Bayesian Networks
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» Definition of Bayesian networks
o Representing a joint distribution by a graph

o Can yield an efficient factored representation for a joint
distribution

» Inference in Bayesian networks
o Inference = answering queries such as P(Q | e)

o Intractable in general (scales exponentially with num
variables)

o But can be tractable for certain classes of Bayesian networks
o Efficient algorithms leverage the structure of the graph




Law of Total Probability (aka “summing out” or
marginalization)

P(a) — Zb P(a, b)
= Zb P(a | b) P(b) where B is any random variable

Why is this useful?

given a joint distribution (e.g., P(a,b,c,d)) we can obtain any
“marginal” probability (e.g., P(b)) by summing out the other variables,
e.g.,

P(b) = 2., 2 249 Pa, b, ¢, d)



Less obvious: we can also compute any conditional
probability of interest given a joint distribution, e.g.,

P(c|b) =2, Z;P(a,c,d | b)
=1/P(b) 2, %, P(a, c,d,b)

where 1 / P(b) is just a normalization constant

Thus, the joint distribution contains the information we
need to compute any probability of interest.



We can always write
P(a,b,c,...z) =P(a|b,c,....2) P(b,c, ... 2)
(by definition of joint probability)

Repeatedly applying this idea, we can write
P(a,b,c,...z) =P(a|b,c,....2) P(b|c,..2z) P(c|..2z)..P(z)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities



Conditional Independence

O

» 2random variables A and B are conditionally independent given C iff

P(a,b|c)=P(a|c)P(b|c) forallvaluesa,b,c

A_B_C
O 1

» More intuitive (equivalent) conditional formulation o
o A and B are conditionally independent given C iff 1 0
P(a|b,c)=P(ajc) OR P(b|a,c)=P(b|c), forall valuesa,b,c
1 1
1 1 (0)
Are A, B, and C independent?
0] 1 1
P(A=1, B=1,C=1) = 2/10 p(A=1) p(B=1) p(C=1) = V2 * 6/10 * Vo= 3/20 0 1 0
Are A and B given C conditionally independent of each other? 0 0 1
1 0) (0)
P(A=1, B=1| C=1) =2 /5 P(A=1|C=1) p(B=1|C=1) = 2/5 *3/5= 6/25 T T T
1 0) (0]







“...probability theory is more fundamentally concerned with
the structure of reasoning and causation than with numbers.”

Glenn Shafer and Judea Pearl
Introduction to Readings in Uncertain Reasoning,
Morgan Kaufmann, 1990



Full joint probability distribution can answer
questions about domain

Intractable as number of variables grow

Unnatural to have probably of all events unless large amount
of data is available

Independence and conditional independence
between variables can greatly reduce number of
parameters.

We introduce a data structure called Bayesian
Networks to represent dependencies among
variables.



You have a new burglar alarm installed at home

Its reliable at detecting burglary but also responds to
earthquakes

You have two neighbors that promise to call you at
work when they hear the alarm

John always calls when he hears the alarm, but
sometimes confuses alarm with telephone ringing

Marry listens to loud music and sometimes misses
the alarm



Example

O

» Consider the following 5 binary variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

What is P(B | M, J) ? (for example)

We can use the full joint distribution to answer this question
Requires 25 = 32 probabilities

Can we use prior domain knowled%e to come up with a Bayesian
network that requires fewer probabilities?




The Resulting Bayesian Network
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Bayesian Network

O

» A Bayesian Network is a graph in which each node is
annotated with probability information. The full
specification is as follows

A set of random variables makes up the nodes of the network

A set of directed links or arrows connects pair of nodes. X2>Y
reads X is the parent of Y

Each node X has a conditional probability distribution
P(X|parents(X))

The graph has no directed cycles (directed acyclic graph)




P(M, J,A,E,B) = P(M|J,AE,B)p(J,A,E,B)= P(M|A) p(J,A,E,B)
= P(M|A) p(J|A,E,B)p(A,E,B) = P(M|A) p(J|A)p(A,E,B)
= P(M|A) p(J|A)p(A|E,B)P(E,B)
= P(M|A) p(J|A)p(A|E,B)P(E)P(B)

In general,
P(X1, X5,....XN) = L1 p(X; | parents(X; ) )

/
The full joint distribution The graph-;med approximation






A Tale of Three Graphs - Part 1

i

e The graph above means

pla,b,c) = plalc)

C

=~ pla)p(b) in general

p(blc)p(c)
alc)p(blc)p(c)

e S0 ¢ and b not independent



A Tale of Three Graphs - Part 1

e However, conditioned on ¢

pla,b.c) _ plajo)p(blelp(c) _ plalc)p(blc)

p(ﬂr b‘{?) —

|
p(c) p(c)
e S0a 1l blc



A Tale of Three Graphs - Part 1

o Note the path from a to b in the graph

o When ¢ is not observed, path Is open, a and b not
independent
o When ¢ is observed, path is blocked, a and b independent

o |n this case c is tail-to-tail with respect to this path



Conditionally independent effects:

