
Updates

• A2 being graded
• A3 now 15% of final mark (up from 10%)

• Planning release on Wed (tomorrow)
• A3 will build on A2

• We will release a solution to A2 you can use
• A4 will build on A3

• But: unlikely to release solution to A3
• A5, A6 – group assignments, build a KV store

1

Distributed File Systems: AFS
Jan 26, 2021

2

416 Distributed Systems

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

3

Client Caching in NFS v2

• Cache both clean and dirty file data and file attributes
• Memory cache
• Sub-file caching granularity

• File attributes (e.g., last modified time) in the cache
expire after 60 seconds (file data doesn’t expire)
Ø Will retrieve updated attributes from server every 60s

• If server has a more recent modified time, grab the
up-to-date data in cache from server

• Dirty data are buffered (in cache) on the client until file
close or up to 30 seconds
• If the machine crashes before then, the changes are lost

4

Looking back at the campus-wide
use-case

• NFS gets us partway there, but
• Probably doesn’t handle scale (* - you can buy huge

NFS appliances today that will, but they’re $$$).
• Is very sensitive to network latency

• Consistency is.. what do we even call that? Highly
implementation specific.

• How can we improve this?
• More aggressive caching (AFS caches on disk in

addition to just in memory)
• Prefetching (on open, AFS gets entire file from server,

making later ops local & fast).

Client Caching in AFS

• Callbacks! Clients register with server that they
have a copy of file;
• Server tells them (calls them back): “Invalidate” if the

file changed (but only does so on file close!)
• This trades state (at server) for improved consistency

• Key AFS bit: read from local disk copy unless
server indicates new copy exists (via callback)

• What if server crashes? Lose all callback state!
• Reconstruct callback information from clients

• ask everyone “who has which files cached?”

AFS v2 RPC Procedures

• Procedures that are not in NFS
• Fetch: from client to server, return status and optionally

data of (entire) file/dir to client + add callback on it
• RemoveCallBack: from C to S, specify a file that the

client has flushed from the local machine
• BreakCallBack: from S to C, revoke the callback on a

file or directory (this is the callback call to client)

• Store: from C to S, store the status and optionally data
of a file on the server

7

AFS v2 RPC Procedures

• Procedures that are not in NFS
• Fetch: from client to server, return status and optionally

data of (entire) file/dir to client + add callback on it
• RemoveCallBack: from C to S, specify a file that the

client has flushed from the local machine
• BreakCallBack: from S to C, revoke the callback on a

file or directory (this is the callback call to client)
• What should the client do if a callback is revoked?

• Store: from C to S, store the status and optionally data
of a file on the server

8

AFS v2 RPC Procedures

• Procedures that are not in NFS
• Fetch: from client to server, return status and optionally

data of (entire) file/dir to client + add callback on it
• RemoveCallBack: from C to S, specify a file that the

client has flushed from the local machine
• BreakCallBack: from S to C, revoke the callback on a

file or directory (this is the callback call to client)
• What should the client do if a callback is revoked?

• Delete existing cached copy / refetch from server on open
• Store: from C to S, store the status and optionally data

of a file on the server

9

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

10

Topic 2: File Access Consistency

• In UNIX local file system, concurrent file reads
and writes have “sequential” consistency
semantics
• Each file read/write from user-level app is an atomic

operation
• The kernel locks the file vnode

• Each file write is immediately visible to all file readers
• Neither NFS nor AFS provides such concurrency

control between distributed processes
• NFS: “sometime within 30 seconds”
• AFS: session semantics consistency (next slide)

• Same machine processes in AFS do have seq. consistency
11

Session Semantics in AFS v2

• What it means:
• A file write is visible to processes on the same box

immediately, but not visible to processes on other machines
until the file is closed

• When a file is closed, changes are visible to new opens, but
are not visible to “old” opens
• Last closer wins!
• AFS writebacks the entire file (not a mix of updates like NFS)

• All other file operations are visible everywhere immediately
• Implementation

• Dirty data are buffered at the client machine until file close,
then flushed back to server, which leads the server to send
“break callback” to other clients

12

Session semantics in AFS

1/25/21 13

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 14

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 15

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 16

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 17

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 18

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 19

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 20

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 21

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 22

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 23

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 24

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 25

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 26

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 27

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 28

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 29

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 30

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 31

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Session semantics in AFS

1/25/21 32

• P1 and P2
local to
Client1

• Clients 1,2
concurrent

THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B !A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D !C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline
AFS makes an exception to this simple model between processes on

the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-
chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

AFS Write Policy

• Writeback cache (in contrast with write through)
• Opposite of NFS “every write is sacred”
• Store contents back to server

• When cache overflows
• AFS: On last user close() : last closer “wins”

• ...or don't (if client machine crashes)
• Is writeback crazy?

• Write conflicts “assumed rare”
• Who wants to see a half-written file?

