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Bayesian Networks



 Definition of Bayesian networks

 Representing a joint distribution by a graph

 Can yield an efficient factored representation for a joint 
distribution

 Inference in Bayesian networks

 Inference = answering queries such as P(Q | e)

 Intractable in general (scales exponentially with num 
variables)

 But can be tractable for certain classes of Bayesian networks

 Efficient algorithms leverage the structure of the graph



Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka “summing out” or 
marginalization)

P(a)  = b P(a, b) 

= b P(a | b) P(b)        where B is any random variable

Why is this useful?

given a joint distribution (e.g., P(a,b,c,d)) we can obtain any 
“marginal” probability (e.g., P(b)) by summing out the other variables, 
e.g.,

P(b)  = a c d P(a, b, c, d) 



Less obvious: we can also compute any conditional 
probability of interest given a joint distribution, e.g.,

P(c | b)  = a d P(a, c, d | b)  

= 1 / P(b)  a d P(a, c, d, b)

where 1 / P(b) is just a normalization constant

Thus, the joint distribution contains the information we 
need to compute any probability of interest.



Computing with Probabilities: The Chain Rule or 
Factoring

We can always write
P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z)

(by definition of joint probability)

Repeatedly applying this idea, we can write
P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities



Conditional Independence

 2 random variables A and B are conditionally independent given C iff

P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c

 More intuitive (equivalent) conditional formulation

 A and B are conditionally independent given C iff

P(a | b, c) = P(a | c) OR   P(b | a, c) =P(b | c),   for all values a, b, c

Are A, B, and C independent?

P(A=1, B=1, C=1) =  2/10           p(A=1) p(B=1) p(C=1) = ½ * 6/10 * ½= 3/20

Are A and B given C conditionally independent of each other?

P(A=1, B=1| C=1) =2 /5              P(A=1|C=1) p(B=1|C=1) = 2/5 *3/5= 6/25
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 Intuitive interpretation:

P(a | b, c) = P(a | c) tells us that learning about b, given that we 
already know c, provides no change in our probability for a, 

i.e., b contains no information about a beyond what c provides

 Can generalize to more than 2 random variables

 E.g., K different symptom variables X1, X2, … XK, and C = disease

 P(X1, X2,…. XK | C) = P(Xi | C)

 Also known as the naïve Bayes assumption



“…probability theory is more fundamentally concerned with 
the structure of reasoning and causation than with numbers.”

Glenn Shafer and Judea Pearl
Introduction to Readings in Uncertain Reasoning,
Morgan Kaufmann, 1990



Bayesian Networks

 Full joint probability distribution can answer 
questions about domain

 Intractable  as number of variables grow

 Unnatural to have probably of all events unless large amount 
of data is available

 Independence and conditional independence 
between variables can greatly reduce number of 
parameters. 

 We introduce a data structure called Bayesian 
Networks to represent dependencies among 
variables.



Example

 You have a new burglar alarm installed at home

 Its reliable at detecting burglary but also responds to 
earthquakes 

 You have two neighbors that promise to call you at 
work when they hear the alarm

 John always calls when he hears the alarm, but 
sometimes confuses alarm with telephone ringing

 Marry listens to loud music and sometimes misses 
the alarm



Example

 Consider the following 5 binary variables:
 B = a burglary occurs at your house
 E = an earthquake occurs at your house
 A = the alarm goes off
 J  = John calls to report the alarm
 M = Mary calls to report the alarm

 What is P(B | M, J) ?  (for example)

 We can use the full joint distribution to answer this question
 Requires 25 = 32 probabilities

 Can we use prior domain knowledge to come up with a Bayesian 
network that requires fewer probabilities?



