
Supervised Topic Segmentation of Email Conversations

Shafiq Joty and Giuseppe Carenini and Gabriel Murray and Raymond T. Ng
{rjoty, carenini, gabrielm, rng}@cs.ubc.ca

Department of Computer Science
University of British Columbia, Vancouver, Canada

Abstract

We propose a graph-theoretic supervised topic segmen-
tation model for email conversations which combines
(i) lexical knowledge, (ii) conversational features, and
(iii) topic features. We compare our results with the ex-
isting unsupervised models (i.e., LCSeg and LDA), and
with their two extensions for email conversations (i.e.,
LCSeg+FQG and LDA+FQG) that not only use lexical
information but also exploit finer conversation structure.
Empirical evaluation shows that our supervised model
is the best performer and achieves highest accuracy by
combining the three different knowledge sources, where
knowledge about the conversation has proved to be the
most important indicator for segmenting emails.

Introduction and Related Work
We study the problem of topic segmentation, i.e., grouping
the sentences of an email conversation into a set of coher-
ent topical clusters. Topic segmentation is often considered a
prerequisite for other higher-level conversation analysis and
applications of the extracted structure are broad, including
summarization (Harabagiu and Lacatusu 2005) and informa-
tion extraction (Allan 2002). While extensive research has
been conducted in topic segmentation for monologs (e.g.,
(Malioutov and Barzilay 2006)) and synchronous dialogs
(e.g., (Galley et al. 2003)) segmenting asynchronous con-
versations (e.g., email) has not received much attention. It is
our hypothesis that, because of its asynchronous nature and
the use of quotation (Crystal 2001), topics in email conver-
sations often do not change in a sequential way. That is, if
you look at the temporal order, the discussion of a topic may
appear to intersect with the discussion of other topics. As
a result, we do not expect models which have proved suc-
cessful in monolog or synchronous dialog to be as effective
when they are directly applied to emails.

Recently, we (Joty et al. 2010) have shown how exist-
ing unsupervised topic segmentation models, i.e., LDA (Blei
et al. (2003)) and LCSeg (Galley et al. 2003), which are
solely based on lexical information, can be effectively ap-
plied to email by having them consider a finer level conver-
sation structure (i.e., the Fragment Quotation Graph (FQG)
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(Carenini, Ng, and Zhou 2007)), generating two novel mod-
els LDA+FQG and LCSeg+FQG, respectively. However,
we argue that these models are still limited in terms of ac-
curacy as they ignore other important lexical and conversa-
tional features. The contribution of this paper is the develop-
ment of a novel supervised approach that can effectively in-
tegrate conversation structure with these additional features
to achieve better segmentation accuracy.

Graph-based Supervised Topic Segmentation
Although the unsupervised methods proposed in our previ-
ous work (Joty et al. 2010) have the key advantage of not
requiring any labeled data, they can be limited in their abil-
ity to learn domain-specific knowledge from a possibly large
and diverse set of features. We hypothesize that an even
more accurate topic segmenter can be built with a supervised
approach that can exploit additional features beyond the con-
versation structure. Features like ‘speaker’, ‘recipient’, ‘sub-
ject’, ‘cue words’ are arguably useful for segmenting email
conversations. We also hypothesize that an effective model
needs to combine similarity functions and segmentation de-
cisions of other existing well performing models such as
LDA, LCSeg and LSA. Another crucial limitation of the
LCSeg+FQG and LDA+FQG models described in (Joty et
al. 2010), is that these methods can successfully model the
lexical cohesion between sentences in nearby fragments, but
tend to fail on distant sentences in the FQG.

On the other hand, the supervised framework serves as
a viable option to incorporate a rich feature set, but relies
on labeled data. The amount of data required in supervised
models to achieve an acceptable performance is always an
important factor to consider for choosing supervised vs. un-
supervised framework. Our supervised model aims to tackle
this issue and remedy the problems of the unsupervised
models: firstly, by using a binary classifier to combine all
the important features, similarity functions and decisions of
other models in a way that require very limited amount of
labeled data and, secondly, by forming a complete graph to
consider all pair inter-sentence (not fragment) relations.

The supervised model is built on the graph-theoretic
framework which has been used in many NLP tasks, includ-
ing chat disentanglement (Elsner and Charniak 2010). In our
case, this method works in three steps. First, a binary classi-
fier which is trained on a training dataset, marks each pair of



sentences of a given (i.e., test) conversation as ‘same’ or ‘dif-
ferent’ topics. Second, we form a weighted undirected graph
G = (V,E) for the given conversation, where the nodes V
represent the sentences and the edge-weights w(u, v) denote
the probability (given by the binary classifier) of the two sen-
tences u and v, to be in the ‘same’ class. Third, the segmen-
tation task is formulated as a graph partitioning problem.

