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1. INTRODUCTION

What power does randomness confer to computing devices? In this
article, we focus on this question in what is perhaps its simplest form,
namely when the computing device is a finite state automaton.

Some of the oldest studies of probabilistic computations, dating as
far back as the 40’s, implicitly concern probabilistic finite state devices.
A beautiful theory of probabilistic finite state automata was developed
starting in the early 60’s [Rabin, 1963, Paz, 1971]. This work primarily
concerned automata with 1-way heads on the input tape, where an input
w is considered to be accepted if the probability of reaching the accept
state from the initial configuration is greater than some threshold, say
1/2. The class of languages thus accepted is known as the stochastic
languages.

A pfa for a stochastic language may err by rejecting inputs in the
language with probability that approaches 1/2 as the input size increases.
It is natural to consider the language-recognition power of pfa’s whose
probability of error is bounded away from 1/2. The theory of so-called
bounded error (or isolated threshold) pfa’s was initiated by Rabin [Rabin,
1963], but much progress in understanding these pfa’s has been made
more recently, and so we focus on bounded error pfa’s in this survey.
The study of bounded error pfa’s is motivated by questions such as the
following: if one wants to recognize patterns with small degree of error,
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can it be done with fewer states then when recognizing a pattern exactly?
What kinds of patterns can be recognized when a small probability of
error is allowed, but that cannot be recognized exactly?

The purpose of this survey is to describe a coherent set of results on
bounded error pfa’s. In Section 2. we describe pfa’s and define associated
language classes. In Section 3. we present a result of Freivalds that pfa’s
with a 2-way input head can accept nonregular languages. In particular,
the language {a™b"™ | n > 0} is accepted with bounded error by a 2pfa,
although the 2pfa has worst case expected running time that is expo-
nential in the length of its input. We also describe work by Ravikumar
[Ravikumar, 1992] that builds on Freivalds work to show two classes of
languages that are recognized with bounded error by 2pfa’s.

Freivald’s work raises the question: if the expected running time of
a pfa is limited to polynomial time, can nonregular languages still be
recognized? In Section 4. we show that the answer is no. Rabin [Rabin,
1963] showed pfa’s with a 1-way input head accept exactly the regu-
lar languages. Dwork and Stockmeyer [Dwork and Stockmeyer, 1992]
and independently Kaneps and Freivalds [Kaneps and Freivalds, 1990]
showed that 2pfa’s that run in subexponential expected time only ac-
cept the regular languages. The techniques used to prove this result
include fundamental results on Markov chains that are interesting in
their own right [Dwork and Stockmeyer, 1990, Greenberg and Weiss,
1986, Leighton and Rivest, 1983]. We conclude this section with a brief
summary of results on succinctness of 2pfa’s in terms of number of states
needed to recognize languages compared with deterministic or nondeter-
ministic finite automata.

Section 5. concerns undecidability results for pfa’s. Freivalds showed
that the problem of determining whether a bounded error 2pfa with
known acceptance threshold accepts the empty language is undecidable.
Freivalds’ work was generalized to prove a related undecidability re-
sult for 1pfa’s [Condon and Lipton, 1989]. At the end of this section,
we describe how these undecidability results were applied to show that
problems in probabilistic planning and Markov decision processes are
undecidable [Madani et al., 1999].

2. PFA MODEL

We assume that the reader is familiar with the definitions of determin-
istic and nondeterministic finite state automata (dfa’s and nfa’s). We
denote the class of languages accepted by such automata, with either
1-way or 2-way input heads, as Regular.
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A 2-way head probabilistic finite state automaton (pfa or 2pfa), like
a 2-way dfa or nfa, has a finite set of states including an initial state
and zero or more accept states, a finite input alphabet, and a transi-
tion function. Also associated with a pfa are a left endmarker, #, and
a right endmarker, $, which are used to mark the left and right ends,
respectively, of the input and are not in the input alphabet. The tran-
sition function maps (state, symbol) pairs to a (real-valued) probability
distribution over (state, head direction) pairs, where the symbol may be
from the input alphabet or an endmarker and the head direction deter-
mines whether the head moves one position left (L) on the input tape,
one position right (R), or remains in the same position (N). Transitions
are defined so that the head never moves left from the left endmarker
or right from the right endmarker. For example, the pfa of Figure 1 has
input alphabet {a}, left endmarker #, and right endmarker $. On input
symbol a, state 2 from state 1 is reached with probability 1/5 and state
1 is reached with probability 4/5; in both cases the head moves right.

< )a,l/S,R < >$,1,R
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Figure 1.1 Example pfa with initial state 0. An edge labeled (o,p, X) denotes a
transition with probability p in which o is under the tape head. When X = R, the
head moves right and when X = N the head does not move; since on no transition
does the head move left, this is a 1pfa. The pfa has an additional reject state which is
not shown, and all transitions not shown are to this reject state. For example, from
state 0 on either $ or a, the reject state is reached with probability 1.

Throughout, we will use the following conventions. We assume that a
pfa has a unique accepting state which is halting, that is, all transitions
from the accept state lead back to this state without moving the head.
Similarly, there is a unique halting rejecting state. A 1pfa is a pfa with
no transitions that cause the tape head to move left. Whenever we refer
to an input w of a pfa, we mean that the pfa has #w$ on its tape.

