bolded.

Instances Ab=2 Ab=3 Aα=2 Aα= 24
13

Data Set I 70 24 (34.3%) 55 (78.6%) 14 (20.0%) 18 (25.7%)
Data Set II 22 3 (13.6%) 9 (40.9%) 11 (50.0%) 12 (54.5%)
Data Set III 20 0 (0.0%) 0 (0.0%) 11 (55.0%) 18 (90.0%)

Table 2
An instance-by-instance comparison of Ab=3 and Aα=24/13.

Ab=3 outperforms Aα= 24
13

Aα= 24
13

outperforms Ab=3 Ties

Data Set I 47 (67.1%) 6 (8.6%) 17 (24.3%)
Data Set II 7 (31.8%) 9 (40.9%) 6 (27.3%)
Data Set III 0 (0.0%) 20 (100.0%) 0 (0.0%)

Table 3
Average, median, minimum and maximum ratios measuring the extent of our improvements.

Ratio of Ab=3 over Ab=2 Ratio of Aα= 24
13

over Aα=2

Ave. Med. Min. Max. Ave. Med. Min. Max.

Data Set I 0.9262 0.9161 0.6250 1.2000 0.9860 1.0000 0.7000 1.1667
Data Set II 0.9074 0.8990 0.5714 1.1429 0.9878 1.0000 0.8333 1.1818
Data Set III 0.9644 0.9687 1.0333 0.8958 0.9451 1.0000 1.0357 0.7407
Table 4
Average, median, minimum and maximum ratios of Aα=24/13 over Ab=3.

Ave. Med. Min. Max.

Data Set I 1.1650 1.1111 0.4444 1.8889
Data Set II 0.9810 1.0000 0.6250 1.2500
Data Set III 0.6289 0.6189 0.7333 0.5400

• Data Set I: a real-world data set of 70 clinical inten-
sity matrices from the Department of Radiation Oncol-
ogy at the University of California at the San Francisco
School of Medicine.

• Data Set II: a real-world data set of 22 clinical in-
tensity matrices from prostate, brain, and head-neck
cases from the Department of Radiation Oncology at
the University of Maryland School of Medicine.

• Data Set III: a synthetic data set of 20 intensity matri-
ces. Each matrix is obtained as follows: compute the
sum of the probability density functions of 2–4 bivari-
ate Gaussians generated from two independent stan-
dard univariate Gaussian distributions with amplitude
h and the centers of the distributions are sampled uni-
formly at random. The distributions are discretized by
adding as the value in the (m×n)-grid the integer part
of the corresponding function value.

First, we note that all three data sets are scaled so
h � 23 – this is necessary so that the exact algorithm of [9]
(1) completes within a reasonable amount of time and (2) does
not exceed the allotted memory. Second, Data Set III allows
for testing on intensity matrices where D values are rel-
atively small compared to h. This allows us to investigate
the effect of small D values on the performance of our ap-
proximation algorithms. Testing on matrices with small D
values is also pertinent assuming higher precision MLCs
can allow for more fine-grained intensity matrices.
Table 5
Statistics using the best approximations achieved by running all four al-
gorithms.

Ave. Med. Worst Best

Data Set I 1.1893 1.2000 1.5000 1.0000
Data Set II 1.3636 1.3636 1.6000 1.1250
Data Set III 1.1847 1.1425 1.5000 1.0385

ANALYSIS OF EXPERIMENTS. Tables 6–8 contain the results
for each instance of our evaluation. All experiments were
conducted on a i7 2.8 GHz Intel CPU machine running
a 64-bit version of Linux 10.04. At most 2 GB of RAM
was utilized in any trial with the approximation algorithms
while for OPT, 5 GB of RAM (Tripple Channel DDR3 2000)
was allotted to the program. The time to compute the op-
timal solutions in Data Set I and II was negligible (under
0.5 CPU seconds using BP); however, only CPSP was able
to solve the Data Set II instances and the run-time values
are included in Table 8 since they were significant. Table 1
summarizes performance by enumerating the number of
instances in which each algorithm outperformed all others
(excluding OPT) with ties included.

Our questions. In analyzing our results, we focus on three
questions: (1) How do our improved algorithms compare
against their older counterparts by Luan et al.? (2) How do
the algorithms with an O (log h) approximation guarantee
compare to those with an O (log D) approximation guaran-
tee? (3) How do these approximation algorithms compare
against the optimum solution?

