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Abstract. We introduce a new family of saddle-point minimum residual methods for iteratively
solving saddle-point systems using a minimum or quasi-minimum residual approach. No symme-
try assumptions are made. The basic mechanism underlying the method is a novel simultaneous
bidiagonalization procedure that yields a simplified saddle-point matrix on a projected Krylov-like
subspace and allows for a monotonic short-recurrence iterative scheme. We develop a few variants,
demonstrate the advantages of our approach, derive optimality conditions, and discuss connections
to existing methods. Numerical experiments illustrate the merits of this new family of methods.
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1. Introduction. Consider the problem of iteratively solving large and sparse
saddle-point systems of the form

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

f
g

˙

,(1)

where A P Rnˆn, G1, G2 P Rmˆn, f P Rn, and g P Rm. We assume, as is typically the
case in most applications, that m ă n. Throughout our discussion we will denote the
matrix of (1) by K:

K “
ˆ

A GT
1

G2 0

˙

.

Saddle-point systems arise in a large variety of applications, and numerical solu-
tion methods have been extensively explored [5, 7, 33]. But there are relatively few
solvers that have been tailored specifically to the block structure of these systems.
Rather, general iterative solvers are typically used, and exploiting the block structure
is often reserved to the preconditioning stage. Our goal is to develop solvers for (1)
that take into account the block structure of the matrix K. We are interested in the
most generic setting here, i.e., we allow A to be any matrix (from symmetric positive
definite to symmetric indefinite to nonsymmetric), and allow G1 ‰ G2.

We introduce a family of short-recurrence solvers that are based on residual norm
minimization or quasi-minimization and call this family SPMR: saddle-point minimum
residual.

One of the innovations that we offer in the derivation of SPMR is the bidiag-
onalization of the two off-diagonal block matrices, G1 and G2, using a procedure
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SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1885

similar in spirit to generalized Golub–Kahan bidiagonalization [2, 4, 15], along with
a simultaneous diagonalization of A.

Solving saddle-point systems is a challenging task, and numerical methods typi-
cally involve potentially costly interim computations, such as inversion or the compu-
tation of a null space. The SPMR family can be split into two main subfamilies: (i)
methods that require the inversion of A, and (ii) methods that use null spaces of G1

and G2. The first set of methods, (i), is restricted to situations where A is invertible
and the inversion operation is computationally inexpensive. These methods implicitly
solve linear systems associated with the Schur complement,

S “ G2A
´1GT

1 .(2)

The second set of methods, subfamily (ii), may be appealing when the null spaces of
G1 and G2 are relatively easy to detect or when we have basis-free procedures that
can efficiently utilize these null spaces. These methods implicitly solve linear systems
associated with

R “ HT
1 AH2,(3)

where H1 and H2 are such that G1H1 “ G2H2 “ 0. We call R the generalized reduced
Hessian, because it generalizes the notion of the reduced Hessian in optimization,
when A is symmetric, G1“G2, and (1) arises from a quadratic program with equality
constraints [23].

SPMR projects the given saddle-point matrix onto a smaller subspace where the
(projected) matrix has a simple saddle-point block structure. In this regard, it is
similar to the augmented system interpretation of LSQR [24] and LSMR [11]. We
provide a characterization of the search space, show connections to other methods
such as USYMQR [28], and apply an optimality criterion similar to the approach
taken in the development of QMR [13]. In the specific case that A is symmetric
positive definite and G1 “ G2, our solvers reduce to the generalized LSQR developed
by Arioli and Orban; the projected conjugate gradient method developed by Gould,
Hribar, and Nocedal; and related solvers [4, 17, 16].

Figure 1 is a schematic of the SPMR family. SC stands for Schur complement,
and NS stands for null space. SPMR and SPQMR differ from each other by the
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Fig. 1. Various versions of SPMR.
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A1886 RON ESTRIN AND CHEN GREIF

choice of residual minimization or quasi-minimization, respectively, when solving the
relevant subproblem. As is common for iterative solvers, this difference can also
be characterized by orthogonalization vs. biorthogonalization; consider for example
USYMQR vs. QMR.

In section 2 we describe the basic principles of SPMR, including details on the
bidiagonalization procedure that forms the core of our approach. Sections 3 and 4
provide the derivations of the two subfamilies of SPMR: SPMR-SC, which requires the
inversion of A, and SPMR-NS, which requires computation of the null spaces of G1 and
G2. In section 5 we discuss properties of the SPMR solvers. In section 6 we develop
a variant that we call SPQMR, which relies on residual quasi-minimization. Here
again, we offer two variants, SPQMR-SC and SPQMR-NS. In section 7 we address the
important issue of preconditioning and introduce preconditioned versions of SPMR and
its variants. In section 8 we show a few examples that illustrate the various features
of our new family of methods. Finally, in section 9 we draw some conclusions.

We use standard Householder’s notation throughout (capital letters for matri-
ces, lowercase letters for vectors, and Greek letters for scalars), and unless otherwise
stated, the notation } ¨ } signifies the `2 vector norm.

2. SPMR. We now derive SPMR and its variants. As we shall see, the core of
our algorithms is a Lanczos-like procedure called simultaneous bidiagonalization via
A-conjugacy (SIMBA).

2.1. Right-hand-side setting. It is convenient to set the right-hand side in
correlation with the family members that we choose to use. If A is efficiently invertible,
general right-hand sides pfT , gT qT can be handled by solving Ax̂ “ f and then solving

ˆ

A GT
1

G2 0

˙ˆ

x1

y

˙

“

ˆ

0
g ´G2x̂

˙

, x “ x1 ` x̂.

We could therefore assume in this case, without loss of generality, that we need
to solve systems of the form

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

0
g

˙

(4)

and proceed to develop methods in the SC subfamily. Like the generalized LSQR
method [4], we are constrained to solve systems with a zero block, which means that
it is necessary to form g ´G2x̂ on the right-hand side.

On the other hand, if we are solving with general right-hand side pfT , gT qT and
we wish to avoid inverting A, if we are able to find a particular solution G2x̂ “ g,
then we can instead solve

ˆ

A GT
1

G2 0

˙ˆ

x1

y

˙

“

ˆ

f ´Ax̂
0

˙

, x “ x1 ` x̂.

We can then focus on saddle-point systems of the form

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

f
0

˙

.(5)

In this case it is possible to have A singular, and our focus will be on developing
NS-type methods, which require using the null spaces of G1 and G2.
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SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1887

2.2. The dual saddle-point system. Let H1 and H2 be null-space bases so
that G1H1 “ G2H2 “ 0. From (5) we can see that since G2x “ 0, then x “ H2q for
some q. Furthermore, if we consider the first equation Ax`GT

1 y “ f , we can see that
by applying HT

1 from the left, we get

HT
1 f “ HT

1 Ax`H
T
1 G

T
1 y

“ HT
1 AH2q “ Rq,(6)

where R is the generalized reduced Hessian defined in (3).
If A were invertible, then we could recognize (6) as the range-space method (re-

ferred to also as the Schur complement method) applied to the dual saddle-point
system, described in [5]:

(7)

ˆ

A´1 H2

HT
1 0

˙ˆ

p̃
q

˙

“

ˆ

0
´HT

1 f

˙

.

Notice also that in that case, if A were invertible, (6) would be equivalent to the
system

HT
1 f “ pH

T
1 AqA

´1pAH2qq.

But the above is nothing but the system corresponding to the range-space method
applied to the saddle-point system

(8)

ˆ

A AH2

HT
1 A 0

˙ˆ

p
q

˙

“

ˆ

0
´HT

1 f

˙

.

We call (8) the inverse-free dual saddle-point system, and we will denote the matrix
by

KD “

ˆ

A AH2

HT
1 A 0

˙

.

Moving forward, we will use the shorthand expression “dual system” in reference to
(8) rather than (7), since the need to use an inverse-free version is central. A key
point here is that once we have defined this dual system, there is no longer a need to
assume that A is invertible, even though we assumed that in order to obtain (8).

At first glance, it would appear that the system in (8) has some issues pertaining
to singularity: if either A or the Hi are singular, then the system itself is singular.
Let us alleviate those concerns with the following theorem.

Theorem 1. Suppose that K is nonsingular, without further assumptions on A.
Let x and y be the unique solution to (5). Then there exists a solution to (8) such
that p P kerpG2q. For this p, we can recover x and y, as follows: set x “ ´p and
obtain y from the consistent overdetermined system

GT
1 y “ f `Ap “ f ´Ax.

Proof. We first show that there exists p P kerpG2q which solves (8). Note that
there exist unique x, y which solve (5) since K is nonsingular and that x “ H2q P
kerpG2q for the q chosen in (6); we therefore choose p “ ´x and show that this choice
satisfies (8). We have

ˆ

A AH2

HT
1 A 0

˙ˆ

p
q

˙

“

ˆ

´AH2q `AH2q
´HT

1 AH2q

˙

“

ˆ

0
´Rq

˙

“

ˆ

0
´HT

1 f

˙

,
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A1888 RON ESTRIN AND CHEN GREIF

so this choice of p P kerpG2q and q indeed solves (8).
We now show that if p P kerpG2q and p, q solve (8), then x “ ´p solves (5), and

GT
1 y “ f ´Ax is consistent. We have G2x “ 0 since x “ ´p P kerpG2q, and from (8)

we have

0 “ HT
1 pf `Apq “ HT

1 pf ´Axq,

so that f ´Ax P kerpHT
1 q “ rangepGT

1 q; therefore GT
1 y “ f ´Ax is consistent.

