
Networks review
Jan 14, 2021

416 Distributed Systems

1

Distributed Systems vs. Networks

• Low level (c/go)
• Run forever
• Support others
• Adversarial environment
• Distributed & concurrent
• Resources matter

• And have it implemented/run by vast numbers of
different people with different goals/skills

2

Keep an eye out for…

• Modularity, Layering, and Decomposition:
• Techniques for dividing the work of building systems
• Hiding the complexity of components from each other
• Hiding implementation details to deal with heterogeneity

• Naming/lookup/routing
• Resource sharing and isolation

• Models and assumptions about the environment
and components

3

Today’s Lecture (317 review-ish)

• Network links and LANs

• Layering and protocols

• Internet design

4

Basic Building Block: Links

• Electrical questions
• Voltage, frequency, …
• Wired or wireless?

• Link-layer issues: How to send data?
• When to talk – can either side talk at once?
• What/how to say – low-level format?

Node Link Node

5

Model of a communication channel

• Latency - how long does it take for the first bit to reach
destination

• Jitter - how much variation in latency?

• Capacity - how many bits/sec can we push through?
(often termed “bandwidth”)

• Loss / Reliability - can the channel drop packets?

• Reordering

6

Basic Building Block: Links

• … But what if we want more hosts?

• Scalability?!

One wire

Wires for everybody!

7

Multiplexing

• Need to share network resources

• How? Switched network
• Party “A” gets resources sometimes
• Party “B” gets them sometimes

• Interior nodes act as “Switches”

• What mechanisms to share resources?

8

In the Old Days…Circuit Switching

9

Packet Switching

• Source sends information as self-contained packets that
have an address.
• Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
• Switches use the address in the packet to determine how to

forward the packets
• Store and forward

• Analogy: a letter in surface mail (snail mail)

10

Packet Switching –
Statistical Multiplexing

• Switches arbitrate between inputs
• Can send from any input that’s ready

• Links never idle when traffic to send
• (Efficiency!)

Packets

11

What if Network is Overloaded?

Problem: Network Overload

• Short bursts: buffer
• What if buffer overflows?

• Packets dropped
• Sender adjusts rate until load = resources à “congestion control”

Solution: Buffering and Congestion Control

12

1313

Example: Ethernet Packet

• Sending adapter encapsulates IP datagram (or
other network layer protocol packet) in Ethernet
frame

1414

Ethernet Frame Structure

• Each protocol layer needs to provide some
hooks to upper layer protocols
• Demultiplexing: identify which upper layer

protocol packet belongs to
• E.g., port numbers allow TCP/UDP to identify

target application
• Ethernet uses Type field

• Type: 2 bytes
• Indicates the higher layer protocol, mostly IP

but others may be supported such as Novell
IPX and AppleTalk

1515

Ethernet Frame Structure (cont.)

• Addresses: 6 bytes
• Each adapter is given a globally unique address

at manufacturing time
• Address space is allocated to manufacturers

• 24 bits identify manufacturer
• E.g., 0:0:15:* à 3com adapter

• Frame is received by all adapters on a LAN and
dropped if address does not match

• Special addresses
• Broadcast – FF:FF:FF:FF:FF:FF is “everybody”
• Range of addresses allocated to multicast

• Adapter maintains list of multicast groups node is
interested in

Packet Switching

• Source sends information as self-contained packets that
have an address.
• Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
• Switches use the address in the packet to determine how to

forward the packets
• Store and forward

• Analogy: a letter in surface mail.

16

17

Frame Forwarding

• A machine with MAC Address lies
in the direction of number port of
the bridge

• For every packet, the bridge “looks
up” the entry for the packet’s
destination MAC address and
forwards the packet on that port.
• Other packets are broadcast – why?