Question 1. Table 1 shows that Ab=3 and Aα=24/13 outper-
form on a larger number of instances than the algorithms
of [13] in all three data sets for a total of 85 out of 112
instances (75.9%). In particular, Ab=3 ties or outperforms
all other approximation algorithms in 55 out of the 70

T. Biedl et al. / Information Processing Letters 111 (2011) 326–333 331
Table 6
Experimental results for Data Set II with the best result provided by the approximation algorithms underscored. The running time was negligible.

Instance m n h D OPT Ab=2 Ab=3 Aα=2 Aα= 24
13

1 20 19 5 5 7 10 8 12 12
2 19 18 5 5 7 11 9 11 11
3 19 14 5 5 9 11 10 15 15
4 19 14 5 5 8 10 10 13 15
5 19 16 5 5 8 12 9 14 13
6 20 16 5 5 8 11 9 12 12
7 20 16 5 5 9 12 9 14 15
8 20 16 5 5 8 12 10 13 13
9 20 11 5 5 7 8 8 12 12

10 27 21 5 5 10 13 14 13 14
11 27 20 5 5 10 12 13 11 11
12 26 18 5 5 8 9 10 12 12
13 26 15 5 5 7 9 9 10 10
14 26 18 5 5 8 11 12 12 14
15 26 17 5 5 8 11 11 10 10
16 26 13 5 5 7 10 9 10 10
17 26 18 5 5 8 11 11 11 11
18 27 20 5 5 8 11 10 10 10
19 21 19 5 5 11 15 12 13 13
20 21 17 5 5 7 9 10 12 12
21 21 15 5 5 8 11 8 11 11
22 20 18 5 5 9 12 9 14 14
23 21 18 5 5 8 11 10 12 12
24 21 15 5 5 6 8 7 9 9
25 21 17 5 5 9 12 9 15 14
26 21 19 5 5 9 13 10 14 12
27 21 21 5 5 11 14 14 13 13
28 21 19 5 5 10 14 13 13 13
29 22 16 5 5 8 11 9 11 11
30 21 11 5 5 5 6 7 7 7
31 20 20 5 5 10 14 13 14 14
32 20 19 5 5 9 11 11 12 13
33 22 15 5 5 7 11 10 10 10
34 21 20 5 5 10 13 12 14 14
35 21 16 5 5 8 9 9 10 10
36 21 14 5 5 8 11 11 12 12
37 25 18 5 5 7 10 10 11 10
38 25 21 5 5 11 14 13 14 13
39 25 18 5 5 8 11 10 13 12
40 26 19 5 5 11 12 14 20 14
41 26 21 5 5 13 16 15 19 17
42 26 18 5 5 9 11 11 12 12
43 25 18 5 5 8 10 10 11 9
44 25 17 5 5 8 11 10 12 12
45 25 21 5 5 10 15 12 15 15
46 7 7 5 5 5 7 6 7 7
47 7 8 5 5 4 6 4 7 7
48 8 9 5 5 5 8 7 7 7
49 8 8 5 5 5 7 6 7 7
50 8 9 5 5 5 7 6 7 6
51 8 9 5 5 6 9 7 11 11
52 8 9 5 5 5 8 5 6 6
53 8 7 5 5 5 7 5 7 7
54 8 9 5 5 6 8 7 8 8
55 21 17 5 5 8 10 10 10 10
56 20 19 5 5 7 9 8 9 9
57 19 14 5 5 5 7 8 6 6
58 20 18 5 5 6 7 8 9 9
59 20 17 5 5 6 7 7 8 8
60 19 15 5 5 3 5 6 4 4
61 20 18 5 5 7 9 10 10 10
62 21 18 5 5 8 10 10 12 12
63 21 20 5 5 7 10 10 10 10
64 23 19 5 5 11 15 12 16 16
65 23 16 5 5 6 10 8 8 8
66 23 12 5 5 4 6 6 7 7
67 23 18 5 5 8 12 10 13 11
68 23 17 5 5 8 11 9 11 11
69 22 14 5 5 5 7 7 8 7
70 22 16 5 5 7 8 9 9 9

332 T. Biedl et al. / Information Processing Letters 111 (2011) 326–333
Table 7
Experimental results for Data Set II with the best result provided by the approximation algorithms underscored. The running time in CPU seconds for OPT

is provided in parentheses.

