
Errors and RAID
February 23, 2021

416 Distributed Systems



Types of Errors

• Hard errors:  The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t 
mean the component must be faulty

• Note:  You can have recurring soft errors due to 
faulty, but not dead, hardware

2



Examples

• DRAM errors

• Hard errors:  Often caused by motherboard - faulty 
traces, bad solder, etc.

• Soft errors:  Often caused by cosmic radiation or alpha 
particles (from the chip material itself) hitting memory 
cell, changing value.  (Remember that DRAM is just 
little capacitors to store charge... if you hit it with 
radiation, you can add charge to it.)

3



Measuring Availability

• Mean time to failure (MTTF)
• Mean time to repair (MTTR)
• MTBF = MTTF + MTTR  (mean time between failure)

• Availability = MTTF / (MTTF + MTTR)
• = (time sys operational) / (time sys should have been operational)

• Suppose OS crashes once per month, takes 10min to 
reboot.  

• MTTF = 720 hours = 43,200 minutes
MTTR = 10 minutes

• Availability = 43200 / 43210 = 0.997 (~“3 nines”)
4

8.2 Measures of Reliability and Failure Tolerance 8–9  

the system cannot be used until it is repaired, perhaps by replacing the failed component, 
so we are equally interested in the time to repair (TTR). If we observe a system through 
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can 
calculate the fraction of time it operated properly, a useful measure known as availability: 

time system was runningAvailability = --------------------------------------------------------------------------------------------
time system should have been running 

N 

∑ TTFi 

i = 1= ---------------------------------------------- Eq. 8–1N 

∑ (TTFi + TTRi) 

i = 1 

By separating the denominator of the availability expression into two sums and dividing 
each by N (the number of observed failures) we obtain two time averages that are fre-
quently reported as operational statistics: the mean time to failure (MTTF) and the mean 
time to repair (MTTR): 

N N 
MTTF = ---1 -∑ TTFi MTTR = ---1 -∑ TTRi Eq. 8–2

N Ni = 1 i = 1 

The sum of these two statistics is usually called the mean time between failures (MTBF). 
Thus availability can be variously described as 

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF 

In some situations, it is more useful to measure the fraction of time that the system is not 
working, known as its down time: 

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF 

One thing that the definition of down time makes clear is that MTTR and MTBF are 
in some sense equally important. One can reduce down time either by reducing MTTR 
or by increasing MTBF. 

Components are often repaired by simply replacing them with new ones. When failed 
components are discarded rather than fixed and returned to service, it is common to use 
a slightly different method to measure MTTF. The method is to place a batch of N com-
ponents in service in different systems (or in what is hoped to be an equivalent test 
environment), run them until they have all failed, and use the set of failure times as the 
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver-
age. We could use this same procedure on components that are not usually discarded 
when they fail, in the hope of determining their MTTF more quickly, but we might 
obtain a different value for the MTTF. Some failure processes do have the property that 
the ensemble average is the same as the time average (processes with this property are 

Saltzer & Kaashoek Ch. 8, p. 9 June 24, 2009 12:24 am 

8.2 Measures of Reliability and Failure Tolerance 8–9  

the system cannot be used until it is repaired, perhaps by replacing the failed component, 
so we are equally interested in the time to repair (TTR). If we observe a system through 
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can 
calculate the fraction of time it operated properly, a useful measure known as availability: 

time system was runningAvailability = --------------------------------------------------------------------------------------------
time system should have been running 

N 

∑ TTFi 

i = 1= ---------------------------------------------- Eq. 8–1N 

∑ (TTFi + TTRi) 

i = 1 

By separating the denominator of the availability expression into two sums and dividing 
each by N (the number of observed failures) we obtain two time averages that are fre-
quently reported as operational statistics: the mean time to failure (MTTF) and the mean 
time to repair (MTTR): 

N N 
MTTF = ---1 -∑ TTFi MTTR = ---1 -∑ TTRi Eq. 8–2

N Ni = 1 i = 1 

The sum of these two statistics is usually called the mean time between failures (MTBF). 
Thus availability can be variously described as 

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF 

In some situations, it is more useful to measure the fraction of time that the system is not 
working, known as its down time: 

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF 

One thing that the definition of down time makes clear is that MTTR and MTBF are 
in some sense equally important. One can reduce down time either by reducing MTTR 
or by increasing MTBF. 