Sentence Pair Classification
In this section, we describe the binary classifier and features
used to mark each pair of sentences of an email conversa-
tion as ‘same’ or ‘different’ topics. Note that as the classifier
is defined on the sentence pairs of a conversation, a train-
ing conversation containing n sentences gives 1+2+. . .+(n-
1)=n(n−1)

2 = O(n2) training examples. Therefore, a train-
ing dataset containing m conversations gives

∑m
i=1

ni(ni−1)
2

training examples where ni is the number of sentences in the
ith conversation. This quadratic expansion of training exam-
ples enables the classifier to achieve its best classification
accuracy with very limited amount of labeled data.

Comparison of Classifiers The classifier’s accuracy in
deciding whether a pair of sentences x and y is in the ‘same’
or ‘different’ topics is crucial for the model’s performance.
By pairing up the sentences of each email conversation in
our human annotated corpus (Joty et al. 2010), we got a to-
tal of 14, 528 data points of which 58.83% are in the ‘same’
class (i.e., ‘same’ is the majority class). Class labels are pro-
duced by taking the maximum vote of the three annotators.
To select the best classifier, we experimented with a number
of classifiers with the full feature set (see table 2). Table 1
shows the performance of the classifiers averaged over leave
one out procedure (i.e., for a corpus containing m email con-
versations, train on m− 1 and test on the rest).

Classifier Regularizer Train error Test error
KNN - 47.7% 46.7%
SVM (lin) - 33.2% 32.6%
SVM (rbf) - 26.4% 34.3%
LR l2 30.6% 30.9%
LR l1 32.1% 33.3%
RMLR (rbf) l2 10.8% 38.9%

Table 1: Performance of the classifiers using full feature set.
Regularizer strength was learned by 10 fold cross validation.

We see that the non-parametric K-Nearest Neighbor
(KNN) performs poorly. Logistic Regression (LR) with
l2 regularizer performs best in our dataset. Support Vec-
tor Machines (SVMs) with ‘linear’ and ‘rbf’ kernels per-
form reasonably well but do not match LR. Ridged Multi-
nomial Logistic Regression (RMLR), kernelized LR with l2
regularizer, extremely overfits the data. We opted for para-
metric LR classifier with l2 regularizer mainly for two rea-
sons: (i) Its accuracy, as shown in Table 1, and (ii) LR
with L-BFGS (limited memory BFGS) fitting algorithm
(which we use) is both time efficient (quadratic convergence
rate; fastest among the listed models) and space efficient
(O(mD), where D := number of features).

Features Used Selecting the right set of features is cru-
cial for the classifier’s (and the segmenter’s) performance.
Table 2 summarizes the full feature set and the mean testset
accuracy achieved with different subsets of features.

Lexical: Acc: 59.6 Pre: 59.7 Rec: 99.8
TF.IDF1 TF.IDF similarity (k=1).
TF.IDF2 TF.IDF similarity (k=2).
Cue Words Either one contains a cue word.
QA x asks a question explicitly

using ‘?’ and y contains any
of (yes, yeah, okay, ok, no, nope).

Greet Either one has a greeting word
(hi, hello, thank, thanks, thx, tnx.)

Topic: Acc: 65.2 Pre: 64.4 Rec: 79.6
LSA1 LSA function for x & y (k=1).
LSA2 LSA function for x & y (k=2).
LDA LDA decision on x & y.
LCSeg LCSeg decision on x & y.
LexCoh Lexical cohesion function of x & y.
Conv.: Acc: 65.3 Pre: 66.7 Rec: 85.1
Gap The gap between y & x in

number of sentence(s).
Speaker x & y have the same sender.
FQG1 Distance between x & y in FQG

in terms of fragment id (i.e.,
|frag id(y)− frag id(x)|)

FQG2 Distance between x & y in FQG
in terms of number of edges.

FQG3 Distance between x & y in FQG
in number of edges but this time
considering it as undirected graph.

Reply-to x & y are in the same email
or one is a reply to the other.

Name x mentions y or vice versa.
All: Acc: 69.1 Pre: 68.4 Rec: 81.5

Table 2: Features with average performance.