Instance m n h D OPT Ab=2 Ab=3 Aα=2 Aα= 24
13

1 15 16 10 8 8 18 15 12 12
2 15 16 10 8 11 16 15 15 15
3 15 15 10 9 8 15 16 10 10
4 16 13 10 9 7 14 8 10 10
5 16 16 10 9 9 14 14 14 14
6 16 16 10 8 9 21 13 17 15
7 15 13 10 10 5 8 9 10 9
8 23 27 10 9 14 24 21 25 25
9 24 24 10 7 14 21 18 17 19

10 23 32 10 10 15 24 23 23 20
11 23 24 10 8 14 22 20 19 19
12 23 26 10 8 12 25 17 17 18
13 23 33 10 7 16 23 19 19 18
14 23 36 10 10 17 27 24 22 20
15 20 23 10 9 9 14 14 13 14
16 20 19 9 8 10 14 16 12 13
17 20 22 10 10 10 15 13 13 13
18 20 22 10 9 10 15 17 16 15
19 20 21 10 7 10 16 14 15 14
20 20 19 10 6 9 14 12 11 13
21 20 23 10 10 11 17 16 19 19
22 21 20 10 10 10 17 17 18 15

Table 8
The experimental instances using Data Set III with the best result provided by the approximation algorithms underscored. The running time in CPU seconds
(rounded to the nearest integer) for OPT using the CPSP algorithm of [9] is provided in parentheses. In several cases, the running time is significant.

Instance m n h D OPT Ab=2 Ab=3 Aα=2 Aα= 24
13

1 58 49 20 2 20 (45) 37 34 27 22
2 50 68 20 2 29 (59) 54 54 31 31
3 54 61 20 2 25 (53) 47 46 28 28
4 51 39 20 2 17 (44) 32 29 20 20
5 44 71 20 2 30 (63) 55 55 33 33
6 56 43 21 2 18 (66) 33 30 24 22
7 40 67 21 2 30 (74) 57 54 37 32
8 52 59 21 2 25 (2359) 48 43 29 30
9 44 39 21 2 18 (61) 33 31 23 21

10 68 63 21 2 25 (4214) 48 43 28 29
11 68 47 22 2 18 (123) 32 31 20 20
12 44 69 22 2 32 (147) 59 59 36 32
13 59 37 22 2 18 (115) 30 31 19 19
14 54 59 22 2 26 (124) 49 50 27 27
15 65 60 22 2 18 (103) 32 31 19 19
16 41 50 23 2 25 (12691) 45 45 32 27
17 64 62 23 2 18 (192) 32 32 27 20
18 62 58 23 2 19 (208) 37 34 25 23
19 36 47 23 2 23 (1898) 43 41 28 26
20 59 38 23 2 18 (126) 31 32 19 19
instances (78.6%) in Data Set I while Aα=24/13 ties or out-
performs all other approximation algorithms in 12 out of
the 22 instances (54.5%) in Data Set II and in 18 out of the
20 instances (90.0%) in Data Set III.

Given these positive results, we wish to know by how
much we improve. We examine the number of segments
required by an algorithm per instance and calculate the
ratio of these two values; the median (Med.), minimum
(Min.) and maximum (Max.) ratios over all instances is re-
ported in Table 3. Ab=3 performs substantially better than
Ab=2 overall judging by both the median values. In the
case of Aα=24/13 and Aα=2, our gains are smaller, yet there
is still an overall improvement on average.
Question 2. We contrast the performance of the O (log h)

and O (log D) approximation algorithms. We restrict our-
selves to a comparison of Ab=3 and Aα=24/13 given the pre-
vious discussion. Table 2 provides the results of our com-
parison. We also calculate the average, median, minimum
and maximum ratios on a per-instance basis of Aα=24/13

over Ab=3 in Table 4.
We can tentatively draw some conclusions. When h and

D are relatively equal, Ab=3 approximation generally yields
superior performance in practice; this is certainly the case
for Data Set I. However, as Data Set II illustrates, there
are exceptions; neither algorithm is clearly superior here.
For the case where D is significantly smaller than h, all

T. Biedl et al. / Information Processing Letters 111 (2011) 326–333 333
statistics suggest that Aα=24/13 yields substantially better
solutions.

Question 3. Finally, we compare against OPT. For each data
set, all approximation algorithms are run on each instance
and we take the best solution. Using these best solutions,
average, median, worst and best values are reported in
Table 5. We see that our heuristics are not far from the
optimal solution in most cases.