We say that input w is accepted by the pfa if the probability that the
accept state of the pfa is eventually reached, starting with the head in
the initial state on the left endmarker, is greater than 1/2. The lan-
guage accepted by pfa A is denoted by L(A). It is not hard to see
that the pfa of Figure 1 accepts the language {a* | £ > 4}. The class
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of languages accepted by pfa’s is known as the stochastic languages,
and we denote it by Stochastic. Replacing the acceptance thresh-
old by any real number in the range (0,1) in the definition of string
acceptance does not change the class Stochastic [Paz, 1971]. Rabin
[Rabin, 1963] showed that Stochastic contains nonregular languages.
For examples of other nonregular stochastic languages, including unary
languages, see [Dwork and Stockmeyer, 1990, Paz, 1971, Salomaa and
Soittola, 1978]. The class Stochastic was initially defined for 1pfa’s only,
but Kaneps [Kaneps, 1989], building on work of Turakainen [Turakainen,
1969], showed that 2pfa’s accept exactly those languages accepted by
1pfa’s. Macarie [Macarie, 1998] showed that the question of whether
a given string z is accepted with probability > 1/2 by a given lpfa P
which has rational transition probabilities can be decided in determin-
istic logarithmic space.

Consider a pfa A with the property that for all inputs in L(A), the
probability of reaching the accept state is in fact greater than 1/2 +
for some constant v > 0 (independent of the input length), while the
probability that the accept state is reached on inputs not in L(A) remains
at most 1/2. We say that such a pfa accepts its language with bounded
error, and we refer to 1/2 +y as the acceptance threshold of the pfa. We
denote the languages accepted by bounded error 1pfa’s by 1PFA and
the languages accepted by bounded error 2pfa’s by 2PFA. The class of
languages accepted by pfa’s which are restricted to run in polynomial
expected time is denoted by 2PFA-polytime.

Finally, we say that a pfa is coin-flipping if all transition probabilities
are in the set {0,1/2,1}. We note that for any pfa with rational tran-
sition probabilities there is an equivalent coin-flipping pfa, in the sense
that acceptance probabilities on all strings are the same. Figure 2 shows
a coin-flipping pfa that is equivalent to that of Figure 1. All of the 2pfa
constructions described in Sections 3. and 5. are coin-flipping.
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Figure 1.2 Coin-flipping pfa that is equivalent to that in Figure 1.



3. 2PFA CONTAINS NON-REGULAR
LANGUAGES

Before describing results on the limitations of pfa’s, it is useful to
first see a pfa that does something surprising. We describe here a coin-
flipping 2pfa of Freivalds [Freivalds, 1981] that accepts the language
{a"b™ | n > 0} with bounded error.

Freivalds’ 2pfa does the following. First, (deterministically) check
that the input is of the form a™b™ for some n > 0,m > 0 and that
n = mmod (k + 1) for some constant k and if not, reject. Here, k
controls the error probability of the 2pfa, as we discuss later.

Then, while scanning the input repeatedly, do the following. On each
scan, flip a fair coin for each a and b; call these a-flips and b-flips, re-
spectively. A scan is said to be a success for the a’s if all a-flips are
heads but at least one b-flip is a tail, and is a success for the b’s if all
b-flips are heads but at least one a-flip is a tail. If there are L successes
for the a’s before any success for the b’s or vice versa, then reject, else
accept. Here again L is a constant that controls the error probability,
as discussed later.

If n = m then on each scan the probability of success for the a’s is the
same as the probability of success for the b’s. However, if n > m+k, then
the probability of success for the b’s is at least 2¥ times the probability
of success for the a’s. A similar statement holds if m > n + k.

Thus, if n = m, the chance of L successes for the a’s before any
success for the b’s is at most (1/2)% (and vice versa), and so the 2pfa
accepts a string in the language with probability at least 1 — (1/2)~1.
For example, to obtain a machine with acceptance threshold 3/4, it is
sufficient to choose L = 3.

But if n > m + k, then in a single trial,

Prob[success for the a’s] 1
Prob[success for the a’s or b’s] — 2k +1°

Therefore, the probability that the first L successful trials are all
successes for the b’s, and thus that the 2pfa rejects, is at least (1 —
1/(2% + 1))L. By choosing k sufficiently large (depending on L), this
constant can be made as close to 1 as desired. For example, if L = 3
and k = 2 then (1 — 1/(2% + 1)) = .512 and so A rejects inputs not in
L with probability at least 1/2.

B. Ravikumar [Ravikumar, 1992] extended Freivald’s construction to
show that all bounded semilinear languages and all languages recog-
nizable by deterministic blind counter machines are contained in 2PFA.
These language include non-context free languages such as {a"b"c" | n >

0}.



4. LIMITS ON THE POWER OF
TIME-RESTRICTED PFA’S

The expected running time of Freivalds’ 2pfa is exponential in the
input size, since the probability that a single scan is a success for the
a’s or b’s is exponentially small in the length of the input. If one is
interested in efficient finite state pattern recognizers, it is necessary to
restrict attention to pfa’s that run in polynomial expected time. As it
turns out, such pfa’s accept only the regular languages. The earliest
result along these lines is due to Rabin [Rabin, 1963] and is for 1pfa’s.
We describe this first, and then return to the class 2PFA-polytime.

4.1 1PFA = REGULAR

Rabin’s proof uses the following fundamental property of the regular
languages. Define two strings z and z’ to be Myhill-Nerode-equivalent
with respect to a given language L if for all strings y, zy is in L if and
only if 'y is in L. Then L is regular if and only if the number of Myhill-
Nerode equivalence classes with respect to L is finite (see the text by
Hopcroft and Ullman [Hopcroft and Ullman, 1979]). The proof of one
direction of the Myhill-Nerode theorem is easy: if A is a dfa for L, define
z and z' to be A-equivalent if z and z’ lead to the same state of A from
the initial state. A-equivalence implies Myhill-Nerode equivalence, and
hence the number of Myhill-Nerode equivalence classes is at most the
number of states of A.