The Resulting Bayesian Network



Bayesian Network

 A Bayesian Network is a graph in which each node is 
annotated with probability information. The full 
specification is as follows

 A set of random variables makes up the nodes of the network

 A set of directed links or arrows connects pair of nodes. XY 
reads X is the parent of Y

 Each node X has a conditional probability distribution 
P(X|parents(X))

 The graph has no directed cycles (directed acyclic graph)



 P(M, J,A,E,B) =   P(M| J,A,E,B)p(J,A,E,B)= P(M|A) p(J,A,E,B)   

= P(M|A) p(J|A,E,B)p(A,E,B) = P(M|A) p(J|A)p(A,E,B)

= P(M|A) p(J|A)p(A|E,B)P(E,B)

= P(M|A) p(J|A)p(A|E,B)P(E)P(B)

In general,

p(X1, X2,....XN) = p(Xi | parents(Xi ) )

The full joint distribution The graph-structured approximation



Examples of 3-way Bayesian Networks

A CB Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)









Examples of 3-way Bayesian Networks

A

CB

Conditionally independent effects:
p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent
Given A

e.g., A is a disease, and we model 
B and C as conditionally independent
symptoms given A



Examples of 3-way Bayesian Networks

A CB Markov dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)







Examples of 3-way Bayesian Networks

A B

C

Independent Causes:
p(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm 
example

A and B are (marginally) independent 
but become dependent once C is known









Constructing a Bayesian Network: Step 1

 Order the variables in terms of causality (may be a 
partial order)

e.g., {E, B} -> {A} -> {J, M}



Constructing this Bayesian Network: Step 2

 P(J, M, A, E, B) =    

P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B)

 There are 3 conditional probability tables (CPDs) to be determined:
P(J | A),  P(M | A),  P(A | E, B) 
 Requiring 2 + 2 + 4 = 8 probabilities

 And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities

 Where do  these probabilities come from?
 Expert knowledge

 From data (relative frequency estimates)

 Or a combination of both - see discussion in Section 20.1 and 20.2 (optional)



The Bayesian network



Number of Probabilities in Bayesian 
Networks

 Consider n binary variables

 Unconstrained joint distribution requires O(2n) 
probabilities

 If we have a Bayesian network, with a maximum of k 
parents for any node, then we need O(n 2k) 
probabilities

 Example

 Full unconstrained joint distribution

 n = 30:  need 109 probabilities for full joint distribution

 Bayesian network

 n = 30, k = 4:  need 480 probabilities













The Bayesian Network from a different Variable Ordering



The Bayesian Network from a different Variable Ordering

Order of {M, J,E,B,A }



Inference in Bayesian Networks



Exact inference in BNs

 A query P(X|e) can be answered using 
marginlization.



Inference by enumeration



 We have to add 4 terms each have 5 multiplications. 

 With n Booleans complexity is O(n2n)

 Improvement can be obtained



Inference by enumeration

• What  is the problem? Why is this inefficient ?



Variable elimination 

 Store values in vectors and reuse them.



Complexity of exact inference

 Polytree: there is at most one undirected path 
between any two nodes. Like Alarm.

 Time and space complexity in such graphs is linear 
in n

 However  for multi-connected graphs (still dags) its 
exponential in n.



Clustering Algorithm

 If we want to find posterior probabilities for many 
queries.



Approximate inference in BNs

 Give that exact inference is intractable in large 
networks. It is essential to consider approximate 
inference models

 Discrete sampling method

 Rejection sampling method

 Likelihood weighting

 MCMC algorithms



Discrete sampling method

 Example : unbiased coin

 Sampling this distribution

 Flipping the coin.. Flip the coin 1000 times

 Number of heads / 1000 is an approximation of 
p(head)



Discrete sampling method



Discrete sampling method

 P(cloudy)= < 0.5 ,  0.5 > suppose T

 P(sprinkler|cloudy=T)= < 0.1 ,  0.9 > suppose F

 P(rain|cloudy =T) = < 0.8 ,  0.2 > suppose T

 P(W| Sprinkler=F, Rain=T) =  < 0.9 ,  0.1 > 
suppose T

 [True, False, True, True]



Discrete sampling method



Discrete sampling method

 Consider p(T, F, T, T)= 0.5 * 0.9 * 0.8 * 0.9 = 
0.324.