Running time. All approximation algorithms completed
each instance within 0.01 CPU seconds on Data Set I,
0.02 CPU seconds on Data Set II, and 0.240 CPU seconds
on Data Set III. In contrast, the running time for com-
puting OPT can be significant. For Data Sets I & II, the
algorithm of [9] performs superbly. However, for Data Set
II, this is due to the fact that the h values are scaled to
be small (clinical values were truncated at a single dec-
imal point). By incorporating even another decimal place
of clinical data, we found OPT (using CPSP) did not termi-
nate within 24 hours. In fact, for any of our attempts with
h � 25, the CPSP algorithm of [9] did not complete within
6 hours. Furthermore, attempts with the Branch-and-Price
algorithm (both the light and normal versions) quickly ter-
minated due to memory errors [9] for h � 20. These limi-
tations are a concern for present-day real-world instances.
From a forward-looking perspective, larger intensity matri-
ces may become feasible as technology advances and this
will greatly increase the running time and memory usage
of exact algorithms. The impact of h-values and size is ap-
parent in Data Set III where computing OPT for several
cases required hundreds, or even thousands, of CPU sec-
onds.

In conclusion, our theoretical and experimental results
show that there are fast algorithms that yield segmenta-
tions that are provably not too far from the optimum and
perform well in experiments. While more sophisticated
heuristics likely outperform them, these algorithms are fast
enough that they could be run in parallel with heuristics,
thus providing a check on solution quality without signifi-
cant overhead.
References

[1] R. Ahuja, H. Hamacher, A network flow algorithm to minimize beam-
on time for unconstrained multileaf collimator problems in cancer
radiation therapy, Networks 45 (2005) 36–41.

[2] D. Baatar, N. Boland, R. Johnston, A new sequential extraction heuris-
tic for optimizing the delivery of cancer radiation treatment using
multileaf collimators, INFORMS Journal on Computing 21 (2) (2009)
224–241.

[3] D. Baatar, W. Hamacher, M. Ehrgott, G.J. Woeginger, Decomposition
of integer matrices and multileaf collimator sequencing, Discrete Ap-
plied Mathematics 152 (1–3) (2005).

[4] N. Bansal, D. Coppersmith, B. Schieber, Minimizing setup and beam-
on times in radiation therapy, Proc. of APPROX Lecture Notes in Com-
puter Science 4110 (2006) 27–38.

[5] T. Biedl, S. Durocher, H. H. Hoos, S. Luan, J. Saia, M. Young, Fixed-
parameter tractability and improved approximations for segment
minimization, Technical Report CS-2009-03, University of Waterloo,
January, 2009.

[6] T. Biedl, S. Durocher, H.H. Hoos, S. Luan, J. Saia, M. Young, Fixed-
parameter tractability and improved approximations for segment
minimization, arXiv:0905.4930, 2009.

[7] N. Boland, H. Hamacher, F. Lenzen, Minimizing beam-on time in can-
cer radiation treatment using multileaf collimators, Networks 43 (4)
(2003) 226–240.

[8] S. Brand, The sum-of-increments constraint in the consecutive-ones
matrix decomposition problem, in: Proceedings of the Symposium on
Applied Computing, 2009, pp. 1417–1418.

[9] H. Cambazard, E. O’Mahony, B. O’Sullivan, Hybrid models for the
multileaf collimator sequencing problem, in: Proceedings of the In-
ternational Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems,
2010, pp. 56-70.

[10] CORVUS treatment planning system, http://www.nomos.com/
products_Cor.html.

[11] J. Dai, Y. Zhu, Minimizing the number of segments in a delivery se-
quence for intensity-modulated radiation therapy with a multileaf
collimator, Medical Physics 28 (10) (2001) 2113–2120.

[12] T. Kalinowski, The complexity of minimizing the number of shape
matrices subject to minimal beam-on time in multileaf collimator
field decomposition with bounded fluence, Discrete Applied Mathe-
matics 157 (9) (2009) 2089–2104.

[13] S. Luan, J. Saia, M. Young, Approximation algorithms for minimiz-
ing segments in radiation therapy, Information Processing Letters 101
(2007) 239–244.

[14] K. Otto, Volumetric modulated arc therapy: IMRT in a single gantry
arc, Medical Physics 35 (1) (2008) 310–317.

[15] Z.C. Taskin, J.C. Smith, H.E. Romeijn, J.F. Dempsey, Optimal multileaf
collimator leaf sequencing in IMRT treatment planning, Operations
Research 58 (3) (2010) 674–690.

[16] P. Xia, L. Verhey, Multileaf collimator leaf sequencing algorithm for
intensity modulated beams with multiple static segments, Medical
Physics 25 (1998) 1424–1434.

http://www.nomos.com/products_Cor.html
http://www.nomos.com/products_Cor.html

	A note on improving the performance of approximation algorithms for radiation therapy
	Introduction
	Improved approximation algorithms
	Performance evaluation
	References

