
Container Orchestration 
(with Kubernetes)
Marketing

Peter Chen

1



About Me

● 2014-2016: grad student at UBC (Ivan was my supervisor)
● 2016-2019: Arista Networks
● 2019-Present: Google

2



Container Orchestration

● What are containers?

● What is container orchestration? What problem does it solve?

● How it relates to concepts you’ve learned in distributed systems?

3



Container Orchestration - Why we care?

● 2,429 companies use Kubernetes, a container orchestration system we will talk about, including 
(Google, Facebook, Shopify, …) to run their internal systems and to power their Cloud offerings 

○ https://stackshare.io/kubernetes

● Large open source community, as well as backed by big companies such as Docker and Google

● Gartner report adoption of containers grew 40% in 2020, by 2023, 70% of all organizations will be 
running containers in some form (in 2019 this was less than 20%)

○ Become the de-facto way to deploy, run and build services

4

https://stackshare.io/kubernetes


Reminder: Processes

Operating System

5



Reminder: Processes

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Applications run as the process 
abstraction

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Each process has its own memory space 
and therefore its own execution context

6



More Info: Processes

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

But there are other things these process 
share in the operating system:

● PID (process ids)
● MNT (file system)
● IPC (sockets)
● UTS (time?)
● NET (network e.g., IP tables)
● etc,...

7



Containers

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

8

Nice things about containers, they are:

● Lightweight: fast, very little overhead
● Isolation: executable package of 

software with its own code, runtime, 
tools, libraries and settings

● Portable: compiled into an “image” 
which can be deployed on other 
machines as a “container” instance



Containers

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

This is a bit different to what you are use to in VMs where the 
objective is virtualization of hardware resources instead of just 
isolation of all the aspects of execution.

9

Nice things about containers, they are:

● Lightweight: fast, very little overhead
● Isolation: executable package of 

software with its own code, runtime, 
tools, libraries and settings

● Portable: compiled into an “image” 
which can be deployed on other 
machines as a “container” instance



Containers

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Cost of containers: 5 MB for smallest image, arbitrary amount of CPU
Cost of VMs: (~2GB) for smallest OS, compute cost in increments of 1 CPU

10

Nice things about containers, they are:

● Lightweight: fast, very little overhead
● Isolation: executable package of 

software with its own code, runtime, 
tools, libraries and settings

● Portable: compiled into an “image” 
which can be deployed on other 
machines as a “container” instance



Containers

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

This is a bit different to what you are use to in VMs where the 
objective is virtualization of hardware resources instead of just 
isolation of all the aspects of execution.

11

Nice things about containers, they are:

● Lightweight: fast, very little overhead
● Isolation: executable package of 

software with its own code, runtime, 
tools, libraries and settings

● Portable: compiled into an image 



Container Orchestration

12

Recap:

● What is the relationship between an “image” and a 
“container”?

● What does running in a container isolate vs. say a 
VM?

● What are some of the benefits?



Container Orchestration

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

13



Kubernetes

14



Kubernetes - Architecture

● Abstractions: Pods, 
Services, Ingress, 
Deployments, Volumes…

● Add-ons: Istio, Knative...

● Network: Weave, Flannel…

● Control Plane: scheduler, 
api-server, 
controller-manager, etcd...

15



Kubernetes - Architecture

● Abstractions: Pods, 
Services, Ingress, 
Deployments, Volumes…

● Add-ons: Istio, Knative...

● Network: Weave, Flannel…

● Control Plane: scheduler, 
api-server, 
controller-manager, etcd...

