Awesome Gamma

Heterogenous Dynamic Bulk Synchronous Parallel (BSP) programming in Go with a
Pregel-inspired API

Mike Fink, Dorothy Ordogh, Graham St-Laurent, Bruno Vacherot

Introduction

Bulk Synchronous Parallelism (BSP) is a programming model used to distribute the
execution of iterative parallel algorithms with minimal data races, and strong fault tolerance®.
BSP is a foundational component of real world distributed systems, such as Google’s
Pregel' and Apache Giraph, which are both used to solve iterative graph problems. We are
especially interested in Pregel's modelling of BSP.

At a basic level, Pregel functions by assigning vertices of a graph to a number of partitions,
then assigning these partitions to multiple workers. The workers process their partition in
parallel for one round of a “superstep”. Each vertex can send messages to other vertices
during the superstep. The superstep is completed when a synchronization barrier detects
that all vertices have completed execution. At the beginning of the next superstep, the
vertices have received all messages sent to them in the previous step and are allowed to
proceed to the next superstep.

Processors

Local
Computation

Communication

i |
Synchronisation

lllustration of a BSP superstep. Drawn by Discboy, specifically for the Bulk Synchronous Parallel
Wikipedia page. https://en.wikipedia.org/wiki/File:Bsp.wiki.fig1.svg

We want to further our understanding of applicable distributed systems by creating a
framework inspired by these systems. We will design and implement a Pregel-like Go API for
distributed graph processing over heterogeneous resources. The API will allow users to
create servers, workers, and clients of this service. A user can input a directed graph G to
this service (and possibly some additional initialization data), which will return the result of

running a graph algorithm on that input. Although our goal is to provide a service that could
be used to run arbitrary iterative graph algorithms, we limit the scope of our project by only
applying the framework to the PageRank' algorithm, in order to focus on the interesting
distributed components of our system.

Heterogeneous Resources:

One of the distributed components we are focusing on is the use of heterogeneous workers -
a faster machine should do more work. This is important for a system of this type because
the barrier between supersteps limits a worker's ability to perform to its full potential if it has
to wait for all other workers before moving forward. Workers cannot do additional work until
the superstep is completed. Therefore we will need to design our server/superstep logic
such it it distributes tasks unevenly among workers, as appropriate for their capabilities, or
have a way for faster machines to request more work. We think this would be useful when
the input size is much larger than the number of processes.

Worker Failures:

We want to intelligently deal with worker failures in the middle of our graph computation. If a
worker fails then the computation for its assigned portion of the graph that had not been
saved must be repeated. Pregel accomplishes this via a checkpoint-restart mechanism.
Every N supersteps, workers save their portion of the graph to a global shared memory.
When recovering, the portion of the graph that was not computed due to the failure is
reassigned to active workers and all workers begin computation from the last checkpoint.

Additional distributed components we could explore if time permits:

Volunteer computing:

This system could potentially be used in a volunteer computing context, and ought to be
somewhat resistant to byzantine worker failures. This can be addressed to some extent via
replication of tasks. At the beginning of each superstep a worker would perform quorum on
the messages it received and accept the majority result. This would essentially restrict
non-deterministic algorithms from being used in the system because it would not be certain
that a message from one vertex to another should be sent. The replication of tasks would
likely be an alternative to checkpoint-restart because of the challenges inherent in having
multiple nodes update a global shared memory. Alternatively, checkpointing could also be
with a quorum of the replicated tasks, but performing this quorum would hinder performance
since the graph data would have to be sent to a source to be compared.

Additionally, we would want to support worker nodes with intermittent connections. For
example a node could drop connection in the middle of computation and once the
connection is reestablished, be able to return its work.

Simultaneous clients:
Allow multiple clients to begin jobs with different graphs. The system should keep the
computations separate and distribute the work amongst the workers so all jobs can run.

Project Overview

System Description

Pregel

Awesome Gamma

Input

Directed graph where each
vertex is uniquely identified and
is associated with a modifiable,
user defined value

The directed edges are
associated with their source
and target vertices, and a
modifiable, user defined value

Same

Superstep

Computes vertex state in
parallel and can modify vertex
or edge state, receive
messages sent in a previous
step and send messages to be
received in the subsequent
step.