• Timer is used to flush old entries

8711C98900AA 2

MAC
Address Port
A21032C9A591 1
99A323C90842 2

301B2369011C 2
695519001190 3

15

Age

36

01

16

11

Bridge1
3

2

18

Learning Bridges

• Manually filling in bridge tables?
• Time consuming, error-prone

• Keep track of source address of packets arriving
on every link, showing what segment hosts are on
• Fill in the forwarding table based on this information

host host host host host

host host host host host

host

host

Bridge

Today’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

19

Internet

• An inter-net: a network of
networks.
• Networks are connected using

routers that support
communication in a hierarchical
fashion

• Often need other special devices
at the boundaries for security,
accounting, ..

• The Internet: the interconnected
set of networks of the Internet
Service Providers (ISPs)
• About 17,000 different networks

make up the Internet

20

Internet

Challenges of an internet

• Heterogeneity
• Address formats
• Performance – bandwidth/latency
• Packet size
• Loss rate/pattern/handling
• Routing
• Diverse network technologies à satellite links, cellular

links, carrier pigeons
• In-order delivery

21

Internet

Computer 1 Computer 2

Need naming and routing

How To Find Nodes?

22

Naming

What’s the IP address for www.cmu.edu?

It is 128.2.11.43

Translates human readable names to logical endpoints

Local DNS ServerComputer 1

23

Routing

R

R

R

RRH

H

H

H

R

RH

R

Routers send
packet towards

destination

H: Hosts

R: Routers

24

Network Service Model

• What is the base (IP) service model?
• Ethernet/Internet: best-effort – packets can get lost,

etc.
• What if you want more?

• Performance guarantees (QoS)
• Reliability

• Corruption
• Lost packets

• Flow and congestion control
• Fragmentation
• In-order delivery
• Etc…

25

Aside: failure models

• Fail-stop:
• When something goes wrong, the process stops / crashes /

etc.
• Fail-slow or fail-stutter:

• Performance may vary on failures as well
• Byzantine:

• Anything that can go wrong, will.
• Including malicious entities taking over your computers and

making them do whatever they want.
• These models are useful for proving things;
• The real world typically has a bit of everything.

• Deciding which model to use is important!

26

Fancier Network Service Models

• What if network had reliable, in-order, mostly no-
corruption, stream-oriented communication (i.e.
TCP)

• Programmers don’t have to implement these
features in every application

• But note limitations: this can’t turn a byzantine
failure model into a fail-stop model...

27

What if the Data gets Corrupted?

Internet
GET inrex.htmlGET index.html

Solution: Add a checksum

Problem: Data Corruption

0,9 9 6,7,8 21 4,5 7 1,2,3 6X

28

What if the Data gets Lost?

Internet
GET index.html

Problem: Lost Data

Internet
GET index.html

Solution: Timeout and Retransmit

GET index.htmlGET index.html

29

Solution: Add Sequence Numbers

Problem: Out of Order

What if the Data is Out of Order?

GETx.htindeml

GET x.htindeml

GET index.html

ml 4 inde 2 x.ht 3 GET 1

30

Networks [including end points]
Implement Many Functions

• Link
• Multiplexing
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation
• Etc….

31

32

What is Layering?

• Modular approach to network functionality
• Example:

Link hardware

Host-to-host connectivity

Application-to-application channels

Application

33

What is Layering?

Host Host

Application

Transport

Network

Link

User A User B

Modular approach to network functionality

Peer Layer Peer Layer

34

Layering Characteristics

• Each layer relies on services from layer below and
exports services to layer above

• Interface defines interaction with peer on other
hosts

• Hides implementation - layers can change without
disturbing other layers (black box)

35

What are Protocols?

• An agreement between parties on
how communication should take
place

• Module in layered structure

• Protocols define:
• Interface to higher layers (API)
• Interface to peer (syntax & semantics)

• Actions taken on receipt of a
messages

• Format and order of messages
• Error handling, termination, ordering of

requests, etc.

• Example: Buying airline ticket

Friendly greeting

Muttered reply

Destination?

