
0© Donald Acton et alComputer Science 416

Transactions

Intel (TX memory):
Transactional
Synchronization
Extensions (TSX)

1© Donald Acton et alComputer Science 416

Goal – A Distributed Transaction

●We want a transaction that involves multiple nodes
● Review of transactions and their properties
● Things we need to implement transactions
* Locks
* Achieving atomicity through logging

•Roll ahead, roll back, write ahead logging

● Finally, 2 Phase Commit (aka 2PC) and 3PC
● Lead into Paxos

2© Donald Acton et alComputer Science 416

Transactions - Definition

● A transaction is a sequence of data operations with the
following properties:
* A Atomic

• All or nothing

* C Consistent
• Consistent state in => consistent state out

* I Independent
• Partial results are not visible to concurrent transactions

* D Durable
• Once completed, new state survives crashes

3© Donald Acton et alComputer Science 416

Transactional API

● Interface
* tran = TranMonitor.begin ()

•Do some stuff within a transaction session

* tran.commit()
* tran.abort()

4© Donald Acton et alComputer Science 416

Serializability

● A set of transactions is serializable iff
* resulting state is equivalent to that produced by some

serial ordering of those transactions

● They don’t actually have to run in serial order
* system just ensures that actual outcome is the same as if

they had

5© Donald Acton et alComputer Science 416

Importance of independence

● Possible problems if we don’t have it
* lost update

•t1 and t2 read x and then write x, t1’s update is lost

* inconsistent retrieval
•Intermediate state may be inconsistent (e.g., sum=x+y violated)

* dirty read
•t1 updates x, t2 reads x, t1 aborts; t2 has dirty value of x

* premature write
•t1 update x, t2 update x, t1 aborts, t2’s update (to x) is lost

6© Donald Acton et alComputer Science 416

Importance of independence

* lost update
•t1 and t2 read x and then write x, t1’s update is lost
Example:

* One transaction may overwrite the result of another.

* Example: Transaction T wants to increase b's balance by 10%, transferring from a.
• T1: bal = b.getBalance()

• T2: b.setBalance(bal*1.1)

• T3: a.withdraw(bal/10)

* Transaction U wants to increase b's balance by 10%, transferring from c.
• U1: bal = b.getBalance()

• U2: b.setBalance(bal*1.1)

• U3: c.withdraw(bal/10)

* Problem: suppose order is T1, U1, U2, T2, T3, U3.

7© Donald Acton et alComputer Science 416

Importance of independence

* premature write
•t1 update x, t2 update x, t1 aborts, t2’s update is lost

Example:
•a - balance is $100
•T: a.setBalance($105) - (before image: 100)
•U: a.setBalance($110) - (before image: 105)
•U commits, T aborts and resets to 100 -- should be 110
•If T aborts then U aborts, result will be 105, but should be 100.

8© Donald Acton et alComputer Science 416

Two Possible (pessimistic)
Approaches

● Two Phase Locking

● Strict Two Phase Locking

9© Donald Acton et alComputer Science 416

Two Phase Locking

● Locks
* reader/writer locks

* acquired as transaction proceeds

* no more acquires after first release

● Phase 1
• acquire locks and access data, but release no locks

● Phase 2
• access data, release locks, but acquire no new locks

• commit/abort transaction at end

10© Donald Acton et alComputer Science 416

Semantics of two-phase locking

● Does the Two-Phase Locking protocol ensure
* serializability?
* independence?

● How?

Q

11© Donald Acton et alComputer Science 416

Semantics of two-phase locking

● Ensures serializability
* if transactions have no conflicting lock access

•order arbitrarily
* for any transactions with conflicting lock access

•order transactions based on order lock is acquired
* transactions are serialized

•because, no lock is acquired after first release
•deadlocks are still possible

● Does not ensure independence
* we still have premature write and dirty read problems
* E.g., t1 releases x, t2 acquires x, then t1 aborts

12© Donald Acton et alComputer Science 416

Strict two phase locking

● Like two-phase locking, but
* release no locks until transaction commits

● Phase 1:
•acquire locks and access data, but release no locks

● Phase 2:
•Commit/abort transaction and then release all locks

● Ensures both serializability and independence