We’d like to use the behavior of a 1pfa P on two strings z and z’
to define some notion of P-equivalence between z and z’, such that if
z and z' are P-equivalent, then they are Myhill-Nerode-equivalent. A
natural approach is to base a notion of P-equivalence on the probability
distribution of states reached when the head moves to the right off x
or z', when starting in the initial configuration. For simplicity, assume
without loss of generality that the 1pfa P does not enter the accept
or reject state unless the head reaches the right end-marker. However
P may loop forever without reaching either the accept or reject state,
perhaps by cycling among several states without ever moving its head.
Let the non-halting states of 1pfa P be numbered 1,...,c and let p(z)
be a c-vector whose ith entry is the probability of being in state ¢ when
the tape head moves off z. Intuitively, if the vectors p(z) and p(z') are
close then for any string y, the probability that zy is accepted is close
to the probability that z'y is accepted.

More precisely, suppose that ||p(z) —p(z')|| < €, where € > 0 and ||z||
denotes the max of the absolute values of the entries of the vector x. Let
q(y) be the column c-vector with ith entry equal to the probability that
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the accept state of P is reached from a starting configuration in which
P is in state 7 and the head of P is on the first (leftmost) symbol of
y$. Then, the inner product p(z)q(y) is the probability that P accepts
string zy and p(z')q(y) is the probability that P accepts z'y. Therefore,

|Prob[P accepts zy] — Prob[P accepts z'y]|
<llp(=) — p(=")a(y)l| < ce. (1.1)

Let € > 0 be sufficiently small so that the acceptance threshold of P is >
1/2+ce. Then if P accepts zy, Prob[P accepts zy] > 1/2+ ce. Combin-
ing this with inequality (1.1), we have that Prob[P accepts z'y] > 1/2.
Hence, P must also accept z'y.

Now, partition the space of all vectors in [0, 1]¢ into a constant number
of cells of dimension at most ¢, so that for any pair of vectors v, w in the
same cell, ||[v — w|| < e. Define z and z' to be P-equivalent if p(z) and
p(z') are both in the same cell. The argument of the previous paragraph
shows that if  and z’ are P-equivalent (with € chosen appropriately
depending on the acceptance threshold of P), then for any string y, zy
is in L if and only if 2’y is in L. Thus, the number of equivalence classes
of the language accepted by P is bounded by the number of cells in the
partition of [0, 1]¢, and thus is finite. By the Myhill-Nerode theorem,
the language accepted by P is therefore regular.

4.2 2PFA-POLYTIME = REGULAR

Dwork and Stockmeyer [Dwork and Stockmeyer, 1992] and indepen-
dently Kaneps and Freivalds [Kaneps and Freivalds, 1990] generalized
Rabin’s result to show that only the regular languages are recognized by
2pfa’s that are restricted to have expected running time that is subex-
ponential. In particular, 2PFA-polytime = Regular. We describe their
techniques in this section. These build on earlier work of Greenberg and
Weiss [Greenberg and Weiss, 1986], who showed that exponential time
is needed to recognize {a"b"}.

Let P be a 2pfa that halts in polynomial expected time; in particular
P halts with probability 1, and assume again for simplicity that the
accept or reject states are only entered when the head is on the right
endmarker. As in Rabin’s proof, a key idea is to model the behavior of
P on z in such a way that if the models for z, 2’ are close (according
to some measure), then zy is accepted if and only if z'y is. In the case
of a 1pfa, the behavior on z is modeled by the vector p(x), but this is
inadequate for 2pfa’s, since, during a computation of a 2pfa on input
zy, the tape head may repeatedly cross left from y back onto z. Thus,
to fully capture the behavior of P on z, in addition to including the
probabilities in p(z), we need to include, for each pair of nonhalting
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states ¢ and ¢', the probability that, starting from ¢ with the head on
the right end of #z, P is in state ¢’ when its head moves off the right end
of #z for the first time. Note that these probabilities are independent
of whatever string is to the right of x.

It is convenient to represent these probabilities as weights on edges of
a graph, which we denote by M[z]. M[z] has 2c + 1 nodes and directed
weighted edges. Of these nodes, ¢ are of the form (¢,1),1 < ¢ < ¢,
representing the configuration in which P’s head is on the right end of x
in state g. Also, ¢ are of the form (¢’,2), representing the configuration
in which the state of P is ¢’ and the head is on the first symbol of
the string that is to the right of #x. The weight of the edge (¢,1) —
(¢',2) is the probability that, starting from configuration (g, 1), the first
configuration reached, among those configurations that are represented
as nodes of M[z] of the form (x,2), is (¢’,2). The remaining node in
the graph is Initial, denoting the initial configuration of P on #x. The
weight of the edge Initial — (¢, 2) denotes the probability that the first
configuration reached from Initial, among those configurations that are
represented as nodes of M|[z] of the form (x,2), is (¢/,2). Similarly, we
can model the behavior of P on y$ as a graph M[y] with 2c + 2 nodes.
Of these nodes, ¢ are of the form (g, 1), representing the configuration
in which the head is on the symbol just to the left of ¥$, ¢ are of the
form (g, 2), representing the configuration in which the head is on the
leftmost symbol of y$, and the weight of edge (¢',2) — (g,1) is the
probability that, starting from (¢’,2), the first configuration reached,
among those represented as nodes of M [y] that are not of the form (x,2),
is (¢,1). The two additional nodes are Accept and Reject, where edge
(¢',2) — Accept (Reject) has weight equal to the probability of reaching
the accept (reject) state from configuration (¢’,2) before reaching any
configuration of type (*,1). Also, there is an edge of weight 1 from
Accept to itself and from Reject to itself.

