
Distributed Mutual Exclusion

Last time…

•

Synchronizing real, distributed clocks
•

Logical time and concurrency

•

Lamport

clocks and total-order Lamport
 clocks

Ivan Beschastnikh
 • Vector clocks

Ivan Beschastnikh
 • Happens-before relation

Goals of distributed mutual exclusion

•

Much like regular mutual exclusion
–

Safety: mutual exclusion

–

Liveness: progress
–

Fairness: bounded wait and in-order

•

Secondary goals:
–

reduce message traffic

–

minimize synchronization delay
•

i.e., switch quickly between waiting processes

By logical
time!

Distributed mutex

is different

•

Regular mutual exclusion solved using
shared state, e.g.
–

atomic test-and-set of a shared variable…

–

shared queue…

•

We solve distributed mutual exclusion with
message passing
–

Note: we assume the network is reliable but
asynchronous…but processes might fail!

Solution 1: A central mutex

server

•

To enter critical section:
–

send REQUEST to central server, wait for
permission

•

To leave:
–

send RELEASE to central server

Client 1 Server

Request

OK

Client 2

OK
Request

Release

Release

Waiting

Critical
Section

Critical
Section

Solution 1: A central mutex

server

•

Advantages:
–

Simple (we like simple!)

–

Only 3 messages required per entry/exit
•

Disadvantages:
–

Central point of failure

–

Central performance bottleneck
–

With an asynchronous network, impossible to
achieve in-order fairness

–

Must elect/select central server

Solution 2: A ring-based algorithm

•

Pass a token around a ring
–

Can enter critical section only if you hold the
token

•

Problems:
–

Not in-order

–

Long synchronization delay
•

Need to wait for up to N-1

messages, for N

 processors
–

Very unreliable

•

Any process failure breaks the ring

2’: A fair ring-based algorithm
•

Token contains the time t

of the earliest known

outstanding request
•

To enter critical section:
–

Stamp your request with the current time Tr

, wait for token
•

When you get token with time t

while waiting with

request from time Tr

, compare Tr

to t:
–

If Tr

= t: hold token, run critical section
–

If Tr

> t: pass token
–

If t

not set or Tr

< t: set token-time to Tr

, pass token, wait for
token

•

To leave critical section:
–

Set token-time to null (i.e., unset it), pass token

Node A Node B Node C Node D

T[null] T[null] T[null]
T[null]

Base case: null token circulates around the system

Node A Node B Node C Node D

T[]

1/2 Simple case: one request

T[]
T[]

T[]
=

Request @ time

Critical
Section

Node A Node B Node C Node D

T[]

2/2 Simple case: one request

T[]
T[]

T[]
=

Request @ time

T[null] T[null] T[null]
T[null]

Critical
Section

Node A Node B Node C Node D

T[]

1/2 Competing requests:

T[]

T[]
T[]

=

Request @ time Request @ time

<

<

Critical
Section

Node A Node B Node C Node D

T[] T[]

T[]
T[]

=

Request @ time

T[null] T[null]

Request @ time

<

T[]
T[]

T[] T[] =

2/2 Competing requests: <

Critical
Section

Critical
Section

Node A Node B Node C Node D

T[]

1/2 Competing requests:

T[]

T[]
T[]

Request @ time Request @ time

<

<

<
T[]

T[]

Critical
Section

=

Node A Node B Node C Node D

T[]

2/2 Competing requests:

T[]

T[]
T[]

Request @ time Request @ time

<

<

<
T[]

T[]

Critical
Section

T[null]
T[null]

Critical
Section

T[]
T[] T[]

T[]=

Solution 3: Ricart and Agrawala
dist. mutual exclusion alg

• Relies on Lamport totally ordered clocks, having
the following properties:

• For any events e, e’ such that e --> e’ (causality
ordering), T(e) < T(e’)

• For any distinct events e, e’, T(e) != T(e’)

General idea

• When want to enter critical section (C.S.) node i
sends time-stamped request to all other nodes.
These other nodes reply (eventually).