Components are often repaired by simply replacing them with new ones. When failed 
components are discarded rather than fixed and returned to service, it is common to use 
a slightly different method to measure MTTF. The method is to place a batch of N com-
ponents in service in different systems (or in what is hoped to be an equivalent test 
environment), run them until they have all failed, and use the set of failure times as the 
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver-
age. We could use this same procedure on components that are not usually discarded 
when they fail, in the hope of determining their MTTF more quickly, but we might 
obtain a different value for the MTTF. Some failure processes do have the property that 
the ensemble average is the same as the time average (processes with this property are 

Saltzer & Kaashoek Ch. 8, p. 9 June 24, 2009 12:24 am 



Availability

Availability % Downtime 
per year

Downtime per 
month*

Downtime per 
week

90% ("one nine") 36.5 days 72 hours 16.8 hours
95% 18.25 days 36 hours 8.4 hours
97% 10.96 days 21.6 hours 5.04 hours
98% 7.30 days 14.4 hours 3.36 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.50% 1.83 days 3.60 hours 50.4 minutes
99.80% 17.52 hours 86.23 minutes 20.16 minutes
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.95% 4.38 hours 21.56 minutes 5.04 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds
99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds

5

For a reliable component, may have to wait a 
long time to determine its availability/downtime!



Availability in practice

• Carrier airlines (2002 FAA fact book)
• 41 accidents, 6.7M departures
• 99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year
• 99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year
• 99.99+%

• End-to-end Internet Availability
• 95% - 99.6%

6



Coping with failures...

• A failure
• Let’s say one bit in your DRAM fails.

• Propagates
• Assume it flips a bit in a memory address the kernel is 

writing to.  That causes a big memory error elsewhere, 
or a kernel panic.

• Your program is running one of a dozen storage 
servers for your distributed filesystem.

• A client can’t read from NFS, so it hangs.

7



Recovery Techniques

• We’ve already seen some:  e.g., retransmissions in 
TCP and in your RPC system

• Modularity can help in failure isolation:  preventing an 
error in one component from spreading.  
• Analogy:  The firewall in your car keeps an engine fire from 

affecting passengers
• Redundancy and Retries

• Network: retransmit an RPC
• Specific techniques used in file systems, disks (RAID)

8



What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

9



Options in dealing with failure

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

10



11

Block error detection/correction
• EDC= Error Detection and Correction bits (redundancy)
• D    = Data protected by error checking, may include header fields 
• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction



12

Parity Checking

Single Bit Parity:
Detect single bit errors

Calculated using XOR over data bits:
• 0 bit: even number of 0s
• 1 bit: odd number of 0s



13

Error Detection - Checksum

• Used by TCP, UDP, IPv4 (not IPv6)
• Ones complement sum of all 16-bits in packet
• Simple to implement

• Break up packet into 16-bits strings
• Sum all the 16-bit strings
• Take complement of sum = checksum; add to header
• One receiver, compute same sum, add sum and 

checksum, check that the result is 0 (no error)
• Relatively weak detection

• Easily tricked by typical loss patterns (bursty errors)



14

Example: Internet Checksum

Sender
• Treat segment contents 

as sequence of 16-bit 
integers

• Checksum: addition (1’s 
complement sum) of 
segment contents

• Sender puts checksum 
value into checksum field 
in header

Receiver
• Compute checksum of 

received segment
• Check if computed 

checksum equals 
checksum field value:
• NO - error detected
• YES - no error 

detected. But maybe 
errors nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment



Options in dealing with failure

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

15



16

Error Recovery

• Two forms of error recovery
• Redundancy

• Error Correcting Codes (ECC)
• Replication/Voting

• Retry

• ECC
• Keep encoded redundant data to help repair losses
• Forward Error Correction (FEC) – send bits in advance

• Reduces latency of recovery at the cost of bandwidth



17

Error Recovery – Error 
Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0



Replication/Voting

• If you take this to the extreme, three software versions:
[r1]  [r2]  [r3]

• Send requests to all three versions of the software:  Triple 
modular redundancy
•Compare the answers, take the majority
•Assumes no error detection

• In practice - used mostly in space applications;  some 
extreme high availability apps (stocks & banking?  maybe.  
But usually there are cheaper alternatives if you don’t 
need real-time)

18

18



19

Retry – Network Example

Time

Packet

ACKTi
m

eo
ut

• Sometimes errors 
are transient / need 
to mask

• Need to have error 
detection 
mechanism
• E.g., timeout, 

parity, checksum
• No need for 

majority vote

Sender Receiver



One key question

• How correlated are failures?
• Can you assume independence?

• If the failure probability of a computer in a rack is p,
• What is p(computer 2 failing) | computer 1 failed?

• Maybe it’s p... or maybe they’re both plugged into 
the same UPS...

• Why is this important?

20



On disk errors
What are our options?
1. Silently return the wrong answer.
2. Detect failure.