Let M(z,y] denote the graph with 2¢ + 3 nodes obtained from the
“union” of the graphs M([z] and M[y]. That is, the set of nodes (resp.
edges) of M|[z,y] is the union of the set of nodes (resp. edges) of M|z]
and M[y]. Note that the sum of the weights of edges from any node
of M[z,y] is 1 since P halts with probability 1. The probability of
eventually reaching Accept from Initial in M|z,y|, while transitioning
between states according to the edge probabilities, equals the probability
that the accept state of P is reached from the initial configuration on
input zy.

Now, consider a sequence of random variables Xy, X,... over the
nodes of M [z, y], where Xy = Initialand for i > 1, Prob[X; = N | X;_; =
N'] is the weight of edge N — N'’. This sequence is a (discrete, time-
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inhomogeneous) Markov chain; we also use M [z, y] to refer to this Markov
chain. Associated with a Markov chain M is a square transition prob-
ability matrix [p;;] with dimension equal to the number of states of M.
Entry p;; is the probability of reaching state j from state 7 in one step.
To define equivalence between strings z and z’/, we need to know how
small perturbations in the transition probabilities of a Markov chain
affect the probability of eventually reaching Accept from Initial.

Let’s look at two examples, to get some intuition on this. In our first
example, let M have states 1, 2, and 3, with 1 being the initial state and
states 2 and 3 being absorbing, that is, the probability of reaching 2 from
2 is 1 and similarly for 3. Let a(M) and a(M') denote the probability
that state 2 is eventually reached, starting from state 1. Let pa, p3 be the
probabilities of going from state 1 to state 2 and from state 1 to state
3, respectively. The probability of looping at state 1 is thus 1 — ps — p3
and a(M) is p2/(p2 + p3). Let M’ be the same as M, except that p; is
replaced by p} everywhere. Suppose that ps = ps, p, = 2ps, and ps = ps.
Then a(M) = 1/2 and a(M') = 2/3. By choosing ps small enough, the
quantity |p, — pe| = 2pa — p2 = p2 can be made arbitrarily small, yet the
difference a(M) — a(M') remains equal to 3/2 — 1/2.

This example suggests that the ratio, rather than the difference, of
corresponding transition probabilities needs to be close to 1 in order for
two Markov chains M and M’ to have similar absorbtion probabilities
at their (common) absorbing states.

Let 8 > 1. We say that two real numbers p and p’ are S-close if either
(i)p=p' =0,o0r (i) p>0,p' >0,and B! < p/p' < B. Let M and M’
be two Markov chains with associated transition probability matrices
[pi;] and [p;;]. We say that M and M’ are B-close if for all 4, 5, p;; and
pj; are B-close.

Let M and M’ be f3-close Markov chains over the same state space
and suppose that a(M) and a(M’) are the probabilities of reaching a
(common) absorbing state. We would like an upper bound on the ratio
a(M)/a(M'), as a function of 5 and m, where m is the number of states
of M and M'. The following proposition provides such a bound. It was
first proved by Greenberg and Weiss [Greenberg and Weiss, 1986] and
follows from the Markov Chain Tree Theorem of Leighton and Rivest
[Leighton and Rivest, 1983].

Proposition 1 Let M and M’ be 8-close. Then a(M) and a(M') are
B2 -close.

For example, suppose that M has m states, of which m — 1 and m
are absorbing, and 1 is the initial state. Let a(M) be the probability
of eventually reaching m — 1 from 1. Let the probability of going from
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state 4 to 1 + 1,1 < i < m — 2, be p, where 0 < p < 1/2. Let the
probability of going from state ¢ to state m, 1 < ¢ < m — 2, be 1 — p.
Thus, a(M) = p™~2. If M’ is the same as M except that p is replaced
everywhere by 2p, then a(M') is (2p)™ 2. In this example, M and M’
have m states and are S-close for = 2, and the ratio a(M)/a(M’) is
p".

Proposition 1 does not seem too promising: for M and M’ to be close,
the difference between logs of (non-zero) transition probabilities needs
to be small. But since non-zero transition probabilities lie in the range
(0,1], the logs of these probabilities lie in the range (—oo,1]. Thus, it is
not possible to partition the space of Markov chains into a finite number
of classes such that all of those in the same class are -close, where (3 is
a small constant.

One ray of hope is that if z has length at most n, then the non-zero
transition probabilities of M[z] cannot be less than 27"~1. (Recall that
M]z] is that part of the graph M|[z,y] with 2c+ 1 states determined by
z.) To see this, note that, for example, if configuration (¢, 1) is reachable
from configuration (g,2) on some execution of the pfa P on input #uz,
then there is an execution for which (¢’,1) is reachable from (g,2) in at
most cn — 1 steps. Since P is a coin-flipping pfa, the probability of this
execution is at least 27" 1,

If |z| < m, then the non-zero transition probabilities of M([z] lie in the
range [2-" 1 1] and so the logs (to base 2) of these probabilities lie in
the range [—cn —1,0]. As Theorem 1 below makes precise, it is possible
to partition the graphs M|[z], and thus the strings z of length < n,
into a number of equivalence classes that is bounded by a polynomial
function of n, such that if z and z’ are in the same equivalence class then
zy is accepted by P if and only if z'y is accepted by P. There is some
hope that this might be a useful step towards the goal of showing that P
accepts only regular languages, if it can be combined with a quantitative
version of the Myhill-Nerode theorem. Roughly, the latter would provide
a lower bound on the number of words which must be distinguished by
any recognizer of the strings of length at most n in a regular language.

Theorem 1 Let P be a 2pfa that accepts its language with bounded
error. There is a partition of the strings of length at most n into a
number of classes that is bounded by a polynomial in n, such that if x
and x' are in the same class then for all y, xy is accepted by P if and
only if 'y is.