2.3. SIMBA: Simultaneous bidiagonalization via A-conjugacy. A corner-
stone of our method is a technique of simultaneous bidiagonalization. We construct
a projected subspace that includes a diagonal reduction of the leading block and
bidiagonalized versions of the off-diagonal blocks.

SIMBA has two variants: one that relies on inverting A (when applicable) and
one that relies on null spaces of G1 and G2. In the latter case A may be singular, and
we will turn to using the dual system, (8).

Define

Bk “

¨

˚

˚

˚

˚

˚

˝

α1

β2 α2

. . .
. . .

βk αk

βk`1

˛

‹

‹

‹

‹

‹

‚

“

ˆ

Lk

βk`1e
T
k

˙

(9)

and

Ck “

¨

˚

˚

˚

˚

˚

˝

γ1

δ2 γ2

. . .
. . .

δk γk
δk`1

˛

‹

‹

‹

‹

‹

‚

“

ˆ

Mk

δk`1e
T
k

˙

.(10)

We will construct bases

(11)
Uk “ ru1 . . . uks, Vk “ rv1 . . . vks,

Wk “ rw1 . . . wks, Zk “ rz1 . . . zks,

where the construction depends on whether we use A inversions or whether we rely
on null spaces of G1 and G2.

2.3.1. SIMBA-SC: Using A inversion. Suppose that A is invertible and that
inverting A is computationally inexpensive and may be done throughout the iteration.
We construct the matrices specified in (9)–(11) such that the following relations are
satisfied:

(12)

GT
1Vk “ AUkJkL

T
k , WT

kAUk “ Jk,

G1Wk “ Vk`1Bk, V T
k Vk “ I,

GT
2 Zk “ ATWkJkM

T
k , ZT

kZk “ I,

G2Uk “ Zk`1Ck,

where Jk is diagonal such that pJkqj,j “ ξj “ ˘1.
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SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1889

In the case where A is symmetric and G1 “ G2, we will have Uk “ Wk and
Vk “ Zk, allowing us to cut the computational and storage requirements in half. This
is because even if A is indefinite, by Sylvester’s law of inertia we use Jk to absorb the
indefiniteness of UT

n AUn.
The above relations lead to Algorithm 1, which in exact arithmetic produces or-

thogonal Vk, Zk and biconjugate Uk,Wk. This is one variant of the SIMBA procedure,
which we call SIMBA-SC, because it relies an implicit construction of the Schur com-
plement, S. We describe the algorithm using separate columns for the computation
of uk, vk and wk, zk to highlight the symmetry between the two pairs of vectors.

Algorithm 1. SIMBA-SC: Simultaneous bidiagonalization via A-conjugacy, using A
inversion and an implicit construction of the Schur complement.

INPUT: A, G1, G2, b, c
// Recall that }vk} “ }zk} “ 1 for all k

β1v1 Ð b δ1z1 Ð c

û1 Ð GT
1v1 ŵ1 Ð GT

2z1

u1 Ð A´1û1 w1 Ð A´T ŵ1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

βk`1vk`1 Ð G1wk ´ αkvk δk`1zk`1 Ð G2uk ´ γkzk
ûk`1 Ð GT

1vk`1{βk`1 ŵk`1 Ð GT
2zk`1{δk`1

uk`1 Ð A´1ûk`1 ´ ξkβk`1uk wk`1 Ð A´T ŵk`1´ξkδk`1wk

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for

2.3.2. SIMBA-NS: Using null spaces of G1 and G2. Suppose now that
computing null spaces of G1 and G2 is computationally viable, whereas inverting A
is not computationally attractive or is impossible due to singularity. We first notice
that mathematically, if A is invertible, when we apply SIMBA-SC in Algorithm 1 to
the dual system in (8), all inverses by A and AT will cancel with the off-diagonal
blocks AH2 and ATH1. It is thus possible to derive an A inversion-free version of
SIMBA-SC. This version requires the availability of the null spaces of G1 and G2.

Suppose H1 and H2 are given such that G1H1“ 0 and G2H2“ 0. We define Bk as
in (9) and Ck as in (10) and then construct bases as in (11) but with (12) replaced by

(13)

H2Vk “ UkJkL
T
k , WT

kAUk “ Jk,

HT
2 A

TWk “ Vk`1Bk, V T
k Vk “ I,

H1Zk “WkJkM
T
k , ZT

kZk “ I,

HT
1 AUk “ Zk`1Ck,

where again Jk is diagonal such that pJkqj,j “ ξj “ ˘1.
Algorithm 2 thus gives us an alternative formulation of SIMBA. We call it

SIMBA-NS, to mark its reliance on null spaces.
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A1890 RON ESTRIN AND CHEN GREIF

Algorithm 2. SIMBA-NS: Simultaneous bidiagonalization via A-conjugacy, using
the null spaces of G1 and G2, namely H1 and H2 such that G1H1 “ 0 and G2H2 “ 0.

INPUT: A, H1, H2, b, c
// Recall that }vk} “ }zk} “ 1 for all k

β1v1 Ð b δ1z1 Ð c
u1 Ð H2v1 w1 Ð H1z1

û1 Ð Au1 ŵ1 Ð ATw1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

βk`1vk`1 Ð HT
2 ŵk{γk ´ αkvk δk`1zk`1 Ð HT

1 ûk{αk ´ γkzk
uk`1 Ð H2vk`1{βk`1 ´ ξkβk`1uk wk`1 ÐH1zk`1{δk`1´ξkδk`1wk

ûk`1 Ð Auk`1 ŵk`1 Ð ATwk`1

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for

2.4. Characterization of the search subspace. The following theorem states
that Algorithm 1 and Algorithm 2 produce the desired bidiagonalizations. The proof
of this theorem is by induction, similarly to the way the Lanczos method is derived,
and is omitted for the sake of brevity.

Theorem 2. In exact arithmetic, the vectors generated by Algorithm 1 and Al-
gorithm 2 satisfy the relationships in (12) and (13), respectively.

The construction makes it clear that the simultaneous bidiagonalization is unique
up to the choice of starting vectors v1 and z1 and the choice in the relative scaling
and sign of αk and γk. We choose to set αk “ γk ą 0.

Let us characterize the subspace which each of the bases specified in SIMBA-SC

and SIMBA-NS span. For notational convenience, let us denote by T either the Schur
complement in the case of SIMBA-SC or the generalized reduced Hessian in the case
of SIMBA-NS. That is,

(14) T ”

"

S, defined in (2), if SIMBA-SC is considered,
R, defined in (3), if SIMBA-NS is considered.

Theorem 3. Let T denote either S or R, as specified in (14). Let β1v1 “ b and
δ1z1 “ c. Then the basis vectors generated in Algorithm 1 and Algorithm 2 satisfy

v2k P span
 

b, TTTb, . . . , pTTT qk´1b, TT c, TTTTT c, . . . , pTTT qk´1TT c
(

,

v2k`1 P span
 

b, TTTb, . . . , pTTT qkb, TT c, TTTTT c, . . . , pTTT qk´1TT c
(

,

z2k P span
 

c, TTT c, . . . , pTTT qk´1c, T b, TTTTb, . . . , pTTT qk´1Tb
(

,

z2k`1 P span
 

c, TTT c, . . . , pTTT qkc, T b, TTTTb, . . . , pTTT qk´1Tb
(

.

For SIMBA-SC the basis vectors satisfy

uk P span
 

A´1GT
1 Vk

(

wk P span
 

A´TGT
2 Zk

(

,

and for SIMBA-NS the basis vectors satisfy

uk P span tH2Vku wk P span tH1Zku .
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SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1891

Proof. The result follows by induction on k.

Notice that these spaces are not quite Krylov subspaces but rather an interleaving
of two Krylov subspaces related to SST and STS in the case of SIMBA-SC, and an
interleaving of two Krylov subspaces related to RRT and RTR for SIMBA-NS. Each
iteration alternates between an application of S or ST in one case and R or RT in
the other, rather than repeated applications of the same operator.

2.5. Relationship to orthogonal tridiagonalization of the Schur comple-
ment. We demonstrate that in exact arithmetic SIMBA-SC applied to K is mathemat-
ically equivalent to applying orthogonal tridiagonalization to the Schur complement,
S “ G2A

´1GT
1 . It is worth stressing that in ill-conditioned cases, as we show in

the numerical experiments, SIMBA-SC may be more numerically stable than directly
applying orthogonal tridiagonalization to the Schur complement. This result is anal-
ogous to the way in which applying Golub–Kahan is more numerically stable than
applying Lanczos to the normal equations [11, 24].

Recall that orthogonal tridiagonalization generates two orthogonal bases V Q
k , ZQ

k

such that

pZQ
k`1q

TSV Q
k “ sTk,

where sTk P Rpk`1qˆk is tridiagonal. It was further shown in [28] that ZQ and V Q

(and therefore sTk) are unique up to the choice of vQ1 and zQ1 .

Suppose that v1 “ vQ1 and z1 “ zQ1 . Using Vk and Zk generated by SIMBA-SC,
we have that

SVk “ G2A
´1GT

1 Vk

“ G2A
´1AUkJkL

T
k

“ G2UkJkL
T
k

“ Zk`1CkJkL
T
k .