• Every sector has a header with a checksum.  Every read 
fetches both, computes the checksum on the data, and 
compares it to the version in the header. Returns error if 
mismatch.

3. Correct / mask the failure
• Re-read if the firmware signals error (may help if transient 

error, may not)
• Use an error correcting code (what kinds of errors do they 

help?)
• Bit flips?  Yes.  Block damaged?  No

• Have the data stored in multiple places (RAID)

21



Motivation: 
Why use multiple disks?
• Capacity

• More disks allows us to store more data
• Performance

• Access multiple disks in parallel
• Each disk can be working on independent read or write
• Overlap seek and rotational positioning time for all

• Reliability
• Recover from disk (or single sector) failures
• Will need to store multiple copies of data to recover

• So, what is the simplest arrangement? 



Just a bunch of disks (JBOD) 

• Yes, it’s a goofy name
• industry really does sell “JBOD enclosures” 

23October 2010, Greg Ganger © 4 

B0 

B1 

B2 

B3 

C0 

C1 

C2 

C3 

D0 

D1 

D2 

D3 

A0 

A1 

A2 

A3 

Just a bunch of disks (JBOD) 

  Yes, it’s a goofy name 
  industry really does sell “JBOD enclosures” 



Disk Striping 

• Interleave data across multiple disks 
• Large file streaming can enjoy parallel transfers 
• High throughput requests can enjoy good load 

balancing
• If blocks of hot files equally likely on all disks (really?) 

24

October 2010, Greg Ganger © 8 

Disk Striping 

  Interleave data across multiple disks 
  Large file streaming can enjoy parallel transfers  
  High throughput requests can enjoy thorough load balancing 

  If blocks of hot files equally likely on all disks (really?) 

stripe unit  
or block 

Stripe"

File Foo: "



Disk striping details 

• How disk striping works 
• Break up total space into fixed-size stripe units 
• Distribute the stripe units among disks in round-robin 
• Compute location of block #B as follows

• disk# = B%N (%=modulo,N = #ofdisks) 

25



Now, What If A Disk Fails? 

• In a JBOD (independent disk) system 
• one or more file systems lost 

• In a striped system
• a part of each file system lost 

• Backups can help, but 
• backing up takes time and effort
• backup doesn’t help recover data lost during that day

• Any data loss is a big deal to a bank or stock 
exchange 

26



Redundancy via replicas 

• Two (or more) copies
• mirroring, shadowing, duplexing, etc. 

• Write both, read either 

27

October 2010, Greg Ganger © 16 

  Two (or more) copies 
  mirroring, shadowing, duplexing, etc. 

  Write both, read either 

0 

1 

2 

3 

0 

1 

2 

3 

Redundancy via replicas 



Lower Cost Data Redundancy 

• Single failure protecting codes 
• general single-error-correcting code is overkill 

• General code finds error and fixes it 
• Disk failures are self-identifying (a.k.a. erasures) 

• Don’t have to find the error 
• Parity is single-disk-failure-correcting code 

• recall that parity is computed via XOR 
• it’s like the low bit of the sum 

28



Simplest approach: Parity Disk 

• One extra disk 
• All writes update 

parity disk
• Potential 

bottleneck 

• (different data in 
different As, Bs, 
Cs, Ds)

• (Ap contains 
parity for all As)

29

October 2010, Greg Ganger © 20 

  One extra disk 
  All writes update 

parity disk 
  potential 

bottleneck 

Ap 

Bp 

Cp 

Dp 

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

Simplest approach: Parity Disk 



Updating and using the parity 

October 2010, Greg Ganger © 23 

Updating and using the parity 

D D D P 

Fault-Free Read 

D D D P 

Fault-Free Write 

4 
3 2 1 

D D D P 

Degraded Read 

D D D P 

Degraded Write 

30



The parity disk bottleneck 

• Reads go only to the data disks
• But, hopefully load balanced across the disks 

• All writes go to the parity disk 
• And, worse, usually result in Read-Modify-Write 

sequence 
• So, parity disk can easily be a bottleneck 

31



Solution: Striping the Parity 

• Removes parity disk bottleneck 

32

October 2010, Greg Ganger © 25 

  Removes parity 
disk bottleneck A 

B 

C 

D 

A 

B 

C 

Dp 

A 

B 

D 

Cp 

A 

D 

C 

Bp 

D 

B 

C 

Ap 

Solution: Striping the Parity 



RAID Taxonomy 

• Redundant Array of Inexpensive Independent Disks
• Constructed by UC-Berkeley researchers in late 80s (Garth) 

• RAID 0 – Coarse-grained Striping with no redundancy 
• RAID 1 – Mirroring of independent disks 
• RAID 2 – Fine-grained data striping plus Hamming code disks 

• Uses Hamming codes to detect and correct multiple errors 
• Originally implemented when drives didn’t always detect errors 
• Not used in real systems 

• RAID 3 – Fine-grained data striping plus parity disk 
• RAID 4 – Coarse-grained data striping plus parity disk 
• RAID 5 – Coarse-grained data striping plus striped parity 
• RAID 6 – Coarse-grained data striping plus 2 striped codes 

33



RAID-0: Striping

• Stripe blocks across disks in a “chunk” size
• How to pick a reasonable chunk size?