Since M[z,y] models a 2pfa that always halt with probability 1, the
following sketch of the proof of Theorem 1 applies only to such 2pfa’s,
but the techniques can easily be extended to apply to 2pfa’s that do not
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necessarily halt with probability 1. Partition the interval [—cn — 1,1]
into subintervals of length at most ¢, for some constant € < 0. Define z
and 7’ to be e-close if for each pair of corresponding edge weights p and
p' in M[z] and M[z], either p = p’ = 0 or log, p and log, p are both in
the same subinterval. Note that e-closeness is an equivalence relation,
and the number of equivalence classes is at most ([(ecn+1)/e]+ 1)@et1)?,
Let a(zy) and a(zy) be the probability of reaching state Accept from
Initial in M[z,y] and M[z’,y], respectively. From the fact that z and z’
are e-close, it follows that M[z,y] and M[z',y] are 2%-close. By Propo-
sition 1, it follows that a(zy) and a(z'y) are 222¢t3)¢_close. Therefore,

a(zy) > 9-2(2c+3)e
a(z'y) '

If 2’y is accepted then a(z'y) > 1/2 + §, for some constant §. Hence,
a(zy) > (1/2 4 §)2722+3)e,

By choosing € sufficiently small (depending on the number c¢ of states of
P and on §), the right hand side of the above inequality can be made
greater than 1/2, and so zy must be accepted by P.

Corollary 1 The language {w&w | w is in {a,b}*} is not in 2PFA.

To see this, suppose that P is a 2pfa that accepts this language with
bounded error. Let p(n) be the polynomial of Theorem 1. Let n be
such that 2" > p(n). Consider the 2™ distinct strings of length n. All of
these must be in different classes (see statement of Theorem 1), which
is impossible, contradiction.

However, we cannot hope to strengthen it to show that no nonregular
language is in 2PFA, since Freivalds has shown that {a"b" | n > 0} is
in 2PFA. In order to prove something about 2PFA-polytime, we need to
strengthen Theorem 1 in the case that P halts in polynomial expected
time. The following result does this.

Theorem 2 Let P be a 2pfa that accepts its language with bounded
error. Let the expected running time of P be bounded by a polynomial
t(n). Then there is a partition of the strings of length at most n into a
number of classes that is bounded by a polynomsial in logn, such that if ©
and ' are in the same class then for all y such that |zy| < n,|zy’| < n,
zy 18 accepted by P if and only if x'y is.

Roughly, the proof of Theorem 2 is as follows. Let (s, s’) be a tran-
sition in M[z,y] with probability p where p < #(n) 2. Since P halts in
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expected time ¢(n), it is unlikely that M|z, y] ever transitions from s to
s’ before halting. Let M'[z] be the graph obtained by changing transi-
tion probabilities of M[z] that are < ¢(n)~2 to 0. Since the edge weights
of M'[x] are in the range [t(n)~2, 1], it is possible to partition the strings
z of length at most n into a number of classes that is polylogarithmic in
n, such that if z and 2’ are in the same class then for all y with |zy| < n
and |z'y| < n, zy is accepted by P if and only if z'y is.

We can use Theorem 2 to show that 2PFA-polytime accepts only reg-
ular languages if we can show that for some function g(n) that grows
faster than any polylogarithmic function of n, for all nonregular lan-
guages L, for infinitely many n, there is a set of strings of size at least
g(n), each of length at most n, such that each pair of strings z, z' in the
set is n-dissimilar with respect to L. By this, we mean there is some y
for which |zy| < n,|zy'| < n, and zy is in L if and only if 2y is not in
L.

Towards this end, we define a more quantitative measure of the “non-
regularity” of a language L than the notion of inequivalence defined by
Myhill and Nerode. Let Nz (n) be the maximum k such that there exist
k distinct words which are pairwise n-dissimilar with respect to L. It is
not hard to show that Nz(n) = O(1) if and only if L is regular. The
following theorem states that if L is non-regular, then Ny (n) is bounded
below by a linear function of n for infinitely many n. For related results,
see the work of Shallit et al. [Glaister and Shallit, 1998, Pomerance
et al., 1997, Shallit and Breitbart, 1996].

Theorem 3 If L is non-reqular then for infinitely many n, Np(n) >
n/2+1.

The proof of Theorem 3 is based on an old result of Moore [Moore,
1956]. We say that a dfa D recognizes the initial n-fragment of L if
L(M)N X<, = LNX<y,. Let ¢1(n) be the size of a minimal 1dfa that
recognizes the initial n-fragment of L. Kaneps and Freivalds [Kaneps
and Freivalds, 1990] showed that Nz (n) = ¢r(n).

Karp [Karp, 1967] showed that if L is non-regular, then for infinitely
many n, ¢r(n) > n/2 + 1. To see this, it is sufficient to show that, for
any positive integer r, there is n > r such that ¢5(n) > n/2+1. Givenr,
let n (n > r) be the unique integer such that ¢r(r) = ¢r(n—1) < ¢r(n).

Such an n exists, since ¢r,() is monotone and unbounded. Let minimal
finite-state machines M and N be chosen so that M recognizes the initial
(n—1)-fragment of L and N recognizes the initial n-fragment of L. Note
that M and N cannot be identical, since M does not have enough states
needed to recognize the initial n-fragment of L, and so they disagree on
a string z of length n. Moore [Moore, 1956] proved the following result,
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which provides an upper bound on the length of a string on which M
and N disagree as a function of the number of their states.

Proposition 2 Let M and N be dfa’s with j and k states, respectively,
such that L(M) # L(N). Then there is a string z of length at most
Jj+k —2 such that z is in L(M) if and only if z is not in L(N).