B and C are conditionally independent
Given A

e.g., A is a disease, and we model
B and C as conditionally independent
symptoms given A






A Tale of Three Graphs - Part 2

i

O—0O—0O

o The graph above means

pla,b,c) = pla)p(b|c)p(c|a)

e Again a and b not independent



A Tale of Three Graphs - Part 2

a ¢ b

O—@—0O

e However, conditioned on ¢

pla,b,c)  pla)p(b|c)

pla,bjc) = o) 'p(ﬂ) -p(cla)
_pla)p(blc) plaje)p(c)
p(c) pla)
e,

Bayes' Theorem

= plaje)p(bic)

e SOa Il b|c



Independent Causes:

“Explaining away” effect:

Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm
example

A and B are (marginally) independent
but become dependent once C is known



A Tale of Three Graphs - Part 3

a b

e The graph above means

pla,b,c) = pla)p(b)p(cla,b)
pla,b) = Y pla)p(b)p(cla,b)
= pla)p(b)

e This time a and b/ are independent



A Tale of Three Graphs - Part 3

i

e However, conditioned on ¢

pla,b,c)  pla)p(b)p(c|a,b)

blc) = —
Pl = p(©

# plalc)p(b|c) In general

e Soallblc



a b a b

i C

o Frustratingly, the behaviour here is different

e When ¢ Is not observed, path is blocked, @ and b
independent

e When c is observed, path is unblocked, « and b not
iIndependent

* Inthis case c Is head-to-head with respect to this path

o Situation is in fact more complex, path is unblocked if any
descendent of ¢ is observed



Constructing a Bayesian Network: Step 1

9,




Constructing this Bayesian Network: Step 2

O

Burglary P(B) P(E)
P(J,M, A, E, B) = Coursiar) 22 uate ) 2

P(J | A) P(M | A) P(A | E, B) P(E) P(B)

L)

95
94
29
.001

4 PO
i .70
7| o

There are 3 conditional probability tables (CPDs) to be determined:
P(J|A), P(M | A), P(A|E, B)

o Requiring 2 + 2 + 4 = 8 probabilities

* And 2 marginal probabilities P(E), P(B) -> 2 more probabilities

* Where do these probabilities come from?
o Expert knowledge
o From data (relative frequency estimates)
o Or a combination of both - see discussion in Section 20.1 and 20.2 (optional)




The Bayesian network
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Consider n binary variables

Unconstrained joint distribution requires O(2")
probabilities

If we have a Bayesian network, with a maximum of k
parents for any node, then we need O(n 2K)
probabilities

Example

Full unconstrained joint distribution
n = 30: need 109 probabilities for full joint distribution

Bayesian network
n = 30, k = 4: need 480 probabilities



O

Suppose we choose the ordering M, J, A, B, E

P(J\M)= P(J)?




O

Suppose we choose the ordering M, J, A, B, E

P(JIM) = P(J)? No
P(A|J.M) = P(A|])? P(A|J,M) = P(A)?




O

Suppose we choose the ordering M, J, A, B, E

Burglary

P(J|M) =P(J)? No

P(A|J.M) = P(A|J)? P(A|J.M) = P(A)? No
P(B|A,J.M) = P(B|A)?

P(B|A,J.M) = P(B)?




O

Suppose we choose the ordering M’, J, A, B, E

Earthquake

P(J|M) = P(J)? No

P(A|J,M) = P(A|J)? P(A|J.M) = P(A)? No
P(B|A,J,M) — P(B|A)? Yes

P(B|A,J,M) = P(B)? No

P(E|B,A,J.M) = P(E|A)?

P(E|B,A.J.M) — P(E|A, B)?




O

Suppose we choose the ordering M, J, A, B, E

P(JIM) = P(J)? No

P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J,M) — P(B|A)? Yes

P(B|A,J,M) — P(B)? No

P(E|B,A,J.M) = P(E|A)? No
P(E|B,A.J.M) = P(E|A,B)? Yes




The Bayesian Network from a different Variable Ordering

MaryCalls

JohnCalls

Earthquake

(a)




The Bayesian Network from a different Variable Ordering

O

Order of {M, J,E,B,A}

MaryCalls

JohnCalls

Earthquake




Inference in Bayesian Networks

O




Exact inference in BNs

* A query P(X|e) can be answered using
marginlization.

P(X|e)=aP(X,e)=a EP[X,E,}'] .