33

Dealing with crashes in AFS

• Client crashes
• Cache is suspect (could miss a break callback)
• Have to check with server if caching latest state

• Server crashes
• Lose all callback state (kept in memory)
• All clients must detect server failure + treat their local

caches as suspect (as above, but across all clients)

• Contrast this with NFS in which clients don’t even
notice server crashes

34

Results for AFS

• Lower server load than NFS
• More files cached on clients
• Callbacks: server not busy if files are read-only (common

case)
• But maybe slower: Access from local disk is much

slower than from another machine’s memory over
LAN (better with SSD: ~1ms to read 1MB)

• For both:
• Central server is bottleneck: all reads and writes hit it at

least once;
• is a single point of failure.
• is costly to make them fast, beefy, and reliable.

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

36

Topic 3: Name-Space
Construction and Organization
• NFS: per-client linkage

• Server: export /root/fs1/
• Client: mount server:/root/fs1 /fs1

• AFS: global name space
• Name space is organized into Volumes

• Global directory /afs;
• /afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/…

• Each file is identified as fid = <vol_id, vnode #, unique
identifier>

• All AFS servers keep a copy of “volume location database”,
which is a table of vol_idà server_ip mappings

• Can move volumes between servers to balance load

37

Implications on Location
Transparency

• NFS: no transparency
• If a directory is moved from one server to another, client

must remount

• AFS: transparency
• If a volume is moved from one server to another, only

the volume location database on the servers needs to
be updated (clients do not need to observe the change)

38

Naming in NFS (1)

• Figure 11-11. Mounting (part of) a remote file
system in NFS.

39

ServerClient A Client B

Naming in NFS (2)

40

Server A Server BClient

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

41

Topic 4: User Authentication and
Access Control
• User U logs onto workstation A, wants to access files

on server B
• How does A tell B who U is?
• Should B believe A?

• Choices made in NFS V2
• All servers and all client workstations share the same <uid,

gid> name space à B send U’s <uid,gid> to A
• Problem: root access on any client workstation can lead

to creation of users of arbitrary <uid, gid>
• Server believes client workstation unconditionally

• Problem: if any client workstation is broken into, the
protection of data on the server is lost;

• <uid, gid> sent in clear-text over wire à request packets
can be faked easily

42

User Authentication (cont’d)

• How do we fix the problems in NFS v2
• Hack 1: root remapping à strange behavior

• Local NFS remaps local root to nobody for protection
• Hack 2: UID remapping à no user mobility

• nfsv4 uses usernames instead of UIDs.. still a hack
• Real Solution: use a centralized

Authentication/Authorization/Access-control (AAA)
system

43

A Better AAA System: Kerberos

• Basic idea: shared secrets
• User proves to KDC [key distribution center] who he is;

KDC generates shared secret (S) between client and
file server

44

client

ticket server
generates S

“Need to access fs”

K clie
nt[S

] file serverK
fs [S]

S: specific to {client,fs} pair;
“short-term session-key”; expiration time (e.g. 8 hours)

KDC

encrypt S with
client’s key

A Better AAA System: Kerberos

• Basic idea: shared secrets
• User proves to KDC [key distribution center] who he is;

KDC generates shared secret (S) between client and
file server

45

client

ticket server
generates S

“Need to access fs”

K clie
nt[S

] file serverK
fs [S]

S: specific to {client,fs} pair;
“short-term session-key”; expiration time (e.g. 8 hours)

KDC

Communicate
using S for encryption

Distributed file systems require
making many trade offs

• Some tradeoffs:
• consistency, performance, scalability.

• We’ve learned a lot since NFS and AFS (and can
implement faster, etc.), but the general lesson
holds. Especially in the wide-area.

• We'll see a related tradeoff, also involving
consistency, in a while: the CAP tradeoff.
Consistency, Availability, Partition-resilience.

More bits

• Client-side caching is a fundamental technique to
improve scalability and performance
• But raises important questions of cache consistency

• Timeouts and callbacks are common methods for
providing (some forms of) consistency.

• AFS picked close-to-open (session) consistency
as a good balance of usability (the model seems
intuitive to users), performance, etc.
• AFS authors argued that apps with highly concurrent,

shared access, like databases, needed a different
model

Failure Recovery in AFS & NFS

• What if the file server fails?
• What if the client fails?
• What if both the server and the client fail?
• Network partition

• How to detect it? How to recover from it?
• Is there anyway to ensure absolute consistency in the

presence of network partition?
• Reads
• Writes

• What if all three fail: network partition, server,
client?

48

Key to Simple Failure Recovery

• Try not to keep any state on the server
• If you must keep some state on the server

• Understand why and what state the server is keeping
• Understand the worst case scenario of no state on the

server and see if there are still ways to meet the
correctness goals

• Revert to this worst case in each combination of failure
cases

49