It follows that there is a string z length at most ¢, (n—1) + ¢r(n) — 2
such that z is in L(M) if and only if z is not in L(N). Hence, ¢r(n —
1) + ¢r(n) — 2 > n. Since we also have that ¢r(n — 1) < ¢r(n) — 1, we
obtain

(pr.(n) —1) + ¢r(n) >n+1, or ¢(n) > n/2+1,

as required.
The fact that 2PFA-polytime = Regular follows immediately from
Theorems 2 and 3.

4.3 RELATED RESULTS

Let 2PFA(rat) be the class of languages recognized with bounded
error by 2pfa’s that have rational transition probabilities (or equivalently,
are coin-flipping 2pfa’s). Wang [Wang, 1992] showed that 2PFA(rat) is
contained in the class of deterministic, context-sensitive languages; we
don’t include details of his proof here but it is based on the techniques
of the Markov Chain Tree Theorem.

Finally, a note on succinctness of polynomial time bounded 2pfa’s.
Dwork and Stockmeyer [Dwork and Stockmeyer, 1990] extended the
above techniques to address the question of whether bounded error 2pfa’s
that run in polynomial expected time can recognize languages with fewer
states than dfa’s or nfa’s. Roughly, they showed that if P is a bounded
error 2pfa with ¢ states that runs in polynomial expected time, then
there is a 1dfa for L(P) that has c©(¢") states, where the constant hid-
den in the big-O notation depends on the acceptance threshold of P and
the degree of the polynomial bound on P’s running time. They also
showed that the ¢? in the exponent cannot be replaced by a function of
¢ which grows more slowly than \/c/logc, even if 1dfa is replaced by
2nfa.

5. UNDECIDABILITY RESULTS FOR
BOUNDED ERROR PFA’S AND THEIR
CONSEQUENCES

We now turn to the following question: given a pfa P, does it accept
a regular language? In particular, does P accept the empty language?
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In this section, we describe some results on this question, known as the
emptiness problem for finite state automata. Later in this section, we de-
scribe applications of these results to show undecidability of probablistic
planning problems and problems on partially observable and unobserv-
able Markov decision processes.

For dfa’s or nfa’s there is an efficient algorithm for the emptiness
problem, since a dfa or nfa accepts the empty language if and only if
there is no path from the initial state to an accept state in the transition
graph for the automaton.

In the case of a 1pfa P that accepts its language with bounded error
and the acceptance threshold is known, then the question is decidable:
From Section 4.1, we know that there is a 1nfa D that accepts the same
language as P and has a number of states at most exponential in the
size of P, where the exponential bound can be calculated explicitly from
the acceptance threshold v and the number of states ¢ of P. Denote
this bound by B(y,c). Thus, a naive procedure to solve the emptiness
problem in this case is to enumerate all nfa’s D of size at most B(vy,c);
for each, determine whether L(D) = L(P) and, if so, whether D accepts
the empty language. Note that if L(D) # L(P) then Moore’s result
(Proposition 2 above) provides a bound on the length of a witness to
this fact. Thus, by enumerating all potential witnesses and checking
whether each is accepted by P and by D, it is possible to determine
whether L(D) = L(P).

5.1 UNDECIDABILITY OF THE
EMPTINESS PROBLEM FOR 2PFA’S

Since 2pfa’s accept nonregular languages, it is perhaps not surprising
that the emptiness problem for 2pfa’s is undecidable. This result was
proved by Freivalds [Freivalds, 1981].

Theorem 4 The following problem is undecidable. Given a natural
number k > 2 and a 2pfa P recognizing a language L with acceptance
threshold 1/2 + 1/k, determine whether the language L is empty.

The proof of Theorem 4 is via a reduction from the halting problem
for Turing machines on empty input. A first try at a reduction would
be to use the description of a Turing machine M to produce a 2pfa
A = A(M) that can recognize (on its input tape) halting computations
of M on the empty string. This 2pfa may err, as long as the error is
bounded away from 1/2. Assuming that M has a single, 1-way infinite
tape, a standard representation of a computation of M is a string of the
form Cy&C1& ... &C;, where each C; describes a configuration of M. If
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at the sth move of M on empty input the contents of M’s tape is uv,
the head is placed on the rightmost symbol of u, and the state of M is
s, then Cj is the string uswv.

Note that C;41 differs from C; in a constant number of places around
the tape head, and a dfa can check that these differences between Cj 41
and C; correspond to a valid transition of M. A dfa can also check
that Cy represents the initial configuration of M on the empty string
and that C; is a halting configuration. The remaining task of the 2pfa
is easily reducible to repeatedly recognizing strings of the form wé&w.
Unfortunately, from Corollary 1, a 2pfa cannot recognize strings of the
form w&w. Unless, of course, w is a string over a unary alphabet.

Are Turing machines with a unary worktape alphabet equivalent in
power to general Turing machines? It turns out that if the Turing ma-
chine has two worktapes, the answer is yes [Hopcroft and Ullman, 1979].
Specifically, the emptiness problem for the following model, called the
2-counter machine, is undecidable. A 2-counter machine is a Turing ma-
chine with two one-way infinite read-only worktapes (in addition to a
read-only input tape). The leftmost symbol on both worktapes is $ and
all remaining symbols are blank. In effect, the 2-counter machine can
use the worktapes as counters, simulating an increment or decrement
by moving the head right or left, respectively, and testing for zero by
checking if § is under the tape head.