Since Ck and LT
k are lower and upper bidiagonal, respectively, and Jk is diagonal,

then CkJkL
T
k is tridiagonal. Therefore by [28, Theorem 1], this is the unique tridiag-

onalization of S, and thus Zk “ ZQ
k , Vk “ V Q

k and sTk “ CkJkL
T
k .

Note that the above also applies to SIMBA-NS, as it is equivalent to orthogonal
tridiagonalization of the generalized reduced Hessian. This equivalence between or-
thogonal tridiagonalization and SIMBA will allow us to explore relationships between
members of the SPMR family and existing iterative methods.

3. SPMR-SC: An A-inversion version of SPMR. We are now ready to
derive members of the SPMR family, which rely on the SIMBA process. We will start
with the version that involves inversion of A. Suppose indeed that A is invertible.
Armed with Algorithm 1, we can observe the following relations. Define

(15) Kk “

ˆ

Jk LT
k

Ck 0

˙

,

and note that

ˆ

A GT
1

G2 0

˙ˆ

Uk 0
0 Vk

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

Jk LT
k

Ck 0

˙

.(16)
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A1892 RON ESTRIN AND CHEN GREIF

As mentioned at the outset of section 2, if A is assumed (easily) invertible and we
pursue a method based on using A´1, then it makes sense to consider a right-hand-
side vector of the form p0T , gT qT . We therefore require that δ1z1 “ g in SIMBA. Let
the iterates be xk “ Ukx̄k and yk “ Vkȳk, so that

ˆ

A GT
1

G2 0

˙ˆ

xk
yk

˙

´

ˆ

0
g

˙

“

ˆ

A GT
1

G2 0

˙ˆ

Uk 0
0 Vk

˙ˆ

x̄k
ȳk

˙

´

ˆ

0
g

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

Kk

ˆ

x̄k
ȳk

˙

´

ˆ

0
δ1e1

˙˙

.

It is then reasonable to adopt a quasi-minimum residual approach [13] and choose xk
and yk which satisfy

(17) min
x,y

›

›

›

›

Kk

ˆ

x̄
ȳ

˙

´

ˆ

0
δ1e1

˙
›

›

›

›

s.t. x “ Ukx̄, y “ Vkȳ.

3.1. Construction of short recurrences. We now make some observations
about the subproblem for generating x̄k and ȳk. In order to solve subproblem (17)
we use the QR decomposition of Kk (defined in (15)). Note that if we permute the
blocks of Kk to

ˆ

LT
k Jk
0 Ck

˙

,

the above matrix is almost upper-triangular, except that we need to form the QR
decomposition of Ck. Therefore, we can solve for xk first and recover yk afterwards,
so that an equivalent subproblem to (17) is

(18) min
x
}Ckx̄´ δ1e1} s.t. x “ Ukx̄.

Subproblem (18) is similar to the LSQR subproblem, which is solved by taking the
QR factorization of a bidiagonal system. Many of the following recurrence relations
for recovering xk can be found in [24].

3.2. Recurrence for xk. We begin computing the QR decomposition of Ck

using the 2ˆ2 reflector
ˆ

c1 s1

s1 ´c1

˙ˆ

γ1 δ1
δ2 γ2

˙

“

ˆ

ρ1 σ1 φ1

ρ̄2 φ̄2

˙

and further reflectors defined by
ˆ

ck sk
sk ´ck

˙ˆ

ρ̄k φ̄k
δk`1 γk`1

˙

“

ˆ

ρk σk`1 φk
ρ̄k`1 φ̄k`1

˙

.

From this we obtain the QR decomposition

rMk`1 δ1e1s “ Qk

¨

˚

˚

˚

˚

˚

˝

ρ1 σ2 φ1

ρ2 σ3 φ2

. . .
. . .

...
ρk σk`1 φk

ρ̄k`1 φ̄k`1

˛

‹

‹

‹

‹

‹

‚

“ Qk

ˆ

Rk σk`1ek ϕk

ρ̄k`1 φ̄k`1

˙

.

We define ϕk “ pφ1, . . . , φkq
T and Q̄k as the first k columns of Qk, so that x̄k “

R´1
k Q̄T

k δ1e1. Then, if we define Dk “ UkR
´1
k , we have

xk “ Ukx̄k “ pUkR
´1
k qpQ̄T

k δ1e1q “ Dkϕk “ xk´1 ` φkdk.
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Computation of dk is accomplished via forward substitution, since

pu1, . . . , uk´1, ukq “ pd1, . . . , dk´1, dkq

¨

˚

˚

˚

˚

˝

ρ1 σ2

ρ2
. . .

. . . σk
ρk

˛

‹

‹

‹

‹

‚

,

so that dk “ puk ´ σkdk´1q{ρk. As done in LSQR, these recurrence relations can be
further simplified if we define dk Ð ρkdk.

3.3. Recurrence for yk. We can recover yk with a little bit of extra work every
iteration, rather than recovering y at termination. Define Tk “ pt1, . . . , tkq, so that

yk “ Vkȳk “ ´VkL
´T
k Jkx̄k

“ pVkL
´T
k JkR

´1
k qp´Q̄T

k δ1e1q

“ Tkp´ϕkq

“ yk´1 ´ φktk.

Since Jk and φk are already computed, we need only compute Tk. Define

RkJkL
T
k “

¨

˚

˚

˚

˚

˚

˝

λ1 µ2 ν3

. . .
. . .

. . .

λk´2 µk´1 νk
λk´1 µk

λk

˛

‹

‹

‹

‹

‹

‚

,

which is updated column by column every iteration, since Rk and LT
k are upper

bidiagonal. In particular, the recurrence relations are

λk “ ρkξkαk, k ě 1,

µk “ ρk´1ξk´1βk ` σkξkαk, k ě 2,

νk “ σk´1ξk´1βk, k ě 3.

Since Vk “ TkpRkJkL
T
k q, we have

`

v1, . . . , vk´2, vk´1, vk
˘

“
`

t1, . . . , tk´2, tk´1, tk
˘

¨

˚

˚

˚

˚

˚

˝

λ1 µ2 ν3

. . .
. . .

. . .

λk´2 µk´1 νk
λk´1 µk

λk

˛

‹

‹

‹

‹

‹

‚

,

which means that tk “ pvk ´ µktk´1 ´ νktk´2q{λk.

3.4. Estimating the residual. We can estimate the residual at every iteration
cheaply. Define r̄k “ δ1e1 ´Ckx̄k and rk “ Zk`1r̄k and note that by the definition of
ȳk,

(19)

ˆ

0
g

˙

´

ˆ

A GT
1

G2 0

˙ˆ

xk
yk

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆˆ

0
δ1e1

˙

´

ˆ

Jk LT
k

Ck 0

˙ˆ

x̄k
ȳk

˙˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

0
r̄k

˙

“

ˆ

0
rk

˙

.
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A1894 RON ESTRIN AND CHEN GREIF

Since Zk is orthogonal, the norm of the full residual is equal to }r̄k} “ }rk}.
The immediate consequence is that since }r̄k} decreases monotonically by the

definition of subproblem (18), the full residual must decrease monotonically as well.
We summarize this result in the following theorem.

Theorem 4. The norm of the residual given on the left-hand side of (19)
decreases monotonically every iteration of SPMR-SC.

Since the residual norm is equal to }G2xk ´ g}, we can estimate the residual as
}r̄k} “ φ̄k`1 “ δ1s1s2 . . . sk, as is done in LSQR.

Monotonicity of the residual is an attractive property for nonsymmetric problems,
as it may provide a notion of robustness and predictability. There is a potential
advantage here from a computational point of view: short recurrences are not given
up as in GMRES [26] to acquire this monotonicity, nor do the short recurrences give
up the monotonicity as in biconjugate-based methods.

3.5. Relationship between SPMR-SC and USYMQR. In subsection 2.5, we
showed the mathematical equivalence between SIMBA and orthogonal tridiagonaliza-
tion. Using this, we can now show that SPMR is equivalent to USYMQR applied to
the Schur complement system ´Sy “ g.

Recall that both SIMBA and orthogonal tridiagonalization generate the same basis
(in exact arithmetic) such that

SVk “ Zk`1
sTk “ Zk`1CkJkL

T
k ,

where sTk “ CkJkL
T
k P Rpk`1qˆk is tridiagonal. USYMQR solves the subproblem

yQk “ arg min
y

} ´ CkJkL
T
k ȳ ´ δ1e1} s.t. y “ Vkȳ.

Recall that x̄k “ ´JkL
T
k ȳk in SPMR-SC, and recall that (from (18)) SPMR-SC solves

yk “ arg min
y

}Ckx̄´ δ1e1} s.t. x̄ “ ´JkL
T
k ȳ, y “ Vkȳ.

These are the same subproblems, and so we obtain that yk “ yQk every iteration,
meaning that SPMR-SC and USYMQR generate the same iterates in exact arithmetic.

This result is analogous to the equivalence between LSQR and CG on the normal
equations [24], or LSMR and MINRES on the normal equations [11]. However, numer-
ically we may have the upper hand. As in the cases just mentioned, we observe that
SPMR-SC can be more numerically stable than USYMQR applied to an ill-conditioned
Schur complement, which we demonstrate in section 8.