 Suppose we generate 1000 samples

 p(T, F, T, T) = 350/1000

 P(T) = 550/1000

 Problem?



Rejection sampling in BNs

 Is a general method for producing samples from a 
hard to sample distribution.

 Suppose p(X|e). Generate samples from prior distribution 
then reject the ones that do not match evidence.



Rejection sampling in BNs



Rejection sampling in BNs

 P(rain | sprinkler =T) using 1000 samples

 Suppose 730 of them sprinkler = false of the 270

 80 rain = true and 190 rain = false

 P(rain |sprinkler =true) Normalize(8,19) = <0.296,0.704>

 Problem?

 Rejects so many samples

 Hard to sample rear events

 P(rain | redskyatnight=T)



Likelihood weighting

P(C,S,W,R) = P(C) * P(S|C) * P(R|C) * P(W|S,R)

Now suppose we want samples that  S and W are 

true

Z= {C,W}   e={S,W}

P(C,S,W,R) = ))(|())(|( eezz jjii
parentspparentsp



Likelihood weighting

Sample this part 

Calculate this part from model

))(|())(|( eezz jjii
parentspparentspP(C,S,W,R) =



Likelihood weighting

 Generate only events that are consistent with 
evidence

 Fix values for Evidence and only sample query 
variables. 

 Weight the samples based on the likelihood of the event 
according to the evidence.

 P(rain|sp=T, WG=T)

 Sample p(cl)  <0.5, 0.5 >

 w <- w * p(sp=T||cl =T)=0.1

 p(rain|cloudy=T) <0.8, 0.2>

 w <- w * p(WG|SP =T, R=T)= 0.099



Likelihood weighting

 Examining sampling distribution over variables 
that are not part of evidence



example

We keep the following table

If the same key happens more than once, we add weights 

W

Sample Key Weight

1 ~b ~e ~a ~j ~m 0.997



W

Sample Key Weight

1 ~b ~e ~a ~j ~m 0.997

Evidence is Burglary=false and Earthquake=false



W

Sample Key Weight

1 ~b ~e ~a ~j ~m 0.997

2 ~b ~e ~a j ~m 0.05

Evidence is Alarm=false and JohnCalls=true.



W

Sample Key Weight

1 ~b ~e ~a ~j ~m 0.997

2 ~b ~e ~a j ~m 0.05

3 ~b ~e a j m 0.63

Evidence is JohnCalls=true and MaryCalls=true.



W

Sample Key Weight

1 ~b ~e ~a ~j ~m 0.997

2 ~b ~e ~a j ~m 0.10

3 ~b ~e a j m 0.63

4 b ~e ~a ~j ~m 0.001

Evidence is Burglary=true and Earthquake=false.



Using Likelihood Weights

W

Sample Key Weight

1 ~b ~e ~a ~j ~m 0.997

2 ~b ~e ~a j ~m 0.10

3 ~b ~e a j m 0.63

4 b ~e ~a ~j ~m 0.001

P(Burglary=true) = (0.001) / (0.997 + 0.10 + 0.63 + 0.001) = 0.00058

p(Alarm =true | johncall = true) =  0.63 / (0.10 + 0.63) = 0.63 / 0.73 = 0.863



Given a graph, can we “read off” conditional independencies?

A node is conditionally independent
of all other nodes in the network
given its Markov blanket (in gray)



The MCMC algorithm

 Markov Chain Monte Carlo

 Assume that calculating p(x|markovblanket(x)) is easy

 Unlike other samplings which generate events from scratch, 
MCMC makes a random change to the preceding event.

 At each step a value is generated for one of the non evidence 
variables condition on its markov blanket.



The MCMC algorithm

 Example estimate P(R|SP =T , WG=T) using 
MCMC

 Initialize the other variables randomly consistent 
with query [T, T, F, T]

 Sample  non evidence variables. 

 P(C| S =T, R=F)  [40,60]  assume cl =F

 [F,T,F,T]

 P(R|CL= F, SP =T,  WG=T)  assume rain =T

 [F,T,T,T]

 Sample CL again..