Burglary PgoBl) Earthquake I:,(f;

P(d)
95
94
29
.001
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7| o




Inference by enumeration

O

P(B|j,m)=aP(B,jm)=a ZEP(B,E,&,;};m} .
i a

Burglary PO(OBI) Earthquake };(f;)

_B E P(4)
t t 95
Alarm 7| o4
foot 29

f F | .oo1

4 LD
' 70
7l o

P(bg.m) = a 33 P(BP(e)Plalb, )P(j|a) P(m|a)




P(bg.m) = a 33 P(BP(e)Plalb, )P(j|a) P(m|a)

o We have to add 4 terms each have 5 multiplications.
o With n Booleans complexity is O(n2m)
o Improvement can be obtained

P(blj,m) = aP(b) Y P(e)}>  P(alb,e)P(jla)P(m|a).

P(Blj, m) = (000050224, 0.0014919) ~ (0.284,0.716} .




Inference by enumeration

P(—alb,e) P(alb,—e)
.05 .94

P(-alb,=e)
06

95

What is the problem? Why is this inefficient ?




Variable elimination

O

P(B|j, m)=a P(B) Z Fle) ZP(aIB, e) P(jla) P(inla) .
B A

» Store values in vectors and reuse them.

i (;m}) )




Polytree: there is at most one undirected path
between any two nodes. Like Alarm.

Time and space complexity in such graphs is linear
In n

However for multi-connected graphs (still dags) its
exponential in n.



Clustering Algorithm

» If we want to find posterior probabilities for many
queries.

P(C)=.3 ‘

@ P(C)=5
C | P(S) | C | P(R) @
i | 10 @ @ A P(S+R=x1)

f1 50 f£1:20 o]
(g @ (| 08 0272 18
S_R]P(W) S+R | POW) f| 10 40.10 40
t t| .99 t ¢+ |99
AR ef | oo | (Gas
joil 90 AL
S rpe ff] 00

(@) (b) |




» Give that exact inference is intractable in large
networks. It is essential to consider approximate
inference models

Discrete sampling method
Rejection sampling method
Likelihood weighting
MCMC algorithms



Discrete sampling method

9,




Discrete sampling method

P(S)

10
A0

T T e v s s s s s s s s s s

I~ =0




Discrete sampling method

O

» P(cloudy)= < 0.5, 0.5 > suppose T
» P(sprinkler|cloudy=T)= < 0.1, 0.9 > suppose F
¢ P(rain|cloudy =T) = < 0.8, 0.2 > suppose T

» P(W| Sprinkler=F, Rain=T) = < 0. 9 0.1>
Suppose T .........................................................

c | pis) " PR)
¢ [True, False, True, True] aEr 2




Discrete sampling method

O

function PRIOR-SAMPLE(br) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X,,. .., X))

X «— an event with n elements
for1 = 1tondo
r; < a random sample from P(X; ' parents(X;))

returnx

Figure 14.12 A sampling algorithm that generates events from a Bayesian network.




Discrete sampling method

O

e Consider p(T, F, T, T)=0.5% 0.9 *0.8 ¥ 0.9 =
0.324.

» Suppose we generate 1000 samples
op(T,F, T, T) =350/1000
o P(T) = 550/1000

i Npglz1,..  ,2n)

N—oo N =SPSI:I1""*I“) = F(Ilﬁ*'*}mﬂ) .

o Problem?




Rejection sampling in BNs

9,




Rejection sampling in BNs

O

function REJECTION-SAMPLING(X e, bn, N )returns an estimate of P{X |e)
inputs: X, the query variable
e, evidence specified as an event
brn. a Bayesian network
N, the total number of samples to be generated
local variables: N, a vector of counts over X', mitially zero

for j=1to Ndo
X «— PRIOR-SAMPLE( fn)
if ¥ 1s consistent with e then

N[z]+N[z]+1 where X is the value of X in X
return NORMALIZE(N[ X ])

Figure 14.13  The rejection sampling algorithm for answering queries given evidencein a
Bayesian network.




Rejection sampling in BNs

O

» P(rain | sprinkler =T) using 1000 samples
o Suppose 730 of them sprinkler = false of the 270

o 80 rain = true and 190 rain = false
o P(rain |sprinkler =true) Normalize(8,19) = <0.296,0.704>
o Problem?