Too many 
big words 
that have 
too little 
meaning

16



Kubernetes - Execution

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer

17



Kubernetes - Execution

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

18



Kubernetes - Execution

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

19

Pod



Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Kubernetes - Execution

20

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod



Kubernetes - Execution

● Fate sharing: e.g., processes in a 
pod live/die together (a webserver 
and its local SQL instance

21

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod



Kubernetes - Execution

● Fate sharing: e.g., processes in a 
pod live/die together (a webserver 
and its local SQL instance

● Fault tolerance and scalability: 
multiple pods can become replicas 
and execute on different nodes 
dynamically

22

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod



Kubernetes - Execution

● Fate sharing: e.g., processes in a 
pod live/die together (a webserver 
and its local SQL instance

● Fault tolerance and scalability: 
multiple pods can become replicas 
and execute on different nodes 
dynamically

● Multi-tenancy: multiple pods can 
run on a single node, provide 
scalability and efficient use of 
cluster-wide resources

23

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod



Kubernetes - Execution

● Fate sharing: e.g., processes in a 
pod live/die together (a webserver 
and its local SQL instance

● Fault tolerance and scalability: 
multiple pods can become replicas 
and execute on different nodes 
dynamically

● Multi-tenancy: multiple pods can 
run on a single node, provide 
scalability and efficient use of 
cluster-wide resources

24

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod

Question: For Cloud Providers, why is resource efficiency 
related to availability?



Kubernetes - Execution

25

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod

Do you manually 
create/delete pods? That 
would be a huge hassle.



Kubernetes - Execution

Pods are controlled usually via higher level 
abstractions (e.g., Deployment, Jobs)

Deployment 

● declares the number of pods and 
what to execute in them

● Maintains that number of pods 
forever

● To scale up, create another 
deployment with new number of 
pods, similarly to scale down

Jobs
● Pod that runs a single time until end 

of execution and then is deleted
● Timeout 26

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod

Do you manually 
create/delete pods? That 
would be a huge hassle.



Kubernetes - Execution

Answer: another layer of abstractions! 
Knative!

Knative is a Kubernetes Add-On
● Add-on is a fancy word for a bunch 

of kubernetes abstractions packaged 
together

● Auto-scales the number of pods 
according to traffic/demand

27

Operating System

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Computer Node

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

P
ro

ce
ss

 A

P
ro

ce
ss

 B

P
ro

ce
ss

 C
 

Pod

What if I don’t want to 
even do manual scaling?



Kubernetes - Execution

Node
Pod

Images

Deployment

Kubernetes Abstractions
28

Jobs
Application

Computers

Kubernetes 
Add-Ons

Knative

Physical 
Objects

Logical 
Objects



Kubernetes - Execution Recap

29

Recap:

● What is a pod?

● How many processes can run in a container?

● If you wanted multiple replicas of the same 
application, what would you do?

● If you had a web server and a database, how do 
you run them so that if a node fails, both the web 
server and database fail together? How would you 
run them if you wanted them to fail separately? 

● What is the difference between a Kubernetes 
Add-On and Kubernetes abstraction (they are 
actually called resources, but let’s call them 
abstractions for generality)?



Kubernetes - Execution Recap

30

Recap:

● Who are the users of Kubernetes?

● What do developers of Kubernetes develop?



Kubernetes - Networking Model
But nodes are physical servers, they don’t have to be in the 
same network address space in the data center.

31



Kubernetes - Networking Model

● All containers in a pod are in the 
same network (as if local)

● All pods are in a flat address space 
(same subdomain)

But nodes are physical servers, they don’t have to be in the 
same network address space in the data center.

32



Kubernetes - Networking Model

● All containers in a pod are in the 
same network (as if local)

● All pods are in a flat address space 
(same subdomain)

But nodes are physical servers, they don’t have to be in the 
same network address space in the data center.

Solution: overlay a logical network onto the physical network 
(e.g., Flannel, Weave, GCP, AWS, Azure, ….)

33



Kubernetes - Discovery

● All containers in a pod are in the 
same network (as if local)

● All pods are in a flat address space 
(same subdomain)

● Pods are dynamically allocated 
(initial position unknown) and can 
move around (e.g, replicas 
destroyed and re-created) 

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B
Node

P
ro

ce
ss

 C

Pod

P
ro

ce
ss

 D

P
ro

ce
ss

 E

Node

P
ro

ce
ss

 F

34



Kubernetes - Discovery

● All containers in a pod are in the 
same network (as if local)

● All pods are in a flat address space 
(same subdomain)

● Pods are dynamically allocated 
(initial position unknown) and can 
move around (e.g, replicas destroyed 
and re-created) 

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B
Node

P
ro

ce
ss

 C

Pod

P
ro

ce
ss

 D

P
ro

ce
ss

 E

Node

P
ro

ce
ss

 F

How do pods find each 
other inside of the flat 
address space we just 
created?