4. SPMR-NS: A null-space-based version of SPMR. SPMR-SC, as it has
been introduced so far, requires the inversion of the matrix A. This matrix may
not always be invertible, and even when it is, the inversion may be computationally
prohibitive. We now introduce a subfamily of SPMR which avoids inverting A and
instead opts for using the null spaces of G1 and G2. NS stands for null-space, since
we are projecting onto the null spaces of G1 and G2.

SPMR-NS is basically SPMR-SC applied to the dual system (8). What makes
it interesting is the fact that by using the dual system we are able to eliminate
dependence on the inversion of A and instead rely on the null spaces of G1 and G2.

We can define the same subproblem on the dual system to minimize the residual
and use the same recurrences to obtain approximations pk and qk at each iteration.
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It should be noted that this method will only obtain approximations to xk “ ´pk
at every iteration, but y needs to be recovered after convergence by solving a least-
squares problem with GT

1 . This is consistent with the situation in PPCG and other
projected methods [17, 16].

SPMR-NS is thus equivalent to USYMQR applied to the generalized reduced Hes-
sian defined in (3), for the same reasons that SPMR-SC is equivalent to USYMQR

applied to the Schur complement. We note that in [1, 3], iterative procedures for
symmetric systems are proposed, which apply the conjugate gradient method to var-
ious constructions of the reduced Hessian. This is related to SPMR-NS, which in the
symmetric case is equivalent to applying MINRES to the reduced Hessian.

4.1. Estimating the residual. Just as in SPMR-SC, the residual norm in the
dual saddle-point system can be estimated cheaply. Define

(20)

ˆ

0
rNk

˙

“

ˆ

0
´HT

1 f

˙

´

ˆ

A AH2

HT
1 A 0

˙ˆ

pk
qk

˙

and

ˆ

rk
0

˙

“

ˆ

f
0

˙

´

ˆ

A GT
1

G2 0

˙ˆ

xk

yk

˙

as the dual and original residuals respectively. The zero block in the dual residual
follows from a derivation almost identical to (19). The zero block in the original
residual follows from the fact that xk P kerpG2q for all k.

We can relate }rNk } to an energy seminorm of rk, where the seminorm is in fact a
norm on the null-space of G1. We’ll see that rk P kerpG1q, and therefore if rNk Ñ 0,
this will imply that rk Ñ 0. This is captured in the following theorem.

Theorem 5. Let pk and qk be generated by SPMR-NS. Suppose xk “ ´pk and let
yk solve the least-squares problem GT

1 y “ f ´ Axk. Define the residuals as in (20).
Then

}rNk } “ |rk|H1HT
1
,

where |¨|H1HT
1

is a seminorm defined by |u|H1HT
1
“

`

uT pH1H
T
1 qu

˘
1
2 . In particular,

rk P kerpG1q, and so this energy seminorm induces a valid norm on the residuals.

Proof. We have

}rNk } “ } ´H
T
1 f ´H

T
1 Apk}

“
›

›HT
1 pf ´Axkq

›

›

“
›

›HT
1

`

f ´Axk ´G
T
1 yk

˘
›

›

“ }HT
1 rk}

“ |rk|H1HT
1
,

where we used G1H1 “ 0. Now, since yk is defined by the least-squares solution to
GT

1 y “ f ´ Axk, the residual must be orthogonal to the range space of GT
1 , which

means that rk P kerpG1q. Since rk P kerpG1q, then rNk Ñ 0 implies rk Ñ 0, which
means that the seminorm is in fact a valid norm on the residual.

Thus, even though we do not have access to the `2-norm of the original residual,
we can obtain a measure of convergence using the residual norm of the dual system.
Furthermore, as discussed in the following section, many of the approaches for com-
puting projections (matrix vector products with Hi and HT

i ) result in H1H
T
1 being

an orthogonal projector onto the null space of G1. In such cases, we will have the
desired property that }rNk } “ }rk}.
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4.2. Computing projections onto the null-space. SPMR-NS has the at-
tractive feature that it does not require A inversion. On the other hand, it does
require some knowledge of the null spaces of the off-diagonal blocks, G1 and G2. In
this section we discuss strategies for dealing with matrix-vector products with these
null-spaces.

The simplest approach is to have a null-space basis Hi available for each off-
diagonal block Gi, i “ 1, 2. Then products of the form Hic, and HT

i c can be computed
explicitly, and SPMR-NS can be carried out exactly as SPMR-SC would be applied
to the dual saddle-point system. Although this would be the simplest approach to
implementing SPMR-NS, it may be expensive to compute a null-space basis, and this
basis would likely be dense.

Another possibility is to use the method outlined in [17], by computing an or-
thogonal projection. That is, matrix-vector products of the form Hic and HT

i c are
replaced by pI´GT

i pGiG
T
i q
´1Giqc. This requires one solve against GiG

T
i per applica-

tion, which is only of size mˆm, and is therefore manageable in many applications.
An equivalent approach to computing the same orthogonal projector is to instead

solve a system involving a constraint preconditioner [22]. In order to compute products
of the form d “ pI ´GT

i pGiG
T
i q
´1Giqc, we can instead solve the system

(21)

ˆ

I GT
i

Gi 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

,

where we take only the first component of the solution. Although this computes the
same vector, there may be more flexibility in the solution methods applied to this
saddle-point system.

Since the two previous approaches to computing Hix are effectively computing
the residual to the least-squares problem GT

i d “ c, other techniques may be employed,
such as using LSQR directly as described in [27]. This may avoid conditioning issues
which may occur from solving the normal equations.

It should be noted that all of the null-space-basis-free approaches mentioned
above, which are effectively based on solving least-squares problems, implicitly pro-
duce an orthogonal projector onto the null-space of Gi. Due to this, the seminorm
|¨|HiHT

i
becomes equivalent to the `2-norm on the null-space of Gi since HiH

T
i is

an orthogonal projector onto said null-space. Therefore, estimating the norm of the
dual system for SPMR-NS becomes equivalent to estimating the residual norm of the
original system.

5. Properties of the SPMR solvers. Having derived SPMR-SC and SPMR-NS,
we now discuss a few useful properties of these methods. Specifically, we provide
details on the circumstances of breakdowns and discuss the issue of convergence under
spectrum clustering.

5.1. Breakdowns. As in other biconjugate methods, we have the possibility of
lucky and unlucky breakdowns. Let us again use the notation T to denote either the
Schur complement S if SPMR-SC is considered, or the generalized reduced Hessian R
if SPMR-NS is considered. That is,

(22) T ”

"

S, defined in (2) if SPMR-SC is considered,
R, defined in (3) if SPMR-NS is considered.
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If zk`1 “ 0 for some k, we can consider this as a lucky breakdown as it implies that
we can reconstruct the solution to Ty “ c using v1, . . . , vk. This is because

0 “ c` TTT c` ¨ ¨ ¨ ` pTTT qtk{2uc` Tb` TTTTb` ¨ ¨ ¨ ` pTTT qtpk´2q{2uTb

“ c` T
´

TT c` ¨ ¨ ¨ ` pTTT qtk{2u´1TT c` b` TTTb` ¨ ¨ ¨ ` pTTT qtpk´2q{2u´1b
¯

“ c` T ¨ spantv1, . . . , vku.

If vk`1 “ 0 for some k, this is a form of an unlucky breakdown since it means
that we have found a solution to the transposed system TT y “ b. If such a breakdown
occurs, it may be possible to restart with a different v1 to avoid this breakdown in
future iterations.

Other unlucky breakdowns occur when wT
k Auk « 0, in the spirit of unlucky

breakdowns for methods such as BiCG and QMR [10, 13, 32]. It is likely that we will
be able to employ look-ahead strategies as discussed in [12, 25], although we will not
further pursue this here.

5.2. Convergence under spectrum clustering. The speed of convergence of
SPMR-SC or SPMR-NS is related to the distribution of singular values of T . Specif-
ically, when the singular values are clustered we may expect fast convergence that
depends on the number of distinct singular values.

Theorem 6. Denote the dimension of T by t. If T has ` distinct singular values,
Algorithm 1 or Algorithm 2 will terminate in

¯̀ď minp2`, tq

steps in exact arithmetic, that is, z ¯̀̀ 1 “ 0.

Proof. T is mˆm if SPMR-SC is considered, and pn´mq ˆ pn´mq if SPMR-NS

is considered. SIMBA-SC (Algorithm 1) must terminate in at most m steps, and
SIMBA-NS (Algorithm 2) must terminate in at most n´m steps, since zi P Rm, and
so any m` 1 vectors must be linearly dependent. Suppose then that 2` ď t, where t
is determined according to the method used.

Let the left singular vectors of T be pi, and the right singular vectors be qi
with corresponding singular values σi. Then σipi “ Tqi and σiqi “ TT pi. Thus if
b “

ř`
i“1 ηiqi and c “

ř`
i“1 θiqi, then

pTTT qkb “
ÿ̀

i“1

ηiσ
2k
i qi, pTTT qkTb “

ÿ̀

i“1

ηiσ
2k`1
i pi,

pTTT qkc “
ÿ̀

i“1

θiσ
2k
i pi, pTTT qkTT c “

ÿ̀

i“1

θiσ
2k`1
i qi.

Thus vectors generated by applications of T and TT always live in the span of
tp1, . . . , p`, q1, . . . , q`u which has dimension at most 2`. Then this means that the
number of linearly independent zi cannot grow beyond 2`, and therefore SIMBA-SC

or SIMBA-NS must terminate in at most 2` iterations.