« Rejects so many samples

« Hard to sample rear events
« P(rain | redskyatnight=T)




Likelihood weighting

O

P(C,S,W,R) = P(C) * P(S|C) * P(R|C) * P(W|S,R)

Now suppose we want samples that S and W are [ PS)

true 1] .10
£l .50

Z={C,W} e={S,W}

pC.sWR) = 1Pz parents(z)[ ] (e, | parents(e,))




Likelihood weighting

O

P(C.SW,R)= []p(z parents(z))[ | p(g, | parents(g,))

[
Sample this part  Syg(z,e) = | [ P(zi|parents(Z;))
1=1

mn
Calculate this part from model  (z,e) = H P(Eﬂpﬂl}“ﬂnfsiﬂ-’i):} i
i=1




Likelihood weighting

» Generate only events th@are consistent with
evidence

o Fix values for Evidence and only sample query
variables.

o Weight the samples based on the hkehhood of the event
aCCOI‘dll’lg tothe evidence, G e
o P(rain|sp=T, WG=T)
~ Sample p(cl) > <o0.5,0.5 >

c ) | P(R)
«w <-w *p(sp=T||cl =T)=0.1 110 80
f so 20

= p(rain|cloudy=T) <0.8, 0.2> e - L £ Kok ............ E
«w <-w * p(WG|SP =T, R=T)= 0.099 ' ' |




Likelihood weighting

O

» Examining sampling distribution over variables
that are not part of evidence

P( Rain|Sprinkler = true, WetGrass = true).
w 1s set to 1.0. Then an event is generated:

1. Sample from P{Cloudy) = (0.5, 0.5}; suppose this returns #7ue.
2. Sprinkler is an evidence variable with value f7ue. Therefore, we set
w «— w X P(Sprinkler = true{Cloudy = true) = 0.1.
3. Sample from P(Rain|Cloudy = true) = (0.8, 0.2); suppose this returns #rue.
4. WetGrass 1s an evidence variable with value f7ue. Therefore. we set

w — w x P{WetGrass = true|Sprinkler = true, Rain = true) = 0.099




example

O

P(B) P(E)
Burglary ) Earthquake ) [ g0z
B E |P(ABE)
s VR 95
T .E 94
F T 29
F F 001
P(J|A) A [P(M][A)
F | .05 F| .01
. w
We keep the following table Sampic TKey Weight
1 ~b |ve  fva |vj [vm 0.997

If the same key happens more than once, we add weights




Burglary

P(B)
- . Earthquake

B E |P(ABE)
T T 95

T F| 94

F T | .29

F F | .001

P(E)

002

P(J|A) A [P(M[A)
F | .05 F| .01
Evidence is Burglary=false and Earthquake=false
w
Sample |Key Weight
1 ~b  |~e ~a ~j ~m 0.997




P(B) P(E)
. Earthquake 002
B E [P(ABE)
T 7T 95
T F 94
F T 29
F F 001
P(J|A) A [P(M][A)
F 05 F| .01
Evidence is Alarm=false and JohnCalls=true.
W
Sample |Key Weight
1 ~b  |~e ~a ~j ~m 0.997

0.05




P(B) P(E)
Burglary ) Earthquake ) [ g0z
B E |P(A[BE)
T T| 95
T F| .94
F T| .29
F F | .001
P(J|A) A [P(M][A)
F| .05 F| .01
Evidence is JohnCalls=true and MaryCalls=true.
w
Sample |Key Weight
1 ~b |~e ~a ~j ~m 0.997
2 ~b |~e ~a j ~m 0.05
3 ~b |~ve a j m 0.63




P(B) P(E)
Burglary . Earthquake 002
B E |P(AB.E)
T T 95
T F| .94
F T| .29
F F | .00
P(J|A) A [P(M[A)
T| 90 @ T| .70
F| .05 F| .01
Evidence is Burglary=true and Earthquake=false.
w
Sample |Key Weight
1 ~b  |~e ~a ~j ~m 0.997
2 ~b |~e ~a i ~m 0.10
3 ~b  |~e a j m 0.63
4 b ~e ~a ~j ~m 0.001




Using Likelihood Weights

O

w
Sample [Key Weight
1 ~b  |~ve ~a ~j ~m 0.997
2 ~b |~e ~a i ~m 0.10
3 ~b  |~e a j m 0.63
4 b ~e ~a ~j ~m 0.001

P(Burglary=true) = (0.001) / (0.997 + 0.10 + 0.63 + 0.001) = 0.00058

p(Alarm =true | johncall = true) = 0.63/(0.10 + 0.63) = 0.63/0.73 = 0.863




Given a graph, can we “read off” conditional independencies?

O

A node is conditionally independent
of all other nodes in the network
given its Markov blanket (in gray)




The MCMC algorithm

O




Example estimate P(R|SP =T , WG=T) using
MCMC

Initialize the other variables randomly consistent
with query [T, T, F, T]

Sample non evidence variables.
P(C| S =T, R=F) > [40,60] assume cl =F
|F,T,F,T]
P(R|CL=F, SP =T, WG=T) - assume rain =T
|F,T,T,T]
Sample CL again..