Given a description of a 2-counter machine M, which is an instance of
the halting problem for 2-counter machines, the reduction constructs a
2pfa P = P(M) with the following property. P accepts with probability
> 1 — € any string that represents a halting computation of M on the
empty input, and rejects with probability 1 —e any string that represents
a non-halting computation of M on the empty input, where ¢ may be
any constant in the range (0,1). A computation of M is represented as
a string of the form

ur A &ugd2d™ & .. &up it d™

where each u; represents the state of M, and k;, m; denote the values
of the 2 counters of M at the ith step of the computation. A dfa can
check that the states u; are in accordance with the transitions of the 2-
counter machine, that u;c¥1d™ is the initial configuration, and that u;
is a halting state. The remaining task is to check that the counters are
updated correctly. Since a counter’s value changes by at most 1 on each
transition, this task is easily reduced to that of recognizing the following
language:

A* = {0™1™0"21"2 ... 0" 1™, | k > 0 and each n; is a positive integer}.
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The proof that this language can be recognized by a 2pfa with bounded
error is a natural extension of Freivald’s algorithm for {a™b"} and can
be found in [Freivalds, 1981].

5.2 UNDECIDABILITY OF THE
EMPTINESS PROBLEM FOR 1PFA’S

The emptiness problem for 1pfa’s is as follows: given a 1pfa A and a
constant €,0 < € < 1/2, is there some input that the machine accepts
with probability at least 1 — €7

Theorem 5 The emptiness problem for unbounded error Ipfa’s is un-
decidable.

This was proved by Paz [Paz, 1971]. The proof presented here is
different than that of Paz, and is due to Lipton [Condon and Lipton,
1989, Lipton, 1989], and actually shows the following stronger result.

Theorem 6 The following promise problem is undecidable: Given a
constant €,0 < ¢ < 1 and a Ipfa P that either accepts some string
with probability at least 1 — € or accepts all strings with probability at
most €, decide which is the case.

Recall that the key to Freivalds’ proof was a bounded error 2pfa for
the language

A* = {0™1™0"21™2 ... 0" 1™, | k > 0 and n; is a positive integer}.

At the heart of the proof is a simple game that is played on a string of
the form 0°17 and is inspired by Freivald’s work. The game works as
follows. If ¢ # j mod k where k is some constant, then the outcome is
“bad”. Otherwise, four tests are performed: (i) flip a coin for each 0
and 1; (ii) flip a coin for each 0 and 1; (iii) flip two coins for each 0; and
(iv) flip two coins for each 1. Say that sums win if all coins in either
(i) or (ii) are heads and say that doubles win if all coins in either (iii)
or (iv) are heads. If sums win, but not doubles, the outcome is good,
and if doubles win but not sums, the outcome is bad. Otherwise the
outcome is inconclusive. A key property of this game is that if 1 = j,
then the outcomes good and bad are equally likely, but if ¢ is not equal
to j then the outcome bad is f(k) times more likely than the outcome
good, where f(k) goes to infinity as k goes to infinity.

Lipton devised a 1pfa, call it R, that plays the above game indepen-
dently on successive strings of the form 0°17 and has the following prop-
erty. R has an associated constant parameter C' > 0 which can be chosen



17

to be arbitrarily large. R has three outcomes: accept, reject, or incon-
clusive. Also, if z is in A*, then Prob[R accepts z] = Prob[R rejects z]
and if z is not in A*, then Prob[R rejects ] > CProb[R accepts z].

We can now describe the reduction from the halting problem for 2-
counter machines to the emptiness problem for 1pfa’s. Let M be a 2-
counter machine. The reduction produces a 1pfa P = P(M) which works
as follows. If the input to P is of the form FE1&Fo&Fs& ... Fy, then,
working from left to right, P does a probabilistic check that successive
E;’s represent halting computations of M on the empty input. This
check has three outcomes: good, bad, or inconclusive. If FE; is indeed
a halting computation of M, then the probability that the outcome of
P on E; is good equals the probability that the outcome of P on E;
is bad. But if F; is not a valid halting computation of M, then the
probability that the outcome of P on E; is bad is C times as great
as the probability that the outcome of P on E; is good. This check
can easily be implemented using the 1pfa R described above, similar to
Freivalds’ proof. If k bad outcomes occur before any good outcome, then
P rejects the input; otherwise P accepts the input.

Let 0 < € < 1. If C and k are chosen appropriately, then the 1pfa
P has the following properties: If M halts on the empty input, then P
accepts some input with probability at least 1 — ¢, namely the input that
is the concatenation of sufficiently many halting computations of M on
the empty input. However, if M does not halt on the empty input, then
P accepts any input with probability at most e.

5.3 MARKOV DECISION PROCESSES

In this section we show how undecidability results for 1pfa’s lead to
undecidability results for central problems on unobservable Markov de-
cision processes (MDP’s). Such problems are are abstractions of general
planning problems; finding good heuristics for solving planning prob-
lems is an active research area in Artificial Intelligence [Boutilier et al.,
1999, Littman, 1997, Papadimitriou and Tsitsiklis, 1987].

The following description of a Markov decision process is largely from
Derman [Derman, 1970]. Consider a finite state system with state space
S that is observed at times 1,2, .... Let Yy, Y1, Y5, ... be the sequence of
observed states. After each observation of the system, one of a possible
number of actions are taken. Let Ay, Aq,...,As, ... denote an infinite
sequence of actions. A rule, or policy, or strategy, is a prescription for
taking actions at each point in time. The most general type of strategy
for taking an action at time ¢ may be a function of the entire “history”
of the system up to time ¢ and may also involve randomization. Thus,
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a strategy is a set of functions
Da (Ht—la }/t)a

where H; denotes the history up to time ¢ — 1, that is, the sequence
Yo, Ao, Y1, A1, ... Y;, Ay, a is a possible action when the system is in state
Y;,,t=0,1,...,0 < D, <1, and the sum of the D, is 1. The interpreta-
tion is: if H; 1 denotes the history up to time ¢ — 1 and Y; denotes the
observed state at time ¢, then the probability of taking action a at time
tis D,(H;—1,Y3)-

The system has an associated transition function that maps (state,
action) pairs to a probability distribution over (state, head direction)
pairs. If Y; 1 = ¢ and action A; = a, then the probability that Y; = j
is determined by the transition function. Given a distribution over the
initial observed states of the system and a strategy R, the sequence
{Y;,A;,t = 0,1,...} is a stochastic process called a Markov decision
process.