The dependence of SPMR-SC and SPMR-NS on singular values of the Schur com-
plement or the generalized reduced Hessian, as highlighted in Theorem 6, will affect
preconditioning strategies (discussed in section 7) and may make the method attrac-
tive over other Krylov methods in some instances. One potential situation where
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this may be beneficial is for highly nonnormal T , where it is significantly easier to
characterize the convergence based on singular values rather than eigenvalues [19].

6. SPQMR. As we have shown in Theorem 6, the performance of the SPMR

solvers SPMR-SC and SPMR-NS depends primarily on the distribution of the singular
values of the Schur complement, S, or the generalized reduced Hessian, R, respec-
tively. In many situations the distribution of eigenvalues is better understood than
the distribution of the singular values, and eigenvalue clustering may be easier to
accomplish. We now introduce a variant to SPMR which we call SPQMR, whose con-
vergence properties rely on eigenvalue distribution of either S or R. This variant
requires sacrificing the monotonicity of the residual norm, but this may be a price
worth paying. Like we did for SPMR, we will have two main variants: SPQMR-SC
and SPQMR-NS. As we will show, SPQMR-SC is mathematically equivalent to QMR

applied to the Schur complement, but it is numerically more stable in the sense that
there is no effect akin to squaring the condition number. Similarly, SPQMR-NS is
mathematically equivalent to QMR applied to the generalized reduced Hessian.

6.1. SIMBO: Simultaneous bidiagonalization via biorthogonality. The
main difference between SPMR and SPQMR is in the bidiagonalization procedure,
which replaces orthogonality of Vk and Zk with biorthogonality. We start with the
SC version of SIMBO, which requires A inversion.

6.1.1. SIMBO-SC: Using A inversion. Suppose A is invertible, and inverting
it is computationally viable. Instead of the procedure laid out for SIMBA-SC, let us
construct bases Uk, Vk, Wk, and Zk which satisfy the relations

(23)

GT
1Vk “ AUkJkL

T
k , WT

kAUk “ Jk,

G1Wk “ Zk`1Bk, ZT
kVk “ I,

GT
2 Zk “ ATWkJkM

T
k ,

G2Uk “ Vk`1Ck,

where again, Jk is diagonal such that pJkqj,j “ ξj “ ˘1. Note that Vk`1 and Zk`1

have their roles swapped in the second and fourth equalities above compared to (12),
and that the requirement that Vk`1 and Zk`1 be orthogonal has been replaced by a
biorthogonality requirement.

This modified simultaneous bidiagonalization results in Algorithm 3. Analogously
to Theorem 2, it can be shown that Algorithm 3 produces the desired relations in (23).
We call this procedure SIMBO-SC.

6.1.2. SIMBO-NS: Using null spaces of G1 and G2. Suppose now that
instead of inverting A, computing the null spaces of G1 and G2 is necessary, or pre-
ferred. As usual, let H1 and H2 be such that G1H1 “ G2H2 “ 0. Instead of the
requirements for SIMBA-NS, we require:

(24)

HT
2Vk “ UkJkL

T
k , WT

kAUk “ Jk,

H2AWk “ Zk`1Bk, ZT
kVk “ I,

HT
1 Zk “ ATWkJkM

T
k ,

H1AUk “ Vk`1Ck.

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1899

Algorithm 3. SIMBO-SC: Simultaneous bidiagonalization via biorthogonality, using
A inversion.

INPUT: A, G1, G2, b, c

v1 Ð b z1 Ð c

δ1 Ð sgnpvT1 z1q
`

|vT1 z1|
˘1{2

β1 Ð
`

|vT1 z1|
˘1{2

v1 Ð v1{δ1 z1 Ð z1{β1

û1 Ð GT
1v1 ŵ1 Ð GT

2z1

u1 Ð A´1û1 w1 Ð A´T ŵ1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 Ð G2uk ´ γkvk zk`1 Ð G1wk ´ αkzk

δk`1 Ð sgnpvTk`1zk`1q
`

|vTk`1zk`1|
˘1{2

βk`1 Ð
`

|vTk`1zk`1|
˘1{2

vk`1 Ð vk`1{δk`1, zk`1 Ð zk`1{βk`1

ûk`1 Ð GT
1vk`1{βk`1 ŵk`1 Ð GT

2zk`1{δk`1

uk`1 Ð A´1ûk`1 ´ ξkβk`1uk wk`1 Ð A´T ŵk`1 ´ ξkδk`1wk

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for

Algorithm 4. SIMBO-NS: Simultaneous bidiagonalization via biorthogonality, using
the null spaces of G1 and G2, namely H1 and H2 such that G1H1 “ 0 and G2H2 “ 0.

INPUT: A, H1, H2, b, c

v1 Ð b z1 Ð c

δ1 Ð sgnpvT1 z1q
`

|vT1 z1|
˘1{2

β1 Ð
`

|vT1 z1|
˘1{2

v1 Ð v1{δ1 z1 Ð z1{β1

u1 Ð H2v1 w1 Ð H1z1

û1 Ð Au1 ŵ1 Ð ATw1

ξ1 Ð sgnpwT
1 û1q

α1 Ð |wT
1 û1|

1{2 γ1 Ð α1

u1 Ð ξ1u1{α1 w1 Ð ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 Ð HT
1 ûk ´ γkvk zk`1 Ð H2A

Tŵ1 ´ αkzk

δk`1 Ð sgnpvTk`1zk`1q
`

|vTk`1zk`1|
˘1{2

βk`1 Ð
`

|vTk`1zk`1|
˘1{2

vk`1 Ð vk`1{δk`1 zk`1 Ð zk`1{βk`1

uk`1 Ð H2vk`1{βk`1 ´ ξkβk`1uk wk`1 Ð H1zk`1{δk`1 ´ ξkδk`1wk

ûk`1 Ð Auk`1 ŵk`1 Ð ATwk`1

ξk`1 Ð sgnpwT
k`1ûk`1q

αk`1 Ð |wT
k`1ûk`1|

1{2 γk`1 Ð αk`1

uk`1 Ð ξk`1uk`1{αk`1 wk`1 Ð ξk`1wk`1{γk`1

end for
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6.2. Search subspace. We can classify the spaces in which the bases live in
Theorem 7 in a result analogous to Theorem 3.

Theorem 7. Define T as in (22), and let β1v1 “ b, δ1z1 “ c. Then

vk P span
 

b, T b, T 2b, . . . , T k´1b
(

,

zk P span
 

c, TT c, pTT q2c, . . . , pTT qk´1c
(

.

For SPQMR-SC we have uk P span
 

A´1GT
1 Vk

(

and wk P span
 

A´TGT
2 Zk

(

, whereas

for SPQMR-NS we have uk P span
 

HT
2 Vk

(

and wk P span
 

HT
1 Zk

(

.

6.3. SPQMR-SC and SPQMR-NS. Similar to SPMR-SC, if we choose δ1v1 “ g,
Algorithm 3 produces bases which satisfy

ˆ

A GT
1

G2 0

˙ˆ

xk
yk

˙

´

ˆ

0
g

˙

“

ˆ

A GT
1

G2 0

˙ˆ

Uk 0
0 Vk

˙ˆ

x̄k
ȳk

˙

´

ˆ

0
g

˙

“

ˆ

AUkJk 0
0 Vk`1

˙ˆˆ

Jk LT
k

Ck 0

˙ˆ

x̄k
ȳk

˙

´

ˆ

0
δ1e1

˙˙

.

We can again solve the QMR subproblem

(25) min
x,y

›

›

›

›

Kk

ˆ

x̄
ȳ

˙

´

ˆ

0
δ1e1

˙
›

›

›

›

s.t. x “ Ukx̄, y “ Vkȳ.

which is equivalent to the subproblem

(26) min
x
}Ckx̄´ δ1e1} s.t. x “ Ukx̄.

From this point the recurrence relations for constructing xk and yk are the same as
in subsection 3.1, as the structure of suproblem (25) has not changed.

As in (19), the residual here has a zero block, i.e., the same structure. But we
can only obtain an upper bound as done in [13], because Vk is not orthogonal. This
means that at the kth iteration,

}rk} ď
?
k ` 1 δ1 s1 . . . sk.

For SPQMR-NS we can derive analogous results, using the dual saddle-point system
and a different right-hand side; details are omitted.

6.4. Comparison of SPMR to SPQMR and relations to other methods.
An immediate difference between SPMR and SPQMR is that Zk and Vk are not or-
thogonal in SPQMR, and therefore the residual does not decrease monotonically with
every iteration. Furthermore, the lack of orthogonality in the bases means that resid-
ual estimation requires an upper bound rather than an exact estimate.

The other major difference is that SPMR has convergence that depends on the
clustering of singular values of the Schur complement or the generalized reduced Hes-
sian, compared to SPQMR whose convergence depends the eigenvalues when the Schur
complement or the generalized reduced Hessian are diagonalizable. This difference af-
fects preconditioning strategies, as there can be saddle-point matrices with Schur
complements whose eigenvalues are clustered (e.g., triangular matrices with constant
diagonal) but with unclustered singular values.

Similar to how SPMR-SC is equivalent to USYMQR applied to the Schur comple-
ment, SPQMR-SC can be viewed as equivalent to QMR being applied to the Schur
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Table 1
Comparison of properties of SPMR vs. SPQMR. The matrix T denotes either the Schur

complement or the generalized reduced Hessian; see (22).