0 4

8 12

1 5

9 13

2 6

10 14

3 7

11 15

How to calculate where chunk # lives?
Disk #:
Offset within disk:



RAID-0: Striping

• Evaluate for D disks

• Performance: How much faster than 1 disk?          
(best case)

• Reliability: More or less reliable than 1 disk?

0 4

8 12

1 5

9 13

2 6

10 14

3 7

11 15



RAID-1: Mirroring

• Motivation: Handle disk failures
• Put copy (mirror or replica) of each chunk on another disk

0 2

4 6

0 2

4 6

1 3

5 7

1 3

5 7

• Capacity
• Reliability
• Performance



RAID-4: Parity

• Motivation: Improve capacity
• Idea: Allocate parity block to encode info about blocks

• Parity checks all other blocks in stripe across other disks
• Parity block = XOR over others (gives “even” parity)

• Example: 0 1 0 à Parity value?
• How do you recover from a failed disk?

• Example: x 0 0 and parity of 1
• What is the failed value?

0 3

6 9

1 4

7 10

2 5

8 11

P0 P1

P2 P3



RAID-4: Parity

• Capacity:
• Reliability:
• Performance:

• Reads
• Writes: How to update parity block?

• Two ways:
• Use parity disk
• Re-compute parity from non-parity disks

• (Parity disk is the bottleneck)

0 3

6 9

1 4

7 10

2 5

8 11

P0 P1

P2 P3



Updating and using the parity 

October 2010, Greg Ganger © 23 

Updating and using the parity 

D D D P 

Fault-Free Read 

D D D P 

Fault-Free Write 

4 
3 2 1 

D D D P 

Degraded Read 

D D D P 

Degraded Write 

39



RAID-5: Rotated/Striped Parity

• Capacity:
• Reliability:
• Performance:

• Reads:
• Writes: 
• Still requires 4 I/Os per write, but not always to same parity disk

0 3

6 P3

1 4

P2 9

2 P1

7 10

P0 5

8 11

Rotate location of parity across all disks



Comparison
REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

41

N: number of disks
S: throughput of 1 disk sequential read/write
R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk



Comparison
REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

42

N: number of disks
S: throughput of 1 disk sequential read/write
R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk



Comparison
REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

43

N: number of disks
S: throughput of 1 disk sequential read/write
R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk



Comparison
REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

44

N: number of disks
S: throughput of 1 disk sequential read/write
R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk



Comparison
REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

45

N: number of disks
S: throughput of 1 disk sequential read/write
R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk



Advanced Issues
• What happens if more than one fault?

• Example: One disk fails plus “latent sector error” on another
• RAID-5 cannot handle two faults
• Solution: RAID-6: add multiple parity blocks

• Why is NVRAM useful?
• Example: What if update 2, don’t update P0 before power failure 

(or crash), and then disk 1 fails?
• NVRAM solution: Use to store blocks updated in same stripe

• If power failure, can replay all writes in NVRAM
• Software RAID solution: Perform parity scrub over entire disk

0 3

6 9

1 4

7 10

2’ 5

8 11

P0 P1

P2 P3



Conclusions

• RAID turns multiple disks into a larger, faster, more 
reliable disk

• RAID-0: Striping
Good when performance and capacity really matter, 
but reliability doesn’t

• RAID-1: Mirroring
Good when reliability and write performance matter, 
but capacity (cost) doesn’t 

• RAID-4: Parity disk
• RAID-5: Rotating parity

Good when capacity and cost matter or workload is 
read-mostly
• Good compromise choice



Summary

• Definition of MTTF/MTBF/MTTR:  Understanding 
availability in systems.

• Failure detection and fault masking techniques
• Engineering tradeoff:  Cost of failures vs. cost of 

failure masking.
• At what level of system to mask failures?

• Replication as a general strategy for fault 
tolerance: RAID today, next: replicated services

• Thought to leave you with:
• What if you have to survive the failure of entire 

machine?  Of a rack of machines?  Of a datacenter?
48

48