35



Kubernetes - Service

● All containers in a pod are in the 
same network (as if local)

● All pods are in a flat address space 
(same subdomain)

● Pods are dynamically allocated 
(initial position unknown) and can 
move around (e.g, replicas destroyed 
and re-created) 

● Service: discovery (e.g., DNS), also 
inter-pod load-balancing

Pod

P
ro

ce
ss

 A

P
ro

ce
ss

 B
Node

P
ro

ce
ss

 C

Pod

P
ro

ce
ss

 D

P
ro

ce
ss

 E

Node

P
ro

ce
ss

 F

S
ervice

How do pods find each 
other inside of the flat 
address space we just 
created?

36



Kubernetes - Service Mesh

S
ervice

Pod

Node

Pod

Node

S
ervice

Pod

Node

Pod

Node

Microservices have a lot 
of services...how do I 
manage them?

37



Istio

Kubernetes - Service Mesh

Answer: another layer of abstraction! 
Another add-on!

Istio: a service mesh manager

● Control: traffic splits (e.g., A/B 
testing)

● Policies: rate limiting between 
services

● AAA: authentication, authorization, 
etc.,

● Observability: tracing, metrics, logs

S
ervice

Pod

Node

Pod

Node

S
ervice

Pod

Node

Pod

Node

38

Microservices have a lot 
of services...how do I 
manage them?



Kubernetes - Network Abstractions

Service Istio

Kubernetes 
Add-ons

Kubernetes 
Abstractions

Physical 
Network

Logical 
Network

39

Physical 
Objects

Logical 
Objects



Kubernetes - Network Abstractions Recap

40

Recap:

● What is needed to get physical servers on different 
racks to look like they are in the same subdomain? 
Note: each rack is a different subdomain

● Why would you not just deploy a cluster on a single 
server rack?

● How do your pods find each other?



Kubernetes - Network Abstractions Recap

41

Recap:

● What is needed to get physical servers on different 
racks to look like they are in the same subdomain? 
Note: each rack is a different subdomain

● Why would you not just deploy a cluster on a single 
server rack?

● How do your pods find each other?

● What is the difference between Istio and a Service?



Kubernetes - Persistence
Ok but how do I store 
data persistently for the 
code I am running in a 
container in a pod? (e.g., 
pod get moved to another 
node, how do I keep the 
data I wrote to files on 
the previous node?

● pods are ephemeral but some states need to persist

42



Kubernetes - Persistence

● pods are ephemeral but some states need to persist
○ execution (pods) are stateless, consistency semantics 

(multi-reader, multi-writer) are provided by different backing stores 
and restrictions (e.g., only one pod may mount a GCP persistent 
disk at a time)

Ok but how do I store 
data persistently for the 
code I am running in a 
container in a pod? (e.g., 
pod get moved to another 
node, how do I keep the 
data I wrote to files on 
the previous node?

43



Kubernetes - Persistence

● pods are ephemeral but some states need to persist
○ execution (pods) are stateless, consistency semantics 

(multi-reader, multi-writer) are provided by different backing stores 
and restrictions (e.g., only one pod may mount a GCP persistent 
disk at a time)

● volumes: mount points of pod during runtime
○ ephemeral (e.g., use file system on the node)

■ Each pod has its own isolated disk space
○ Persistent Disks (e.g., GCP Persistent Disk, AWS Elastic Block 

Store, Azure Disk, etc,...)
■ Mountable by a single pod at a time

○ Many more 

● API calls to your favourite distributed data store (e.g., 
Spanner, S3, etc,...)

Ok but how do I store 
data persistently for the 
code I am running in a 
container in a pod? (e.g., 
pod get moved to another 
node, how do I keep the 
data I wrote to files on 
the previous node?