SPMR SPQMR

Monotonic residual X ˆ

Short recurrence X X
Bidiagonalization procedure SIMBA SIMBO

Depends on singular values of T eigenvalues of T
Mathematically equivalent to USYMQR on T QMR on T

complement. As the relationship between orthogonal tridiagonalization and SIMBA

is explored in subsection 2.5, a similar analysis can be made to show that SIMBO is
unsymmetric Lanczos applied to the Schur complement. SPQMR-SC is equivalent to
QMR applied to the Schur complement by an argument similar to subsection 3.5.

We also comment on the case where K is symmetric, with particular attention to A
being symmetric positive definite. In this case both SPMR-SC and SPQMR-SC become
the same method. Furthermore, if A is SPD, then it becomes a form of generalized
LSQR [4]. If A is indefinite, then our method differs from other generalized LSQR

methods, which handle only the positive definite case.
Similar observations can be made for SPQMR-NS, where the Schur complement is

replaced by the generalized reduced Hessian. We note, however, that fewer analogies
are available in the symmetric case, because solvers based on reduced Hessians have
been explored less comprehensively than solvers associated with the Schur comple-
ment.

We summarize these observations in Table 1.

7. Preconditioning. To develop a preconditioned version of SPMR, we will
need to maintain the saddle-point structure of the matrix, and this presents a few
challenges. If the preconditioner is symmetric positive definite, then weighted inner
products are well defined, and we will directly modify the bidiagonalization procedures
SIMBA and SIMBO; otherwise we will modify the operator directly and apply our
methods to the preconditioned matrix.

In general, the approach will be to use right preconditioners of the form

(27) P “
ˆ

I 0
0 M

˙

.

This leads to the relationship (for the SC subfamily of methods)

KP´1

ˆ

Uk 0
0 Vk

˙

“

ˆ

AUkJk 0
0 Zk`1

˙ˆ

Jk LT
k

Ck 0

˙

,

which is achieved in two different ways, depending on whether M is an SPD precondi-
tioner or not. If M is SPD, we modify SIMBA and SIMBO to use M´1-orthogonality
in Vk and Zk; if M is not SPD, then we can practically run unpreconditioned SIMBA

or SIMBO on KP´1. For the NS subfamily, this discussion also applies, but to the
dual system.

7.1. Preconditioned SIMBA. For symmetric problems with SPD precondi-
tioners, symmetry can be retained by modifying the bidiagonalization procedure. To
that end, assume that M is a positive definite matrix of size mˆm. We will describe
the (right-)preconditioned SIMBA process, noting that preconditioned SIMBO is quite
similar and for the sake of brevity will not be explicitly described.

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1902 RON ESTRIN AND CHEN GREIF

Preconditioned SIMBA compared to the unpreconditioned version trades orthog-
onality of Vk and Zk for M´1-orthogonality. For SIMBA-SC, the following relations
are satisfied:

(28)

GT
1M´1Vk “ AUkJkL

T
k , WT

kAUk “ Jk,

G1Wk “ Vk`1Bk, V T
k M´1Vk “ I,

GT
2 M´1Zk “ ATWkJkM

T
k , ZT

kM´1Zk “ I,

G2Uk “ Zk`1Ck.

The resulting procedure is summarized in Algorithm 5.

Algorithm 5. Preconditioned SIMBA-SC.

INPUT: A, G1, G2, b, c, M
v̂1 “ b ẑ1 “ c
v1 “M´1v̂1 z1 “M´1ẑ1

β1 “
`

v̂T1 v1

˘1{2
δ1 “

`

ẑT1 z1

˘1{2

v1 “ v1{β1 z1 “ z1{δ1
û1 “ GT

1M´1v1 ŵ1 “ GT
2M´1z1

u1 “ A´1û1 w1 “ A´T ŵ1

ξ1 “ sgnpwT
1 û1q

α1 “ |w
T
1 û1|

1{2 γ1 “ α1

u1 “ ξ1u1{α1 w1 “ ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 “ G1wk ´ αkvk zk`1 “ G2uk ´ γkzk
v̂k`1 “M´1vk`1 ẑk`1 “M´1zk`1

βk`1 “
`

vTk`1v̂k`1

˘1{2
δk`1 “

`

zTk`1ẑk`1

˘1{2

vk`1 “ vk`1{βk`1 zk`1 “ zk`1{δk`1

ûk`1 “ GT
1v̂k`1{βk`1 ŵk`1 “ GT

2ẑk`1{δk`1

uk`1 “ A´1ûk`1 ´ ξkβk`1uk wk`1 “ A´T ŵk`1 ´ ξkδk`1wk

ξk`1 “ sgnpwT
k`1ûk`1q

αk`1 “ |w
T
k`1ûk`1|

1{2 γk`1 “ αk`1

uk`1 “ ξk`1uk`1{αk`1 wk`1 “ ξk`1wk`1{γk`1

end for

The exact same procedure is applied to SIMBA-NS, and as before, this is done for
the dual system, (8); see Algorithm 6.

All recurrences applied to the resulting bidiagonal matrices carry through as de-
scribed in section 3. As this is equivalent to right-preconditioning, at the end y needs
to be recovered via an additional M-solve, that is, y ÐM´1y.

7.2. Preconditioned SPMR-SC and SPQMR-SC. If the preconditioner is
not symmetric positive definite, then it is impractical to precondition the bidiagonal-
ization procedures SIMBA and SIMBO directly; instead we modify the saddle-point
system directly. Theorem 6 and Krylov subspace theory may be used to show that
if the Schur complement has clustered singular values then SPMR-SC will converge
quickly, and if it has clustered eigenvalues then SPQMR-SC will converge quickly.
Furthermore, preconditioners must be block diagonal in order to maintain the saddle-
point structure of the operator. Therefore, if S̃ « S is an approximation to the Schur
complement, then we seek left- or right-preconditioners of the form

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1903

Algorithm 6. Preconditioned SIMBA-NS.

INPUT: A, H1, H2, b, c, M
v̂1 “ b ẑ1 “ c
v1 “M´1v̂1 z1 “M´1ẑ1

β1 “
`

v̂T1 v1

˘1{2
δ1 “

`

ẑT1 z1

˘1{2

v1 “ v1{β1 z1 “ z1{δ1
u1 “ H2M´1v1 w1 “ H1M´1z1

û1 “ Au1 ŵ1 “ ATw1

ξ1 “ sgnpwT
1 û1q

α1 “ |w
T
1 û1|

1{2 γ1 “ α1

u1 “ ξ1u1{α1 w1 “ ξ1w1{γ1

for k “ 1, 2, . . . do

vk`1 “ HT
2 ŵk ´ αkvk zk`1 “ HT

1 ûk ´ γkzk
v̂k`1 “M´1vk`1 ẑk`1 “M´1zk`1

βk`1 “
`

vTk`1v̂k`1

˘1{2
δk`1 “

`

zTk`1ẑk`1

˘1{2

vk`1 “ vk`1{βk`1 zk`1 “ zk`1{δk`1

uk`1 “ H2v̂k`1{βk`1 ´ ξkβk`1uk wk`1 “ H1ẑk`1{δk`1 ´ ξkδk`1wk

ûk`1 “ Auk`1 ŵk`1 “ ATwk`1

ξk`1 “ sgnpwT
k`1ûk`1q

αk`1 “ |w
T
k`1ûk`1|

1{2 γk`1 “ αk`1

uk`1 “ ξk`1uk`1{αk`1 wk`1 “ ξk`1wk`1{γk`1

end for

P “
ˆ

I 0

0 S̃

˙

.

For right-preconditioning, this will be equivalent to using the right-preconditioned
operator

KP´1 “

ˆ

A GT
1 S̃

´1

G2 0

˙

.(29)

Computing solutions to linear systems of the form S̃d “ c can be performed in an
alternative fashion as well using a constraint preconditioner. Using an approximation
to the leading block Ã « A, we can instead compute the solution to the linear system

ˆ

Ã GT
1

G2 0

˙ˆ

˚

d

˙

“

ˆ

0
´c

˙

,

keeping only the second component d. We note that the key requirement here is
preserving the block structure. Therefore, it is possible to also approximate the off-
diagonal blocks G1 and G2. That is, it is not necessarily the case that a constraint
preconditioner must be used.

7.3. Preconditioning SPMR-NS and SPQMR-NS. Since the NS methods
are effectively SPMR-SC and SPQMR-SC methods applied to the dual saddle-point
system (8), the strategy for preconditioning is analogous to the previous section in that
we want to approximate R “ HT

1 AH2, but instead of working with the preconditioned
(primal) saddle-point system, we will work with the preconditioned dual saddle-point
system,
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KDP´1 “

ˆ

A AH2R̃
´1

HT
1 A 0

˙

.(30)

If null-space bases H1 and H2 are given, then it is feasible to construct such an
approximation, but such an approach would be difficult if H1 and H2 are implicit
operators or if they are not easily available.