Can modify graph structure by
deleting or adding nodes

Cannot modify graph
structure/topology

Termination

All vertices vote to halt. A vertex
votes to halt if it has nothing
further to do

A vertex is reactivated if it
receives a message

Same

Output

Set of values output by the
vertices

Same

Implementation

Pregel

Awesome Gamma

Architecture

e Google computer cluster, e Volunteer computers with a

with distributed storage
system for persistent
storage

e Temporary data stored
locally

DynamoDB instance for
persistent storage.

e Temporary data stored
locally.

Data Graph divided into N Graph divided into N
Distribution partitions and vertices partitions and vertices
assigned to partitions by assigned to partitions by
hash(vertexID) mod N hash(vertexID) mod N
One or more partitions Partitions assigned to
assigned to each worker. workers based on
Each worker is later computational capability
assigned vertices to work on Workers work only on
Vertices are orthogonal to vertices in their partition
the contents of the partition
Participant One cluster member is A designated server is the
Roles assigned to be the master master. Volunteers connect
Workers discover and to the master
connect to the master The master is not assigned
The master is not assigned any partitions, assigns
any partitions, assigns partitions to workers and
partitions to workers and manages the process
manages the process Each worker maintains the
Each worker maintains the state of its portion of the
state of its portion of the graph
graph
Superstep Workers call a Compute() Workers call a Compute()
function on each of its function on each of its
vertices vertices
Messages for that vertex are Messages for that vertex are
received and the received and the
computation is performed computation is performed
Messages are sent Messages are sent
asynchronously directly to asynchronously to master,
other workers which then distributes them
Tells master when superstep to the appropriate worker
is completed Tells master when superstep
is completed
Post Master may instruct workers Master may instruct workers
Superstep to save their portion of the to save their portion of the
graph graph
Master may redistribute
vertices
Failure Ping messages are regularly Broken TCP connection
Detection sent from the master to each between Master and each
worker Worker provides failure
information
Fault Checkpoint-restart Checkpoint-restart

Tolerance

Project Details

System Components

There are three main components to our system: clients, the master server, and worker
nodes. Additionally, we will make use of a distributed database service such as AWS
DynamoDB for our global persistent data storage, for example, for storing the graph for our
PageRank service.

P

i e
J)
__ _.f Ly

- - _M"'\--.,
- '__ i . e '\.\'\-\-..__hh
e bl RN -
r, e \ NN .,
i £ + 1Y \\
1 s,
| £
2 I |
S | |
—_ L | [
— — |
L /
Client s
|
d
-
.-""
Wirkers
Masbar
Servar

Client

The client connects to the server over TCP and sends it a graph -- likely in the form of a key

in our global DB. Once the request is sent, the client waits for a the result from the server

either via the global DB, or some sort of value. For example, in terms our PageRank

example, the result could be a key to the global DB with an updated copy of the graph,

where each vertex has its PageRank score. Only one client can be connected at a time.
Failures:

e |If the client disconnects during our graph processing and reconnects to the
server the server will provide the result when complete. If our system
completes while the client is disconnected, it will cache the result for an
indeterminate length of time.

e [f a different client tries to reconnect after an interruption, but while the graph
is being processed, it is rejected.

Extensions:
e Enable handling of multiple clients, working on multiple graph problems at a
time.

e Returning cached results for identical client requests.

Master Server and Detailed Design

The master server accepts a connection from a client, receives a graph from the client and
provisions it to the distributed database. It also receives connections from workers.

The server partitions the graph into N partitions, and assigns each partition to a worker.
Since our model is an adaptation of BSP, the server initiates the supersteps. During a
superstep each worker processes its assigned partitions. The server is responsible for
relaying messages between workers, and keeping track of which worker has voted to halt.
The algorithm completes when all workers vote to halt and there are no pending messages.

