Distributed Systems

CPSC 416
Winter 2021

Oh yeah, pandemic

* Not a great time to be taking courses
* My first time teaching a large course over zoom

* |Lots of resources, but this course may not be the
right one for you (timezone/workload/content/etc)

* Please consider caretully before committing

* First two assignments before add/drop are a
itmus test

Course staff

e |van Beschastnikh, instructor
At UBC since 2013
* Previous taught 416 four times (in person)

* Research distributed systems, networks, security, program analysis

Course staff

e |van Beschastnikh, instructor

e TAs (all grad)

e FINN

 Mayank

e Shayan

. Shigi .

Course staff

e |van Beschastnikh, instructor

e TAs (all grad)

e FInn
 Mayank >
e Shayan
Arrives February
* Shiqi >
 PostDoc

Arrives February

Jaafar

| ogistics

2016: 77 students (open-ended project)

2017: 117 students (assignment hell)

2018W: 160 students (assignments + projects)
2018F: 44 students (mix of above)

2021W: 160 students (assignment... hell?)

e /00M ZOOM Zoom

Waitlist

e Walitlist has about 50 people!

 Keep joining and working on assignments, some
people will drop, but not everyone will get in

* Jo others: consider dropping if you have other
courses that look more interesting

Basic resources

* Everything on the website, updated continuously:
https://www.cs.ubc.ca/~bestchai/teaching/cs416_2020w2/

e Use Piazza for all course-related communication

e January office hours:
* © hrs of office hours per week (see piazza/canvas for links)
* Every day with Jaafar
* + with lvan on Thursdays

* + with Shayan on Fridays

Course overview via the website

e | earning goals
e GO programming language (start learning!)
e Schedule (a work in progress)
e Assignment 1 due Jan 15 (soon!)
e Exam (‘just’ a final)
e Advice for doing well
* |earn Go (a must to pass the course)
 don't hack, engineer

 choose team, wisely
e reach out on Pizza for help.

e Collaboration guidelines

L earning goals

Understand key principles in designing and
implementing distributed systems

Reason about problems that involve distributed
components

Become familiar with important techniques for
solving problems that arise In distributed contexts

Build distributed system prototypes using the Go
programming language

10

L earning goals

Understand key principles in designing and
implementing distributed systems

Reason about problems that involve distributed
components

Become familiar with important techniques for
solving problems that arise In distributed contexts

Build distributed system prototypes using the Go
orogramming language (the key to all the above)

11

Some workload comments
from previous courses

e [he workload for this course is easily double that of
any other course | had this term.

e |van has very high expectations of his students.

e [|ove and hate the fact that this class was a "sink or
swim" approach to learning

12

Assignment 1: BigUInt

* Okay, it's a little boring, but it will help you to:
 Learn Go
* Learn Go
 Learn Go

e | earn GO

13

Assignment 1: BigUInt

» https://www.cs.ubc.ca/~bestchai/teaching/
cs416_2020w2/assigni/index.html

14

https://www.cs.ubc.ca/~bestchai/teaching/cs416_2020w2/assign1/index.html
https://www.cs.ubc.ca/~bestchai/teaching/cs416_2020w2/assign1/index.html

Assignment 1 note

 |astlast years 416 TA rant:

TEST YOUR CODE ON THE UGRAD

YOU WILL GET ZERO IF IT DOESN'T RUN OR
COMPILE. WE HAVE NO SYMPATHY FOR THESE
TYPES OF ERRORS.

... you've been warned

15

/00m zoom out

* What are some examples of distributed systems?
* Cloud: machines in a warehouse. Get AWS credits -> Spin instances (VM) -> SSH -> get things done.
 Distributed accounting; distributed provisioning (request->exec, hypervisor); DC Fault Tolerance (AWS buckets); storage services
* HDFS: distributed file system for “big data compute” (provides data to compute instances; replication; FT; lookup)
* Internet: global DNS (lookup: name -> ip); AS (autonomous systems) ~ ISP ~ network: BGP for coordination
* (Google drive: store a ton of data internally across many machines, FT (replicated), “acts as one machine” ~ Consistency
 BitTorrent: “P2P” ~ free-for-all topology (“peer” or client is empowered); exchanging blocks of files; ephemeral swarm
* Microservices ~ cool new trend for building cloud-based systems (service per task and interconnect them)
* IPFS: “cool” “new” “file system”
* Kubernetes: system for managing lots of resources
e Zeronet: ?
e BitCoin: scam ;-)
* Twitch: video thing ~ Zoom

e [2p: 7

16

/00m zoom out

 What are some examples of distributed systems”
* Why not a distributed application? oapps on biockenains)
e System versus application: ?
* Abstracted away from users
* App is for clients, internals are systems
e System provides a “service” to other programs / API

* App usually interfaces with a person

17

/00m zoom out

 WWhat makes a system distributed?’
o Communication (networking)
» Concurrency/async (threads/processes/machines/Pis)
* Multiple machines/decentralization
* Replication (coordination) for fault tolerance/tail over
* Division of tasks (compute)

o Scalability/high perf ~ nice to have for a dist. sys

18

Distributed system examples

e Youlube

* Videos are replicated (multiple machines host
the same video)

* Scalable wrt. client requests for videos (internally

elastic — can throw more machines at the
service to have it scale out further)

19

Distributed system examples

* DropBox (or google drive)
* Replicated content across personal devices
* Supports disconnected operation (can work
while disconnected, and synchronize when re-
connected)
* Maintaining data consistent across devices

e Supports sharing; access control policies (security!)

20

Distributed system examples

* NASDAQ

* Transactions (e.g., ACID semantics from
databases). Many DBMS concepts apply to
distributed systems!

e Strong consistency and security guarantees
(otherwise people would not trust it with money)

21

Some D.S. challenges

Synchronizing multiple machines (protocol complexity)
Pertormance (how do you define/measure it?)

Maintaining consistency: strong models (linearizable) to
weak models (eventual) of consistency

Failures: machine failures (range: failure stop to byzantine);
network failures (just a few: disconnections/loss/corruption/
delay/partitioning)

Security (how to prevent malicious control of a single host
iNn a system escalating into control of the entire system?)

22

For Thursday

Install Go on your personal machine
Work through Tour of Go! and other tutorials.
Practice Go!

Start on Assignment 1

23