We start our quest for designing a preconditioner for the NS subfamily by as-
suming that H1 and H2 are available and have full rank. This requirement will be
eliminated later on. Consider the ideal preconditioner R̃ “ HT

1 AH2, so that the
preconditioned dual saddle-point matrix (30) can now be written as follows:

ˆ

A AH2pH
T
1 AH2q

´1

HT
1 A 0

˙

.(31)

We say that this choice of R̃ gives an ideal preconditioner because the Schur comple-
ment of the above matrix is the identity. Since we are interested in a strongly clustered
spectrum for the Schur complement, this observation is useful as a starting point for
designing a preconditioner. Of course, the (1,2)-block cannot be easily computed, and
we need to find ways to alleviate this difficulty. First, if Ã « A is an approximation
for the leading block, we can make the representation more practical. Next, we can
instead consider computing matrix vector products of the form

d “ H2pH
T
1 ÃH2q

´1HT
1 c.(32)

If we compare (32) to the (1,2)-block of (31), we observe that the main difference is in
a premultiplication by HT

1 and the postmultiplication of A which is trivial to apply.
Systems such as in (32) can be relatively easily computed by solving the constraint
preconditioner system

ˆ

Ã GT
1

G2 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

.(33)

To see this, notice that the matrix in (32) is precisely equal to the leading block of
the inverse of the matrix in (33) [5, 9]. Thus it is no longer necessary to have H1 and
H2 available explicitly; we can accomplish computation of d by applying a constraint
preconditioner.

8. Applications and numerical experiments. In this section we numerically
illustrate the features of SPMR and its variants.

8.1. Nearly-orthogonal Schur complement. We begin with an example of
the performance of members of the SC family, highlighting the distinction between
having well-clustered singular values and well-clustered eigenvalues for the Schur com-
plement. We generate the system

K
ˆ

x
y

˙

“

ˆ

A GT
1

QG2 0

˙ˆ

x
y

˙

“

ˆ

0
g

˙

,(34)

where n “ 700, m “ 400, g is random, A is a nonsymmetric diagonally dominant
sparse random matrix, G1, G2 are sparse random matrices, and Q is a random or-
thogonal matrix. The sparse matrices were generated via Matlab’s sprand, with a
density of 0.1, and Q was generated via the QR factorization of a random matrix. A
is made diagonally dominant by adding a multiple of the identity.

Since A is diagonally dominant, a reasonable approximation to the Schur com-
plement is

S̃ “ G2D
´1GT

1 ,

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1905

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Eigenvalues in the complex plane of
the preconditioned Schur complement of
problem (34). For convenient visualiza-
tion purposes, a small number of the
larger eigenvalues are excluded from the
figure.
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(b) Singular values of the preconditioned
Schur complement of problem (34).

Fig. 2. Spectrum of preconditioned Schur complement of problem (34) in subsection 8.1.

where D is the diagonal of A. We can thus write QG2A
´1GT

1 S̃
´1 « Q, which means

that the Schur complement would have a well-distributed spectrum of singular values,
while the eigenvalues would be spread around the unit circle in the complex plane.
Recall that SPMR-SC rapidly converges when the singular values of the Schur comple-
ment are strongly clustered. Solvers whose convergence rate depends on eigenvalues
may not perform as well in this case.

We plot the eigenvalues in the complex plane in Figure 2(a), and the singular
values on a semilog plot in Figure 2(b), which validate our claim for this example.

Consider the right preconditioners

(35) P1 “

ˆ

I 0

0 S̃

˙

and P2 “

ˆ

A 0

0 S̃

˙

.

We compare the performance of SPMR-SC and SPQMR-SC, where we use the pre-
conditioner P1, and GMRES, where we use the preconditioner P2. The results are
presented in Figure 3, where we track the residual norm per iteration.

As expected, SPMR-SC converges quickly due to well-clustered singular values.
On the other hand SPQMR-SC and GMRES are not competitive since the eigenvalues
of the Schur complement are spread around the complex unit circle. GMRES takes
exactly 2m` 1 iterations, since it’s applied to the operator

KP´1
2 “

ˆ

I GT
1 S̃

QG2A
´1 0

˙

,

whose eigenvalues are 1 (with algebraic multiplicity n´m) and the other 2m eigenval-
ues are ˘λ where λ is an eigenvalue of the Schur complement of the above operator,
QG2A

´1GT
1 S̃, which are not clustered.

8.2. Highly nonnormal generalized reduced Hessian. We show an example
where SPMR-NS outperforms typical Krylov methods in terms of convergence behavior
of the residual norm. In this case we take a saddle-point matrix such that the leading
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GMRES

Fig. 3. }rk} for problem (34) of subsection 8.1.

block A is an nˆ n Grcar matrix [30, Ch. 7], and the off-diagonal blocks G1 “ G2 “
`

F1 F2

˘

, with F1, F2 P R
n
2ˆ

n
2 and }F1} " }F2}. We choose n “ 1000 and take the

right-hand side to be of the form pfT , 0T qT with f random.
We run unpreconditioned SPMR-SC and SPQMR-SC, where we use the null-space

matrices

H1 “ H2 “

ˆ

F´1
1 F2

´I

˙

.

For the purpose of comparison, we run GMRES and LSQR preconditioned with

P “
ˆ

I GT
1

G2 0

˙

.

We use the constraint preconditioner due to its relationship to projections onto the
null-space of the off-diagonal blocks. Thus, we can now talk about comparable iterates
in terms of projections onto the null-space. The norm of the residual is plotted in
Figure 4.

It is known that nonsymmetric Krylov subspace methods may suffer on highly
nonnormal matrices such as the Grcar matrix [30]. Since }F1} " }F2}, most of the
mass of the null-space basis is in the identity block. This means that the general-
ized reduced Hessian exhibits spectral behavior similar to A. We can see in Figure 4
that LSQR has trouble converging, and GMRES and SPQMR-NS, which depend eigen-
values, do not converge too quickly. On the other hand, we see that SPMR-NS has
fast convergence, since it depends on the singular values of the generalized reduced
Hessian.

8.3. Effect of conditioning on SPMR-SC. We next demonstrate the strong
performance of SPMR-SC in comparison with solvers that work directly on the Schur
complement. As we have shown in subsection 3.5, SPMR-SC works on the entire
saddle-point system but is mathematically equivalent to USYMQR applied to the
Schur complement system Sy “ ´g.
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Fig. 4. }rk} for the problem of subsection 8.2.

Consider the saddle-point system

K
ˆ

x
y

˙

“

ˆ

A GT
1

G2 0

˙ˆ

x
y

˙

“

ˆ

0
g

˙

,(36)

where in this case, n “ 600, m “ 300, g is random, and A is a block tridiagonal
matrix of the form

A “

¨

˚

˚

˚

˚

˚

˝

B ´I
´I B ´I

. . .
. . .

. . .

´I B ´I
´I B

˛

‹

‹

‹

‹

‹

‚

,

with

B “

¨

˚

˚

˚

˚

˚

˝

4 ´1` δ
´1´ δ 4 ´1` δ

. . .
. . .

. . .

´1´ δ 4 ´1` δ
´1´ δ 4

˛

‹

‹

‹

‹

‹

‚

,

where δ “ 0.1. The matrix A is a finite difference discretization of a simple two-
dimensional convection-diffusion equation with constant coefficients on the unit square.
G1 is a random matrix whose condition number has been set to be κpG1q “ 105, while
G2 is a random perturbation of G1 so that it has a similar condition number. This re-
sults in κpSq « 108. The exact solution x˚ and y˚ is obtained via Matlab’s backslash
operator.

In Figure 5(a) and 5(b) we see the residual and error norms at every iteration,
respectively. It is clear that even though in exact arithmetic the two would produce
the same iterates, we obtain four more digits of accuracy more using SPMR-SC on the
entire saddle-point system as compared to USYMQR on the Schur complement. This
result is similar in spirit to the improved stability in LSQR over running CG on the
normal equations [24].
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(a) }rk} for problem (36).
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(b) }y˚ ´ yk} for problem (36).

Fig. 5. Performance of SPMR versus USYMQR on problem (36).

We note that this property may not always manifest itself as it would in the
symmetric case where A is positive definite. For nonsymmetric problems there could
exist cases where it may be beneficial to form the Schur complement over working with
the full saddle-point system. That being said, in cases when the Schur complement
has a large condition number, which is nearly the product of the condition numbers
of G1 and G2, we would expect SPMR-SC to outperform methods that work directly
on the Schur complement.

8.4. Interior-point methods. Constrained optimization problems provide a
rich source of saddle-point systems in various forms. Consider quadratic programs
and their corresponding duals, of the form

min
x

cTx` 1
2x

THx subject to Jx “ b, x ě 0,(37)

max
x,y,z

bT y ´ 1
2x

THx subject to JT y ` z ´Hx “ c, z ě 0.(38)

One of the most popular classes of techniques for solving this problem are interior-
point methods. They are based on relaxing the complementarity conditions by intro-
ducing a small parameter-dependent perturbation. The Newton step is “corrected”
by steering the iterate towards the so called “central path” [23]. The extent by which
this is done depends on the proximity to the solution and other considerations.

The perturbed optimality conditions are

(39)

¨

˝

c`Hx´ JT y ´ z
Jx´ b

τe´XZe

˛

‚“ 0, px, zq ą 0.

The parameter τ is initially set as a small positive number and is gradually decreased
towards zero as we approach the optimal solution. There are various strategies for
selecting the value of τ . Solving the mildly nonlinear system (39) using Newton’s
method results in the linear system

(40)

¨

˝

H ´I JT

´Z ´X 0
J 0 0

˛

‚

¨

˝

∆x
∆z

´∆y

˛

‚“

¨

˝

´c´Hx` JT y ` z
b´ Jx

XZe´ τe

˛

‚.