Failures:

e If the server fails, the system is down and the job fails. The workers discover
this from their TCP connection and exit.

e In case a worker takes an exceptionally long time to complete, the server
maintains a timeout for each superstep. If this worker's response time
exceeds this timeout, then the server disconnects from it and handles it as
described in the Worker Failures below.

e In case of worker disconnection, see Worker Failure below.

Extensions:

e Handle server restarts. Store checkpoint number and partition info in global
DB. On server restart, wait for worker registration and compare against
partition info to see if the workers have changed. Workers store all the
messages from the last superstep so they can ‘replay’ them in the case of a
server restart.

e Another option is to follow Pregel's example and elect Master Servers from
the worker pool. This is more difficult for us, however, because we have a
heterogenous worker pool, and we would need to determine eligible workers.
Additionally, we would need to ensure that clients are still able to receive the
result and there is still a known access point that provides statistical data.

e Maintain a map of the number of partitions for each worker. In this case, each
worker is assigned an id. If it times out, it may attempt to rejoin with the same
id. The server can check if it knows about this particular worker, and make
sure to assign it fewer vertices next time, even if it means splitting a partition.

The superstep is composed of the following steps:

1.

3.

The server begins the superstep, telling workers to initiate the compute step on each
partition.
Receive a return value from each worker, consisting of:
a. alist of messages, each of which consists of a destination vertex id, and a
value (in our PageRank example, that will be a number)
b. a halt flag, which is true only when all vertices on that worker have voted to
halt
As the server receives a message, it determines which worker to send it to, then
concurrently sends it to the destination worker for processing in the next superstep.
Once all workers have returned, if there are no pending messages and all workers
returned a true halt flag, then the server returns the result to the client. Otherwise the
server initializes a new superstep and go back to step 1.

Worker Failures:

We periodically maintain checkpoints to handle Worker Failure. Every ¢ supersteps, each
worker stores its vertex state and pending messages in the global DB, while the server
stores current superstep metadata. In our PageRank example, vertex state consists of the
current vertex score and its halt flag. We will use instrumentation to determine how often to
set a checkpoint since we want to balance checkpoint cost, expected recovery cost, and
mean time to failure’.

If one or more worker dies during a superstep, the server reverts the algorithm to the last
checkpoint instead of moving to the next superstep. It redistributes the partitions and
messages among the remaining workers, and initializes a superstep.

Partition Distribution:
Each worker will be assigned some number of partitions to work on. To implement
load-balancing, we will keep track of the performance of each machine at each superstep.
We can measure the number of partitions each worker is handling, as well as the time it
takes for them to finish. Using this, the server periodically modifies the partition assignment
to give faster machines more work.

Issues:

e We will need to be careful with the initial distribution of partitions to make sure
that we do not over or under assign resources. We have not yet decided how
we will address this issue, but we have explored ideas such as round robin
scheduling.

Dynamic Workers:
We use checkpoints to handle joining and departing workers. When a new worker registers,
the server keeps it in pending state until the next checkpoint. Following the checkpoint's
completion, the server activates the new worker, and redistributes the partitions with the new
workers. By waiting for the next checkpoint instead of activating the worker immediately, we
reduce the overhead of initializing workers. We treat departing workers as failed workers.
Extensions:
e Enable a departing worker to exit "gracefully". A worker-side user can signify
that it will disconnect following the next superstep, in which case the server
initiates a checkpoint.

Workers and TCP
The master server and workers communicate over TCP, passing json messages between
them. Messages will be sent during partition assignment, superstep initiation, message
delivery between both server and workers, and verification of existence of workers to detect
failures.
Failures:
e |If the server fails, the worker detects this through the TCP connection and
terminates.
e If the worker crashes, the server handles worker failure through checkpoints,
as described above.

e |f a worker hangs -- for example, it is extremely slow -- the server will timeout
and disconnect from it, treating it as a worker failure. At this point, the worker
is free to automatically try to reconnect.

Extension:

e Use combiners' to save space in message buffers. These reduce multiple
messages destined for one vertex into one message. For example, in
PageRank, the following three messages for one vertex {destination: "a",
value: 2}, {destination: "a", value: 3}, {destination: "a", value: 4}, would be
reduced by summing the values to this one message: {destination: "a", value:
6}. Combiners are applicable when you are performing operations that are
associative and commutative.

