
Distributed Systems
CPSC 416

Winter 2021

Jan 12 Lecture (first class!)
Online

1

Oh yeah, pandemic
• Not a great time to be taking courses

• My first time teaching a large course over zoom

• Lots of resources, but this course may not be the
right one for you (timezone/workload/content/etc)

• Please consider carefully before committing

• First two assignments before add/drop are a
litmus test

2

Course staff
• Ivan Beschastnikh, instructor

• At UBC since 2013

• Previous taught 416 four times (in person)

• Research distributed systems, networks, security, program analysis

3

Course staff
• Ivan Beschastnikh, instructor

• TAs (all grad)

• Finn

• Mayank

• Shayan

• Shiqi

4

Course staff
• Ivan Beschastnikh, instructor

• TAs (all grad)

• Finn

• Mayank

• Shayan

• Shiqi

• PostDoc

• Jaafar

5

Arrives February

Arrives February

Logistics
• 2016: 77 students (open-ended project)

• 2017: 117 students (assignment hell)

• 2018W: 160 students (assignments + projects)

• 2018F: 44 students (mix of above)

• 2021W: 160 students (assignment… hell?)

• Zoom zoom zoom

6

Waitlist

• Waitlist has about 50 people!

• Keep joining and working on assignments, some
people will drop, but not everyone will get in

• To others: consider dropping if you have other
courses that look more interesting

7

Basic resources
• Everything on the website, updated continuously:

https://www.cs.ubc.ca/~bestchai/teaching/cs416_2020w2/

• Use Piazza for all course-related communication

• January office hours:

• 6 hrs of office hours per week (see piazza/canvas for links)

• Every day with Jaafar

• + with Ivan on Thursdays

• + with Shayan on Fridays

8

• Learning goals
• Go programming language (start learning!)
• Schedule (a work in progress)
• Assignment 1 due Jan 15 (soon!)

• Exam (‘just’ a final)
• Advice for doing well

• learn Go (a must to pass the course)
• don’t hack, engineer
• choose team, wisely
• reach out on Pizza for help.

• Collaboration guidelines

Course overview via the website

9

Learning goals
• Understand key principles in designing and

implementing distributed systems

• Reason about problems that involve distributed
components

• Become familiar with important techniques for
solving problems that arise in distributed contexts

• Build distributed system prototypes using the Go
programming language

10

Learning goals
• Understand key principles in designing and

implementing distributed systems

• Reason about problems that involve distributed
components

• Become familiar with important techniques for
solving problems that arise in distributed contexts

• Build distributed system prototypes using the Go
programming language (the key to all the above)

11

Some workload comments
from previous courses

• The workload for this course is easily double that of
any other course I had this term.

• Ivan has very high expectations of his students.

• I love and hate the fact that this class was a "sink or
swim" approach to learning

12

13

Assignment 1: BigUInt
• Okay, it’s a little boring, but it will help you to:

• Learn Go

• Learn Go

• Learn Go

• Learn Go

14

Assignment 1: BigUInt

• https://www.cs.ubc.ca/~bestchai/teaching/
cs416_2020w2/assign1/index.html

https://www.cs.ubc.ca/~bestchai/teaching/cs416_2020w2/assign1/index.html
https://www.cs.ubc.ca/~bestchai/teaching/cs416_2020w2/assign1/index.html

Assignment 1 note
• Last last year’s 416 TA rant:

15

TEST YOUR CODE ON THE UGRAD
MACHINES!!!!!!!!!!!!!!!!!!!

YOU WILL GET ZERO IF IT DOESN'T RUN OR
COMPILE. WE HAVE NO SYMPATHY FOR THESE

TYPES OF ERRORS.

… you’ve been warned

Zoom zoom out
• What are some examples of distributed systems?

• Cloud: machines in a warehouse. Get AWS credits -> Spin instances (VM) -> SSH -> get things done.

• Distributed accounting; distributed provisioning (request->exec, hypervisor); DC Fault Tolerance (AWS buckets); storage services

• HDFS: distributed file system for “big data compute” (provides data to compute instances; replication; FT; lookup)

• Internet: global DNS (lookup: name -> ip); AS (autonomous systems) ~ ISP ~ network: BGP for coordination

• Google drive: store a ton of data internally across many machines, FT (replicated), “acts as one machine” ~ Consistency

• BitTorrent: “P2P” ~ free-for-all topology (“peer” or client is empowered); exchanging blocks of files; ephemeral swarm

• Microservices ~ cool new trend for building cloud-based systems (service per task and interconnect them)

• IPFS: “cool” “new” “file system”

• Kubernetes: system for managing lots of resources

• Zeronet: ?

• BitCoin: scam ;-)

• Twitch: video thing ~ Zoom

• I2p: ?

16

Zoom zoom out
• What are some examples of distributed systems?

• Why not a distributed application? (DApps on blockchains)

• System versus application: ?

• Abstracted away from users

• App is for clients, internals are systems

• System provides a “service” to other programs / API

• App usually interfaces with a person

17

Zoom zoom out
• What makes a system distributed?

• Communication (networking)

• Concurrency/async (threads/processes/machines/Pis)

• Multiple machines/decentralization

• Replication (coordination) for fault tolerance/fail over

• Division of tasks (compute)

• Scalability/high perf ~ nice to have for a dist. sys

18

Distributed system examples

• YouTube

• Videos are replicated (multiple machines host
the same video)

• Scalable wrt. client requests for videos (internally
elastic — can throw more machines at the
service to have it scale out further)

19

Distributed system examples
• DropBox (or google drive)

• Replicated content across personal devices

• Supports disconnected operation (can work
while disconnected, and synchronize when re-
connected)

• Maintaining data consistent across devices

• Supports sharing; access control policies (security!)

20

Distributed system examples

• NASDAQ

• Transactions (e.g., ACID semantics from
databases). Many DBMS concepts apply to
distributed systems!

• Strong consistency and security guarantees
(otherwise people would not trust it with money)

21

Some D.S. challenges
• Synchronizing multiple machines (protocol complexity)

• Performance (how do you define/measure it?)

• Maintaining consistency: strong models (linearizable) to
weak models (eventual) of consistency

• Failures: machine failures (range: failure stop to byzantine);
network failures (just a few: disconnections/loss/corruption/
delay/partitioning)

• Security (how to prevent malicious control of a single host
in a system escalating into control of the entire system?)

22

For Thursday

• Install Go on your personal machine

• Work through Tour of Go! and other tutorials.

• Practice Go!

• Start on Assignment 1

23