A certain reward structure is imposed on a Markov decision process:
whenever the system is in state ¢ and action ¢ is taken, we assume that
a known reward w;, is incurred. In order to consider the accumulated
rewards of a process over time, we need the following notation. Let W,
be the random variable which is equal to w;, if Y; = 4, A; = a. Let
ERr[W}] be the expected reward of W; when the strategy is R. That is,

Ep[Wy] = Z Prob[Y; =i, A; = a | strategy isR]wj,
i,a

The following quantities are among those most commonly studied for
Markov decision processes.

m  Finite Horizon Reward: Let M be a MDP. Let

Reward(M, T) = m}z%x{z ER[Wi]}

denote the maximum total expected reward of M that can be ac-
cumulated over the first T steps, where the maximum is taken over
all strategies R.

»  Total (Infinite Horizon) Reward: The quantity

Total-Reward(M,T) = Tlim Reward(M,T),
—00

if it exists, is called the total reward of the MDP M. Note that
the limit may be infinity.
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m  Discounted Reward: Let 0 < a < 1; a is referred to as the discount
factor. Let
(o]
D(M,R,a) = o'ER[Wy]
t=0
be the expected discounted reward of M with strategy R. Let

Discounted-Reward(M, a) = sup D(M, R, «)
R

denote the supremum, over all strategies R, of the expected dis-
counted reward of M with strategy R.

A variant of the MDP model is the unobservable MDP, or UMDP,
model. In this model, the strategy is restricted so that the choice of
action may depend on ¢ and also on the history of actions up to time
t—1, but may not depend on the history of states. Thus, a strategy for a
UMDP is an infinite sequence of actions. Both UMDP’s and MDP’s are
a special case of POMDP’s or Partially Observable Markov Decision
Processes, in which the strategy may depend on partial information
about the history of states, in addition to the history of actions.

The Total Reward Problem for UMDP’s is: given a UMDP M, de-
cide whether Total-Reward(M) > 1/2 (where in the definition of To-
tal Reward, Reward(M,T') is maximized over all strategies that are re-
stricted as for UMDP’s). Similarly, the Discounted Reward Problem for
UMDP’s is: given a UMDP M and a discount factor «, decide whether
Discounted-Reward (M) > 1/2.

UMDP’s and 1pfa’s are closely related, as we now explain. Let P be a
1pfa and without loss of generality assume that P always moves its head
to the right at every step. Furthermore, assume that P always rejects
if the initial symbol under the input head is not # or if # is read when
the head of P has moved right off the leftmost #, and that P enters
an absorbing state (accept or reject) when §$ is reached. Let 3 be the
alphabet of P. Now let M be a UMDP with the same state space as P
with the following properties. The number of actions of M associated
with each state is |X| 4+ 2 (the “+2” includes the endmarkers), and the
transition function of M is identical to that of P. Any transition that
causes M to enter the accept state from a state other than the accept
state itself has a reward of 1 and all other transitions have a reward of
0. Think of the accept state as a goal state; then the total reward of
M on a given strategy is the probability of eventually reaching the goal
state on that strategy. Note that there is a 1-1 correspondence between
inputs #z$ of P and strategies of M that start with #z$. Let R, be
any strategy corresponding to input string z. Then the probability that
P accepts z equals the total reward of M on strategy R,.
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Theorem 7 The Total Reward problem for UMDP’s is undecidable.
Theorem 7 follows immediately from the following stronger result.

Theorem 8 The following promise problem for UMDP’s is undecidable:
Given a constant €,0 < € < 1 and a UMDP M that either has total-
reward ot least 1 — € or at most €, decide which is the case.

This result follows directly from the relationship between 1pfa’s and
UMDP’s described above, together with Theorem 6. Let €,0 < € < 1 be
given and let P be a 1pfa that either accepts some string with probability
at least 1 — e or accepts all strings with probability at most €. Let M be
the corresponding Markov decision process as described above. Then,
P accepts some string with probability at least 1 — € if and only if the
unobservable total reward of M is at least 1 —¢, and P accepts all strings
with probability at most € if and only if the unobservable total reward
of M is at most €.

Theorem 9 The Discounted Reward Problem for UMDP’s is undecid-
able.

The proof is a simple modification of the argument for the Total Re-
ward problem. Let 1/2 < d < 1, and consider the discounted reward of
a UMDP obtained in the previous reduction. Effectively, the discount
d acts as a penalty at every step, analogous to entering the reject state
with probability 1 —d at each step. A natural idea, then, is to try to bal-
ance out this penalty by adding a bonus at each transition of the UMDP.
Specifically, let M’ be obtained from M by decreasing the probability
of each transition of M from all states by a factor of (1 — d) and then
increasing the probability of entering the accept (goal) state by d.

Fortuitously, this modification has the desired effect: if the UMDP
M has a strategy whereby the goal state is reached with probability
greater than 1/2, then the discounted reward of M’ is greater than 1/2.
Furthermore, if on all strategies the total reward of M is less than 1/2,
then similarly on all strategies the discounted reward of M’ is less than
1/2. A key property of M that ensures this is that, on an input w,
P may only enter the accept state upon reaching the right endmarker
symbol, §, for the first time.
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