Testing

In order to easily test this system, we will need to create several automated testing scripts.
Basic scripts will include one that initializes a server and workers, one that initializes clients
and connects them to the system, one that sends invalid requests to the server to check
basic error handling, and one that emulates a variety of failure cases: where the server dies
or fails to listen for connections; a worker dies or cannot connect to the server; and where
clients cannot connect to the server.

More extensive testing will include a script that emulates stress tests on the server by giving
the system very large problems to handle, or very large number of workers. We will also
create a script that will modify the resources of workers to test the system’s ability to deal
with varying processing power, connectivity, and communication delays.

We will use GoVector® and ShiViz* to visualize interactions between active workers, the
server, and clients. It will be useful have access to statistics like the number of active
workers, the number of active vertices, the distribution of vertices over workers, and the
current superstep number. This can be done by adding an external IP to the server which
can easily connect to a script that imitates a client and makes requests to retrieve the above
info.
Extensions:
e |t would be interesting to develop a sequential implementation of the system
alongside BSP to compare performance.
e With the addition of various extensions to the system, we will also need to
add test scripts that will cover elements of the extensions.

e Mobile Computing: In this situation, different failure cases will have to
be tested. For example, when a phone appears to not be responding
but is still alive and working, and then rejoins with a completed
computation.

e Replication: Verifying that replication of computations remains
consistent on workers and checking that the majority response is
being used as the answer.

SWOT Analysis

Strengths:

1. Project is based on existing system
which has been implemented in
several languages.

2. Numerous papers exist describing
techniques applicable to the project.

3. Complexity is mostly limited to to
the server.

4. Some members are good at
researching stuff.

Weaknesses:

1. Each one of us will independently
be unavailable for several days
throughout the project.

2. All group members began learning
Go this school year.

Opportunities:

1. Currently no golang BSP library we
could locate on GitHub.

2. % of us are also taking 418 giving
us general insights into parallel
programming similar to (but not
including) BSP

Threats:
1. We don't have a large number of
heterogenous systems to test with
2. The department keeps hiring people
with drills that follow us to every
room we try to have meetings in

Timeline

February 29th:
e Proposal due
March 4th:
e Development Process finalized
e |Initial tasks distributed and tracked
e Bug tracking software
March 11th:
e GlobalDB configured
e PageRank algorithm implemented
e Graph partitioning done

e Automated tests complete
March 18th:
e Email to schedule meeting
e Checkpoint-Restart implemented
e Worker Failures Handled
e Automated tests updated
March 21st:

Basic implementation of master server with heterogeneous worker complete

Dynamic Worker add/remove
Basic implementation complete
Testing scripts complete
Automated tests updated
March 28th:

e Extensions 1 chosen
April 4th:

e Extensions 1 implementation complete

e Extensions 1 tests complete

e Extensions 2 chosen
April 7th:

e Extensions 2 implementation complete

e Extensions 2 tests complete

e Report draft complete

e Zero-Bug phase begins
April 11th:

e Zero-Bug Deadline

e Report completed

e Code and Report Submitted

e Pray to the programming gods
April 12th:

e Party with Cake or Pie!

References:

1. Pregel: A System for Large-Scale Graph Processing Grzegorz Malewicz, Matthew H.
Austern, Aart J. C. Bik, James C. Dehnert, llan Horn, Naty Leiser, and Grzegorz
Czajkowski Google, Inc.
http://www.dcs.bbk.ac.uk/~dell/teaching/cc/paper/sigmod10/p135-malewicz.pdf

2. https://en.wikipedia.org/wiki/Bulk_synchronous_parallel

https://godoc.org/github.com/drewlanenga/govector

4. http://bestchai.bitbucket.org/shiviz/index.html

w

http://www.dcs.bbk.ac.uk/~dell/teaching/cc/paper/sigmod10/p135-malewicz.pdf
https://en.wikipedia.org/wiki/Bulk_synchronous_parallel
https://godoc.org/github.com/drewlanenga/govector
http://bestchai.bitbucket.org/shiviz/index.html