44



Kubernetes - Persistence Recap

45

Recap:

● I have an app that runs in a Kubernetes pod, and I 
want to store some user data. What are my 
options?

● What are the benefits of keeping “management” of 
persistent state out of Kubernetes execution?



Kubernetes - Execution + Network Abstractions = Dataplane

Node

Pod
Images

Deployment Knative

Service Istio

Kubernetes 
Add-ons

Kubernetes 
AbstractionsLogical Objects

Physical 
Network

Logical 
Network

PaaS IaaS User-Friendly IaaS

Volume

46

Jobs

Application

Computers

DIY Data 
Center

Physical Objects



Node

Pod
Images

Deployment Knative

Service Istio

Kubernetes 
Add-ons

Kubernetes 
AbstractionsLogical Objects

Physical 
Network

Logical 
Network

PaaS IaaS User-Friendly 
IaaS

Volume

47

Jobs

Application

Computers

DIY Data 
Center

Physical Objects

Extensibility: build your own 
infrastructure (e.g., 
cluster-level abstractions)

Kubernetes - Execution + Network Abstractions = Dataplane



Node

Pod
Images

Deployment Knative

Service Istio

Kubernetes 
Add-ons

Kubernetes 
AbstractionsLogical Objects

Physical 
Network

Logical 
Network

PaaS IaaS User-Friendly 
IaaS

Volume

48

Jobs

Application

Computers

DIY Data 
Center

Physical Objects

Extensibility: build your own 
infrastructure (e.g., 
cluster-level abstractions)

Managed Services: users 
only need to care about 
applications

Kubernetes - Execution + Network Abstractions = Dataplane



Node

Pod
Images

Deployment Knative

Service Istio

Kubernetes 
Add-ons

Kubernetes 
AbstractionsLogical Objects

Physical 
Network

Logical 
Network

PaaS IaaS User-Friendly 
IaaS

Volume

49

Jobs

Application

Computers

DIY Data 
Center

Physical Objects

Extensibility: build your own 
infrastructure (e.g., 
cluster-level abstractions)

Managed Services: users 
only need to care about 
applications

Kubernetes - Execution + Network Abstractions = Dataplane

Question: If you where an engineer developing a service, why would 
you use containers and Kubernetes to deploy your service, what 
value is it providing you and your organization?



Kubernetes - Management
How is all this controlled 
and managed?

50

Node

Pod
Images

Deployment Knative

Service Istio

Kubernetes 
Add-ons

Kubernetes 
AbstractionsLogical Objects

Physical 
Network

Logical 
Network

PaaS IaaS User-Friendly 
IaaS

Volume

Jobs

Application

Computers

DIY Data 
Center

Physical Objects



Kubernetes - Control Plane
API Server etcd Controller Manager Scheduler Kubelet Kubectl

How is all this controlled 
and managed?

51

Node

Pod
Images

Deployment Knative

Service Istio

Kubernetes 
Add-ons

Kubernetes 
AbstractionsLogical Objects

Physical 
Network

Logical 
Network

PaaS IaaS User-Friendly 
IaaS

Volume

Jobs

Application

Computers

DIY Data 
Center

Physical Objects



Kubernetes - Control Plane Controller Manager

Where does the logic for 
the Kubernetes 
abstractions and add-ons 
all live?

52

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Controller Manager

A controller is:

● A non-terminating code loop that anneals 
state from desired to current

○ Eventually consistent
● Steps:

○ Look at config
○ Make changes to the cluster (e.g., 

create/delete pods based on the 
number configured in Deployment)

○ Write result to status

Status

Controller

Config

53

Where does the logic for 
the Kubernetes 
abstractions and add-ons 
all live?

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Controller Manager

Option 1: deployed as part of Kubernetes 
control plane

● Compiled together to create controller manager
● Naturally fault-tolerant with the control plane with 

leader and standby controller managers

54

Status

Controller

Config

Where does the logic for 
the Kubernetes 
abstractions and add-ons 
all live?