D
ow

nl
oa

de
d 

01
/0

5/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPMR: SADDLE-POINT MINIMUM RESIDUAL SOLVERS A1909

The linear system (40) is nonsymmetric. The matrices X and Z are diagonal,
but they grow increasingly ill conditioned as the solution of the optimization problem
is approached, due to driving τ to zero. It is possible to symmetrize (40), but doing
so requires inverting Z, and this may affect the numerical stability of the solution
procedure, although the effect is subject for debate. Issues related to conditioning of
the matrices involved in the interior-point linear system have been subject to extensive
exploration; see, for example, [34].

We may opt to solve the linear system by forming the Schur complement, and
there is more than one alternative here. In [20] a comprehensive study was conducted
on the condition number (40) and reduced versions based on block Gaussian elimina-
tion. It was shown that from a conditioning point of view, the unreduced 3 ˆ 3 form
is more robust near the optimal solution, compared to reduced versions.

Forming the Schur complement may yield a highly ill-conditioned matrix, and
the inversion of the leading block in this case may be computationally prohibitive,
especially if the Hessian H is hard to deal with computationally (note that it may
often be indefinite). We thus resort to using null spaces. Since null-space methods
are a popular approach to solving problems with linear constraints, it is reasonable to
have a linear mapping to the null-space of J , which we will call C. In this case, we will
use the orthogonal projector C “ I ´ JT pJJT q´1J . We also modify the right-hand
side by finding a particular solution ∆x0 such that J∆x0 “ XZe ´ τe, so that we
instead solve the system

¨

˝

H ´I JT

´Z ´X 0
J 0 0

˛

‚

¨

˝

∆x´∆x0

∆z
´∆y

˛

‚“

¨

˝

´c´Hx` JT y ` z ´ J∆x0

b´ Jx
0

˛

‚.

Thus we can apply SPMR-NS and SPQMR-NS with

H1 “ H2 “

ˆ

C
I

˙

.

We compare SPMR-NS and SPQMR-NS against GMRES (both full and restarted
with a restart of 20), LSQR, and BiCGSTAB. We take the polygon100 problem from
COPS [6] (in its nonnegative slack formulation), where n “ 16347 and m “ 10700,
and construct a quadratic approximation to the nonlinear program at the initial point
plus a small offset to move it off of the boundary. We can control how ill-conditioned
the problem is by moving x and z close to the boundary of the bound constraints.
We first run the iterative methods for various values of x and z which progressively
make the problem more ill-conditioned. We also precondition GMRES, BiCGSTAB,
and LSQR with the constraint preconditioner

P “

¨

˝

I 0 JT

0 I 0
J 0 0

˛

‚.

We plot the residual norm per iteration in Figure 6 with various values of x and
z. In Figure 6(a), all of the methods other than LSQR are comparable in perfor-
mance, as they tend to decrease the residual geometrically. SPMR-NS, SPQMR-NS,
BiCGSTAB, and GMRES appear to have roughly the same rate (although BiCGSTAB

is highly irregular), while restarted GMRES decreases more slowly. Since SPMR-NS,
SPQMR-NS, and BiCGSTAB are the fastest converging short-recurrence methods, they
appear appropriate for this problem.
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(a) x “ x0 ` 10´11, z “ 10´11.
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(b) x “ x0 ` 10´11, z “ 10´21.
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(c) x “ x0 ` 5 ¨ 10´31, z “ 10´21.

Fig. 6. }rk}2 using various values for x and z. x0 is provided as part of the polygon100 problem.
1 denotes a vector of all ones.

As we make the problem more ill-conditioned in Figure 6(b), we see that SPMR-NS

no longer converges, and although GMRES converges the most quickly, it begins to
become more expensive per iteration to do the reorthogonalization. We see SPQMR-NS

converges most quickly among the short-recurrence methods, while BiCGSTAB and
restarted GMRES lag a little bit behind.

In the most ill-conditioned case, we see that SPQMR-NS converges first by far,
while GMRES takes significantly longer. Restarted GMRES, BiCGSTAB, and LSQR
stall out around }rk} « 10´4, while SPMR-NS has trouble converging at all. Thus we
see that SPQMR-NS is the most practical method in this case.

We now precondition SPQMR-NS by approximating the generalized reduced Hes-
sian to see how the convergence behavior changes. The generalized reduced Hessian
in this case is

R “

ˆ

CTHC ´CT

´ZC ´X

˙

.

Note that with the nonnegative slack formulation, H will have large zero blocks cor-
responding to the slack variables; therefore it is reasonable to approximate H by the
identity, so that the first block is replaced by CTC “ C2 “ C since C is a symmetric
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Fig. 7. }rk} for SPQMR-NS on the polygon100 problems from Figure 6 with preconditioning.

orthogonal projector. Therefore, we can approximate the reduced Hessian by the
block triangular matrix

R « pR “

ˆ

C ` αI 0
´ZC ´X

˙

,

where α is a small value to make pR nonsingular (we take α “ 10´3). Since X is
diagonal and C is an orthogonal projector, solving against this preconditioner can be
done efficiently. Thus we now use the null-space operators

H1 “

ˆ

C
I

˙

, and H2 “ H1
pR´1.

The residual norm convergence history for the three problems is given in Figure 7.
Even with a relatively simple approximation to R, we see that we can now take a
fairly reasonable number of iterations to converge, which makes SPQMR-NS a poten-
tially practical method for solving saddle-point systems arising from such optimization
problems.

8.5. Maxwell. A simple form of time-harmonic Maxwell equations can be writ-
ten as follows:

´∇ˆ∇ˆ u`∇p “ f,

∇ ¨ u “ 0,

with appropriate boundary conditions. We point the reader to [21] for additional
details. A significant challenge in solving this problem is that the discrete curl-curl
operator is rank deficient, and hence the corresponding leading block of the saddle-
point matrix is singular (see, for example, [8, 9] for ways to deal with a highly rank
deficient leading block). For this reason SPMR-SC is not a viable candidate. On
the other hand, for SPMR-NS, we can exploit the fact that the null-space of the off-
diagonal blocks of the matrix is explicitly known and can be expressed in a sparse
fashion. We therefore examine SPMR-NS.
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Table 2
Number of iterations for SPMR-NS for several problems to achieve relative residual norm of

10´10. The Ni problems correspond to a unit square domain, whereas the Li problems correspond
to L-shaped domains.

Problem n m SPMR-NS

N1 88 25 8
N2 368 113 8
N3 1504 481 8
N4 6080 1985 8
N5 24448 8065 8
L1 353 98 6
L2 634 179 6
L3 2004 604 6
L4 7544 2383 6

The computational kernels involved in using SPMR-NS and SPQMR-NS are to
solve constraint preconditioners of the form

ˆ

I GT

G 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

and

ˆ

A`M GT

G 0

˙ˆ

d
˚

˙

“

ˆ

c
0

˙

,(41)

where M is the vector mass-matrix.
We solve against a random right-hand side of the form pfT , 0qT and record the

number of iterations required to achieve a relative residual norm of 10´10. The results
are recorded in Table 2.

Since this is a symmetric problem using a symmetric positive definite precondi-
tioner, SPMR-NS and SPQMR-NS are the same method. We see that SPMR-NS shows
perfect scalability with the given preconditioner.

We note that scalable solution methods based on block diagonal preconditioned
MINRES do exist and perform very well [8, 21]. Here we show that SPMR is competi-
tive with those approaches and is fully scalable too, although the preconditioner solves
are slightly more computationally costly. Further connections to existing solvers such
as PP-MINRES [16] may be apparent.

9. Concluding remarks. The promise of the SPMR family is in it being a
customized solver for saddle-point systems, with a monotonic and short-recurrence
version for the nonsymmetric case. It is significant that for the SC version, as op-
posed to other solvers, we effectively avoid squaring the condition number the Schur
complement while implicitly forming it. It is also notable that convergence is very
rapid when the singular values of the Schur complement are clustered.

SPMR in its various versions offers a novel simultaneous bidiagonalization pro-
cedure and proves competitive with other solvers in a variety of scenarios, as we have
demonstrated in our numerical experiments.

We would also like to offer some comments on inexact matrix-vector products.
Considerable work has been done in the field of inexact Krylov methods, such as in
[14, 18, 29, 31]. It would be beneficial to be able to use inexact A-solves (for SPMR-SC

or SPQMR-SC) or inexact null-space projections (for SPMR-NS or SPQMR-NS) by us-
ing this theory. Although previous work is concerned primarily with methods based
on the Arnoldi or Lanczos process [18, 29, 31] or the Golub-Kahan process [14], it
should be possible to extend this work to SIMBA and SIMBO. The main disadvantage
is that either short-recurrence methods become long-recurrence methods when inex-
act matrix-vector products are introduced, as in [14], or the tolerance for how inexact
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the products are must be made tighter [31]. Even if the methods are forced to be
long recurrence, if the iteration cost is dominated by the A-solves or null-space pro-
jections rather than reorthogonalization, investigating the use of inexactness would
be advantageous and the topic of future research.

Finally, it may be desirable to explore applying SPMR to the important class of
regularized saddle-point systems.

A Matlab version of our code is available at https://github.com/restrin/
LinearSystemSolvers.
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