Honolulu

Thank you

36

IP Layering (control flow)

• Relatively simple

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical

37

The Internet Protocol Suite

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The “thin” waist facilitates interoperability

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

38

Layer Encapsulation (data flow)

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

39

Multiplexing and Demultiplexing

• There may be multiple
implementations of each
layer.
• How does the receiver know

what version of a layer to
use?

• Each header includes a
demultiplexing field that is
used to identify the next
layer.
• Filled in by the sender
• Used by the receiver

• Multiplexing occurs at
multiple layers. E.g., IP,
TCP, …

IP

TCP

IP

TCP

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

40

Multiplexing and Demultiplexing

• There may be multiple
implementations of each
layer.
• How does the receiver know

what version of a layer to
use?

• Each header includes a
demultiplexing field that is
used to identify the next
layer.
• Filled in by the sender
• Used by the receiver

• Multiplexing occurs at
multiple layers. E.g., IP,
TCP, …

IP

TCP

IP

TCP

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

41

Protocol Demultiplexing

• Multiple choices at each layer

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP
IPX

Port
Number

Network

Protocol
Field

Type
Field

Today’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

42

43

Goals [Clark88]

0 Connect existing networks
initially ARPANET and ARPA packet radio network

1.Survivability
ensure communication service even in the presence of

network and router failures
2.Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Allow host attachment with a low level of effort
6. Be cost effective
7. Allow resource accountability

Goal 1: Survivability

• If network is disrupted and reconfigured…
• Communicating entities should not care!
• No higher-level state reconfiguration

• How to achieve such reliability?
• Where can communication state be stored?

44

State in Network State in Host

Failure handing Replication “Fate sharing”
Net Engineering Tough Simple
Routing state Maintain state Stateless
Host trust Less More

Goal 1: Survivability

• If network is disrupted and reconfigured…
• Communicating entities should not care!
• No higher-level state reconfiguration

• How to achieve such reliability?
• Where can communication state be stored?

45

State in Network State in Host

Failure handing Replication “Fate sharing”
Net Engineering Tough Simple
Routing state Pkts on same

path: complex
Pkts on indep.
paths: simple

Host trust Less More

Fate Sharing

• Definition: lose state information for an entity if and only if the
entity itself is lost.

• Examples:
• OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots
• Is this still true in today’s network?

• NATs and firewalls

• Tradeoffs
• Less information available to the network
• Must trust endpoints more

46

Connection
State StateNo State

Networks [including end points]
Implement Many Functions

• Link
• Multiplexing
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation
• Etc….

47

Design Question

• If you want reliability, where should you
implement it?

Host Switch Switch Switch Switch Host

Option 1: Hop-by-hop (at switches)

Option 2: end-to-end (at end-hosts)

Options

• Hop-by-hop: Have each switch/router along
the path ensure that the packet gets to the
next hop

• End-to-end: Have just the end-hosts ensure
that the packet made it through

• What do we have to think about to make this
decision??

A question

• Is hop-by-hop enough?

• [hint: What happens if a switch crashes?
What if it’s buggy and goofs up a packet?]

51

End-to-End Argument

• Deals with where to place functionality
• Inside the network (in switching elements)
• At the edges

• Guideline not a law

• Argument
• If you have to implement a function end-to-end anyway

(e.g., because it requires the knowledge and help of the
end-point host or application), don’t implement it
inside the communication system

• Unless there’s a compelling performance enhancement

Further Reading: “End-to-End Arguments in System Design.”
Saltzer, Reed, and Clark.

Questions to ponder

• If you have a whole file to transmit,
how do you send it over the Internet?
• You break it into packets (packet-switched medium)
• TCP, roughly speaking, has the sender tell the receiver “got it!”

every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

• But by e2e, if you have to acknowledge the correct receipt of the
entire file... why bother acknowledging the receipt of the individual
packets???