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Controller Manager

Option 1: deployed as part of Kubernetes 
control plane

● Compiled together to create controller manager
● Naturally fault-tolerant with the control plane with 

leader and standby controller managers

Option 2: deployed as a pod (extensible)

● Developers self-manage leader election
● Keep only one replica that is managed by native 

Kubernetes applications (e.g., Deployment)

55

Status

Controller

Config

Where does the logic for 
the Kubernetes 
abstractions and add-ons 
all live?

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane API Server

Where do you send your 
config (e.g., make me a 
pod)?

56

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane API Server

Where do you send your 
config (e.g., make me a 
pod)?

57

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Declarative API
● Resources: Kubernetes abstractions 

such as pod, service, etc.,
● HTTP endpoints (e.g. 

apiextensions.k8s.io/v1)
● YAML



Kubernetes - Control Plane API Server

Where do you send your 
config (e.g., make me a 
pod)?

58

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Pass information through state 
● eventually consistent
● Config (YAML) declares intent to 

Controller
● Controller polls intent, takes action and 

query result of its actions from cluster
● Controller writes the result of its actions 

to status
● Intent and result are made fault-tolerant 

via state, exist past the lifetime of 
controllers (e.g., not message passing) 



Kubernetes - Control Plane API Server

Where do you send your 
config (e.g., make me a 
pod)?

59

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Pass information through state 
● eventually consistent
● Config (YAML) declares intent to 

Controller
● Controller react to intent, takes action 

and query result of its actions from cluster
● Controller writes the result of its actions 

to status
● Intent and result are made fault-tolerant 

via state, exist past the lifetime of 
controllers (e.g., not message passing) 

Question: why does controller query the 
state of cluster, instead of just update the 
status based on the actions it took?



Kubernetes - Control Plane API Server

Where do you send your 
config (e.g., make me a 
pod)?

60

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Pass information through state 
● eventually consistent
● Config (YAML) declares intent to 

Controller
● Controller react to intent, takes action 

and query result of its actions from cluster
● Controller writes the result of its actions 

to status
● Intent and result are made fault-tolerant 

via state, exist past the lifetime of 
controllers (e.g., not message passing) 

Question: what are the down-side of 
message passing? (e.g., send config to 
controller directly and getting status back)



Kubernetes - Control Plane State

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?

61

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane State

Etcd is a distributed key-value store for cluster 
states (e.g., API configs, metadata) 

62

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?



Kubernetes - Control Plane State

It does:

● state replication
○ leader writes to logs which are 

replicated to non-leader nodes

63

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?



Kubernetes - Control Plane State

It does:

● state replication
○ leader writes to logs which are 

replicated to non-leader nodes
● leader election 

○ based on Raft (a version of Paxos 
where there is a trusted leader)

64

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?



Kubernetes - Control Plane State

It does:

● state replication
○ leader writes to logs which are 

replicated to non-leader nodes
● leader election 

○ based on Raft (a version of Paxos 
where there is a trusted leader)

● distributed Locks
○ leader handles lease expiration

65

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?



Kubernetes - Control Plane State

It does:

● state replication
○ leader writes to logs which are replicated to 

non-leader nodes
● leader election 

○ based on Raft (a version of Paxos where there 
is a trusted leader)

● distributed Locks
○ leader handles lease expiration

● consistency
○ no transactions (not ACID), but have a 

“transaction abstraction” for 
compare-and-swap

○ linearizable read
○ Versioned writes with compaction

66

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?



Kubernetes - Control Plane State

Time to tie everything together.

Questions/Recap

● Why is etcd needed at all? (e.g., how does etcd, 
controllers and API server all fit together)

67

API Server etcd Controller Manager Scheduler Kubelet Kubectl

Where do I store the 
state (e.g., config and 
status) of a pod I 
declared?



Kubernetes - Control Plane Scheduler

How do I do resource 
control (e.g., map pods to 
nodes)?

68

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Scheduler

Scheduler calculates a score for which node to run 
a pod on based on the pod config which contains:

● affinity, anti-affinity
● resource requirements and availability
● soft tolerations and hard constraints (e.g., run 

only on nodes with label GPU)
● evictability

69

How do I do resource 
control (e.g., map pods to 
nodes)?