• When i receives n-1 replies, then can enter C.S.

• Trick: Node j having earlier request doesn’t reply to
i until after it has completed its C.S.

Node A Node B Node C

Ricart-Agrawala overview

Critical
Section

Request
Request

Response

Response

Notation
• Ni = {1, 2, ..., i-1, i+1, ..., n} (n is the number of processes)

• Message types

• (Request, i, T): Process i requests lock with timestamp T

• (Reply, j): Process j responds to some request for lock

• For each node i, maintain following values:

• Ti(): Function that returns value of local Lamport clock

• should_defer: Boolean Set when process i should defer replies to requests

• Tr: Time stamp of pending local request

• R: Subset of Ni. Set of processes from which have received reply

• D: Subset of Ni. Set of processes for which i has deferred the reply to their requests

• lock(), unlock(): A local mutex lock, to keep the two threads from interfering with each other

Design
• Process i consists of two threads. One servicing

the application, and one monitoring the network.

Application thread:
 Request() // Request global mutex
 Wait for Notification // Wait until notified by network thread
 Critical Section // Operate in exclusive mode
 Release() // Release mutex

Ivan Beschastnikh

Application functions
Request():
 lock() // Don’t want app/network fns to step on each other
 Tr = Ti() // Get time stamp
 R = {}
 D = {}
 should_defer = true
 Send (Request, i, Tr) to each j in Ni
 unlock()

Release():
 lock()
 should_defer = false
 Send (Reply, i) to each j in D
 unlock()

Network function
while true:
 m = Receive()
 lock()
 if m == (Request, j, T):
 if should_defer && Tr < T:
 D = D U {j} // Defer response to j
 else
 Send (Reply, i) to j
 else if m == (Reply, j):
 R = R U {j}
 if R == Ni
 Notify application
 unlock()

Node A Node B Node C

0/6 Ricart-Agrawala close-up

Request at
logical time 1

Request at
logical time 0

Node A Node B Node C

1/6 Ricart-Agrawala close-up

Req(1)
Req(1)

D={B}

Req_1
Req_0

Node A Node B Node C

2/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
D={B}

Req(0)

Req_1
Req_0

Node A Node B Node C

3/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply
R={A}, D={ }

Node A Node B Node C

4/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply

Reply
R={A}, D={ }

R={A}, D={B}

Node A Node B Node C

5/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply

Reply
R={A}, D={ }

R={A}, D={B}

Reply
R={A,B}, D={B}

Critical
Section

Node A Node B Node C

6/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply

Reply
R={A}, D={ }

R={A}, D={B}

Reply
R={A,B}, D={B}

Critical
Section

R={A,B}, D={ }

Ricart and Agrawala safety
• Suppose request T1 is earlier than T2.

• Consider how the process for T2 collects its reply
from process for T1

- T1 must have already been time-stamped when
request T2 was received, otherwise the Lamport
clock would have been advanced past time T2

- But then the process must have delayed reply to
T2 until after request T1 exited the critical section.
Therefore T2 will not conflict with T1.

Ricart and Agrawala overview

• Advantages:
- Fair
- Short synchronization delay

• Disadvantages
- Very unreliable
- 2(N-1) messages for each entry/exit

	Distributed Mutual Exclusion
	Last time…
	Goals of distributed mutual exclusion
	Distributed mutex is different
	Solution 1: A central mutex server
	Solution 1: A central mutex server
	Solution 2: A ring-based algorithm
	2’: A fair ring-based algorithm
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 4: Ricart and Agrawala
	Solution 4: Ricart and Agrawala
	Ricart and Agrawala safety
	Solution 4: Ricart and Agrawala
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5’: Dealing with deadlock
	Solution 6: Maekawa voting
	Solution 6: Maekawa voting