Lexical features encode similarity between two sentences
x and y based on their raw contents. Term frequency-based
similarity is a widely used feature in previous work (e.g.,
TextTiling (Hearst 1997)). In order to compute this we con-
sider two analysis windows in a similar fashion to TextTil-
ing. Let X be the window including sentence x and the k−1
preceding sentences, and Y be the window including sen-
tence y and the k − 1 following sentences. We measure the
similarity between the two windows by representing them
as vectors of TF.IDF values of the words and computing the
cosine of the angle in between them. Another important task
specific feature that proved to be useful in previous research
(e.g., (Galley et al. 2003)) is cue words that sign the pres-
ence of a topical boundary (e.g., ‘coming up’, ‘joining us’ in
news). As our work concerns conversations (not monolog),
we adopt the cue word list derived automatically by (Galley
et al. 2003) in the meeting corpus. We use two other lexi-
cal features, i.e., Question Answer (QA) pairs and greeting
words with the assumption that if y answers or greets x then
it is likely that they are in the same topic.

Topic features are complex and encode information from
the existing segmentation models. Choi et al. (2001) used
Latent Semantic Analysis (LSA) to measure the similarity
between two sentences and showed that LSA-based similar-



ity is more accurate than the direct TF.IDF-based similar-
ity since it surmounts the problems of synonymy (e.g., car,
auto) and polysemy (e.g., money bank and river bank). To
compute LSA, we first form a Word-Document matrix W ,
where Wi,j := frequency of word i in comment j×IDF score
of word i. We perform truncated Singular Value Decomposi-
tion (SVD) of W : W ≈ UkΣkV T

k and represent each word
(i) as k dimensional vector (~Λk

i ). Each sentence s is then
represented by the weighted sum of the k-dimensional vec-
tors. Formally, the LSA vector representation for sentence s

is ~Λs=
∑

i∈s TFi×~Λk
i . In our study, k was set to 1

4×number
of messages. To compute the LSA-based similarity between
sentences x and y, we represent the corresponding windows
(i.e., X and Y ) as the LSA vectors and compute the cosine
similarity as described before. The decisions of LDA and
LCSeg models are also encoded as topic features.

LCSeg computes a lexical cohesion (LexCoh) function
between two consecutive windows based on the scores of the
chains that overlap with the windows. (Galley et al. 2003)
shows a significant improvement when this function is used
as a feature in the supervised sequential segmenter for meet-
ings. However, as our problem is not sequential, we need
to compute this function for any two given windows X and
Y (not necessary consecutive). In order to do that at first
we extract all the lexical chains with their scores and spans
(i.e., beginning and end sentence numbers) for a conversa-
tion. The lexical cohesion function is then computed with:

LexCoh(X, Y ) = cos(X, Y ) =

∑N

i=1
wi,X × wi,Y√∑N

i=1
w2

i,X ×
∑N

i=1
w2

i,Y

where N is the number of chains and

wi,Ω =

{
rank(Ci) if chain Ci overlaps Ω ∈ {X, Y }

0 otherwise

Conversation features encode conversational properties of
an email conversation. ‘Time gap’ and ‘speaker’ have been
proved to be important for segmenting meetings ((Galley
et al. 2003)). We encode similar information in emails by
counting the number of sentences between x and y as the
‘gap’, and their senders as the ‘speakers’. The strongest
baseline ‘Speaker’ in the “Experiment” section has proved
its effectiveness in emails. Our work (Joty et al. 2010) sug-
gest that fine conversation structure in the form of FQG can
be very beneficial when this is incorporated into the existing
unsupervised models. We encode this valuable information
into our supervised model by computing 3 distance features
(FQG1, FQG2, FQG3) on the FQG. If y’s message is same
as or reply to x’s message, then it is likely that they discuss
the same topic. We use the ‘name’ feature since participants
often use each other’s name in multi-party conversations to
make disentanglement easier (Elsner and Charniak 2010).

Classification Results Table 2 shows the classifier’s per-
formance in terms of overall accuracy, and precision and re-
call of the ‘same’ class for different types of feature, av-
eraged over leave one out procedure. Conversation features
yield the highest accuracy. Topic features also have proved
to be important. Lexical features have poor accuracy (a bit

higher than the majority class baseline). However, when we
combine all the features we get the best performance.

Figure 1 shows the relative importance of the features
based on the absolute values of their coefficients in the LR
classifier. Distance in number of edges in the (directed) FQG
(FQG2) is the most effective feature, followed by the deci-
sion of the LCSeg segmenter (LCSeg). The other two fea-
tures on FQG (i.e., FQG1, FQG3) are also very relevant.

Figure 1: Relative importance of the features

Accuracy vs. amount of labeled data Figure 2 shows the
classification error rate, tested on five randomly selected
conversations and trained on random sample of different
number of conversations. Our approach appears to achieve
its best performance with a limited amount of data. The er-
ror rate flattens with about 25-30 conversations.