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Scheduler

Scheduler calculates a score for which node to run 
a pod on based on the pod config which contains:

● affinity, anti-affinity
● resource requirements and availability
● soft tolerations and hard constraints (e.g., run 

only on nodes with label GPU)
● evictability

Extremely extensible, can interpose at any of the 
points in the scoring system

70

How do I do resource 
control (e.g., map pods to 
nodes)?

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Kubelet/Kubectl

Kubelet

● Daemon running on the node that executes commands by the Kubernetes 
control plane (e.g., start/evict a pod on the node)

Kubectl

● Command-line interface for the Kubernetes cluster (talk to API server)
● What you use to interface with your Kubernetes Cluster

71

API Server etcd Controller Manager Scheduler Kubelet Kubectl



Kubernetes - Control Plane Data Model

Multi-Readers to etcd

● Reads can be linearizable (go to leader etcd node) or serializable (go to any of the 
replica nodes in etcd)

72



Kubernetes - Control Plane Data Model

Multi-Readers to etcd

● Reads can be linearizable (go to leader etcd node) or serializable (go to any of the 
replica nodes in etcd)

Multi-Writers to etcd

● [Option 1] don’t really care - everything is eventually consistent by observing the state of the cluster and then 
trying to get the cluster there

○ Coincident writes are merge/add/delete operation based on data type (single values vs. lists/maps) and 
last write wins

○ Transient inconsistencies are okay (e.g., 3 replicas, but might overshoot or undershoot temporarily)

○ Controllers fact-check with the actual world instead of state in etcd, 
what-you-see-is-eventually-what-you-get 

73



Kubernetes - Control Plane Data Model

Multi-Readers

● Reads can be linearizable (go to leader etcd node) or serializable (go to any of the replica nodes in etcd)

Multi-Writers

● [Option 1] don’t really care - everything is eventually consistent by observing the state of the cluster and then 
trying to get the cluster there

○ Coincident writes are merge/add/delete operation based on data type (single values vs. lists/maps) and 
last write wins

○ Transient inconsistencies are okay (e.g., 3 replicas, but might overshoot or undershoot temporarily)

○ Controllers fact-check with the actual world instead of state in etcd, 
what-you-see-is-eventually-what-you-get 

● [Option 2] use etcd in the control plane for serialization with distributed locks

74



Kubernetes - Integration

Load balancer (Internet), Security (IAM), Storage (Google Cloud Storage, 
Spanner, Google Container Registry), Events (Pub/Sub), Graph (Cloud 
Build, Google Dataflow), AI (Google Cloud AI)

How does what I have in 
Kubernetes connect with 
the wider internet/cloud 
ecosystem?

75



Kubernetes - Summary

Physical servers and network

Logical network (Flannel, Weave, bespoke cloud provider implementation)

Kubernetes APIs (e.g., pods, services, deployments, etc.,...)

Kubernetes API apps (e.g., controllers, 
sidecars, middleboxes)User Apps

Kubernetes Control Plane (scheduler, API server, controller-manager, etcd)

Kubernetes Add-ons (Istio, Knative)

76



Kubernetes - Architecture

● Abstractions: Pods, 
Services, Ingress, 
Deployments, Volumes…

● Add-ons: Istio, Knative...

● Network: Weave, Flannel…

● Control Plane: scheduler, 
api-server, 
controller-manager, etcd...

77



Kubernetes - Interesting Problems
Dependency

● Controllers are all eventually consistent and order agnostic (ideall), but some abstractions have dependencies as outcome of 
implementation

● Worse, administration of Kubernetes clusters are usually split (between user and cloud provider, neither can be sure what 
the other has installed)

Configuration

● Thousands of lines of YAML with relationship defined by string labels

Debuggability

● Logs are spread out over multiple nodes, something goes wrong, how do you find out what went wrong?
● Distributed system debugging

Efficiency

● Essentially you build applications (containers) that run in cluster wide applications (also defined/built by you) that run on 
Kubernetes framework (lightweight, but still a cost to it)

78