Questions to ponder

• If you have a whole file to transmit,
how do you send it over the Internet?
• You break it into packets (packet-switched medium)
• TCP, roughly speaking, has the sender tell the receiver “got it!”

every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

• But by e2e, if you have to acknowledge the correct receipt of the
entire file... why bother acknowledging the receipt of the individual
packets???

• The answer: if you want performance, then you better do
it this way (a mixture of e2e and in-network); imagine the
waste if you had to retransmit the entire file because one
packet was lost!

Internet Design: Types of Service

• Principle: network layer provides one simple service: best effort
datagram (packet) delivery
• All packets are treated the same

• Relatively simple core network elements
• Building block from which other services (such as reliable data

stream) can be built
• Contributes to scalability of network

• No QoS support assumed from below
• In fact, some underlying nets (e.g., link/physical layer) only provide

reliable delivery (not best effort)
• This made Internet datagram service less useful!

• Hard to implement QoS without network support
• QoS is an ongoing debate…

54

55

User Datagram Protocol (UDP):
An Analogy

Postal Mail
• Single mailbox to receive

messages
• Unreliable J
• Not necessarily in-order

delivery
• Each letter is independent
• Must address each reply

Example UDP applications
Multimedia, voice over IP

UDP
• Single socket to receive

messages
• No guarantee of delivery
• Not necessarily in-order

delivery
• Datagram – independent

packets
• Must address each packet

Postal Mail
• Single mailbox to receive

letters
• Unreliable J
• Not necessarily in-order

delivery
• Letters sent independently
• Must address each letter

56

Transmission Control Protocol (TCP):
An Analogy

TCP
• Reliable – guarantee

delivery
• Byte stream – in-order

delivery
• Connection-oriented –

single socket per
connection

• Setup connection
followed by data transfer

Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented
• Setup connection

followed by conversation

Example TCP applications
Web, Email, Telnet

Why not always use TCP?

• TCP provides “more” than UDP
• Why not use it for everything??

• A: Nothing comes for free...
• Connection setup (take on faith) -- TCP requires one round-

trip time to setup the connection state before it can chat...
• How long does it take, using TCP, to fix a lost packet?

• At minimum, one “round-trip time” (2x the latency of the network)
• That could be 100+ milliseconds!

• If I guarantee in-order delivery,
what happens if I lose one packet in a stream of packets?

• Has semantics that may be too strong for the app (e.g.,
Netflix streaming) 57

Design trade-off

• If you’re building an app...

• Do you need everything TCP provides?
• If not:

• Can you deal with its drawbacks to take advantage of the
subset of its features you need?

OR
• You’re going to have to implement the ones you need on

top of UDP
• Caveat: There are some libraries, protocols, etc., that can help

provide a middle ground.
• Takes some looking around

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

Socket API Operation Overview

Blocking sockets

• What happens if an application write()s to a socket
waaaaay faster than the network can send the data?

• TCP figures out how fast to send the data...

• And it builds up in the kernel socket buffers at the
sender... and builds...

• until they fill. The next write() call blocks (by default).

• What’s blocking? It suspends execution of the blocked
thread until enough space frees up...

In contrast to UDP

• UDP doesn’t figure out how fast to send
data, or make it reliable, etc.

• So if you write() like mad to a UDP socket...

• It often silently disappears. Maybe if you’re
lucky the write() call will return an error. But
no promises.

Summary: Internet Architecture

• Packet-switched datagram
network

• IP is the “compatibility
layer”
• Hourglass architecture
• All hosts and routers run IP

• Stateless architecture
• no per flow state inside

network

62

IP

TCP UDP

ATM

Satellite

Ethernet

63

Summary: Minimalist Approach

• Dumb network
• IP provide minimal functionalities to support connectivity

• Addressing, forwarding, routing

• Smart end system
• Transport layer or application performs more sophisticated

functionalities
• Flow control, error control, congestion control

• Advantages
• Accommodate heterogeneous technologies (Ethernet,

modem, satellite, wireless)
• Support diverse applications (telnet, ftp, Web, X windows)
• Decentralized network administration