Figure 2: Classifier accuracy vs. amount of data

Graph Partitioning
Given a weighted undirected complete graph G = (V,E),
where the nodes V represent the sentences and the edge-
weights w(u, v) denote the probability (given by the LR
classifier) of the two sentences u and v, to be in the ‘same’
class, the topic segmentation task can be formulated as a
N-mincut graph partitioning problem with the intuition that
sentences in a segment should be similar to each other, while
sentences in different segments should be dissimilar. To do
this, we try to optimize the ‘normalized cut’ criterion:

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(B, A)

assoc(B, V )

where cut(A, B) = Σu∈A,v∈Bw(u, v) is the total con-
nection from nodes in partition A to nodes in partition B,
assoc(A, V ) = Σu∈A,t∈V w(u, t) is the total connection
from nodes in partition A to all nodes in the graph and



Baselines Models Human
Scores Speaker Block 5 LDA LDA+FQG LCSeg LCSeg+FQG Supervised
Mean 1-to-1 0.52 0.38 0.57 0.62 0.62 0.68 0.70 0.80
Mean loc3 0.64 0.57 0.54 0.61 0.72 0.71 0.75 0.83

Table 3: Comparison of Human, System and best Baseline annotations

assoc(B, V ) is similarly defined. Previous work on graph-
based segmentation (e.g., (Malioutov and Barzilay 2006),
(Shi and Malik 2000)) has shown that the ‘normalized cut’
criterion is more appropriate than just the ‘cut’ criterion
which accounts only for total edge weight connecting A
and B and therefore, favors cutting small sets of isolated
nodes in the graph. However, solving ‘normalized cut’ is
NP-complete. Hence, we approximate the solution follow-
ing (Shi and Malik 2000), which is time efficient.

Experiment
Recently, we had humans annotate the BC3 email corpus
with topics. The corpus contains 39 email conversations
from the W3C corpus. It has 3200 sentences and an aver-
age of 5 emails per conversation. The right most column of
table 4 shows some basic statistics computed on the three
annotations of the corpus. On average, we have 2.5 topics
per conversation. A topic contains an average of 12.6 sen-
tences. The average number of topics active at a time is 1.4.
We use the 1-to-1 and lock agreement metrics from (Elsner
and Charniak 2010) to compare different human annotations
and model’s output. The 1-to-1 metric measures the global
similarity between two annotations by pairing up the clus-
ters of the two annotations in a way that maximizes the total
overlap and reports the percentage of overlap. lock measures
the local agreement within a context of k sentences. The an-
notation procedure, annotation statistics, and the agreements
found, are described in detail in (Joty et al. 2010).

We ran our five models (i.e., LDA, LDA+FQG, LCSeg,
LCSeg+FQG from our previous work along with the novel
supervised method) on our corpus. For a fair comparison we
set the same number of topic per conversation in all of them.
If at least two of the three annotators agree on the topic num-
ber we set that number, otherwise we set the floor value of
the average topic number. The average statistics of the five
resulting model annotations are shown in Table 4. Compar-
ing with the human annotations, we see that the models’ an-
notations fall within the bounds of the human annotations.

Avg.
Topic

LDA LDA
+FQG

LCSeg LCSeg
+FQG

Super
vised

Human

Number 2.10 1.90 2.2 2.41 2.41 2.5
Length 13.3 15.50 13.12 12.41 12.41 12.6
Density 1.83 1.60 1.01 1.39 1.12 1.4

Table 4: Corpus statistics of different annotations

We present our results in Table 3. We evaluated the fol-
lowing baselines and report only the best two (i.e., ‘Speaker’
and ‘Block 5’) in the table. (i) All different: Each sentence
is a separate topic. (ii) All same: The whole thread is a sin-
gle topic. (iii) Speaker: The sentences from each participant

constitute a separate topic. (iv) Blocks of k(= 5, 10, 15, 20):
Each consecutive group of k sentences is a topic.

In general, our models perform better than the baselines,
but worse than the gold standard. When we compare our
supervised model that combines all the features with the
best performing unsupervised model LCSeg+FQG, we get a
significant improvement in both metrics (p<0.01). This im-
provement may also be due to the fact that, by constructing
a complete graph, this model considers relations between all
possible sentence pairs in a thread, which we believe is a key
requirement for topic segmentation of email conversations.

Conclusion and Future Work
We presented a novel supervised topic segmentation model
for email conversations that incorporates lexical, conversa-
tional and topic features. Empirical evaluation shows that
our supervised method outperforms all of the unsupervised
models even if it is trained on a rather limited amount of
data. In future, we will investigate how our models perform
in other asynchronous conversations like blogs and fora.
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