Container Orchestration
(with Kubernetes)

Marketng

Peter Chen

About Me

e 2014-2016: grad student at UBC (lvan was my supervisor)
o 2016-2019: Arista Networks
e 2019-Present:. Google

Container Orchestration

e \What are containers?

e What is container orchestration? What problem does it solve?

e How it relates to concepts you've learned in distributed systems?

Container Orchestration - Why we care?

e 2,429 companies use Kubernetes, a container orchestration system we will talk about, including

(Google, Facebook, Shopify, ...) to run their internal systems and to power their Cloud offerings
o https://stackshare.io/kubernetes

e Large open source community, as well as backed by big companies such as Docker and Google

e Gartner report adoption of containers grew 40% in 2020, by 2023, 70% of all organizations will be

running containers in some form (in 2019 this was less than 20%)
o Become the de-facto way to deploy, run and build services

https://stackshare.io/kubernetes

Reminder: Processes

Operating System

Reminder: Processes

Process A

Process B

Process C

Operating System

Applications run as the process
abstraction

Each process has its own memory space
and therefore its own execution context

More Info: Processes

But there are other things these process
share in the operating system:

< 28] ©)

% % @ e PID (process ids)

S 9 S e MNT (file system)

o a o e |PC (sockets)
e UTS (time?)
e NET (network e.g., IP tables)
e efc,...

Operating System

Containers

Process A

Process B

Process C

<
2}
n
Q
&}
o
[
o

Process B

Operating System

Process C

Nice things about containers, they are:

e Lightweight: fast, very little overhead

e Isolation: executable package of
software with its own code, runtime,
tools, libraries and settings

e Portable: compiled into an “image”
which can be deployed on other
machines as a “container” instance

Containers

Nice things about containers, they are:

e Lightweight: fast, very little overhead

e Isolation: executable package of
software with its own code, runtime,
tools, libraries and settings

e Portable: compiled into an “image”
which can be deployed on other

Process A
Process B
Process C

<
()]
n
O]
]
@]
=
o

Process B
Process C

. machines as a “container”’ instance
Operating System

This is a bit different to what you are use to in VMs where the
objective is virtualization of hardware resources instead of just
isolation of all the aspects of execution.

Containers

Process A

Process B
Process C

<
()]
n
O]
]
@]
=
o

Process B

Operating System

Process C

Nice things about containers, they are:

e Lightweight: fast, very little overhead

e Isolation: executable package of
software with its own code, runtime,
tools, libraries and settings

e Portable: compiled into an “image”
which can be deployed on other
machines as a “container” instance

Cost of containers: 5 MB for smallest image, arbitrary amount of CPU
Cost of VMs: (~2GB) for smallest OS, compute cost in increments of 1 CPU

10

Containers

Process A
Process B
Process C

t containers, they are:

at: fast, very little overhead
axecutable package of

ith its own code, runtime,
ies and settings

sompiled into an image

Operating ¢

aocker

objective is Virtuallhu‘lvl. Wl Al MUY W W | VW WM WWW I1IIWLEWWAW Wi J“vt
isolation of all the aspects of execution.

11

Container Orchestration

Recap:

e What is the relationship between an “image” and a
“container™?

e \What does running in a container isolate vs. say a
VM?

e \What are some of the benefits?

12

Container Orchestration

Process A
Process B
Process C
Process A
Process B
Process C

Operating System

Kubernetes

kubernetes @

Kubernetes - Architecture

CtrlPlane-1,2...n l

Kl
controller kube

o

Cloud

Provider
Network Edge

B Container Runtime

md kubelet

System Services

...................

) s
Balancer
End Users

..................

Container Runtime i

E »> kubelet

System Services

Abstractions: Pods,
Services, Ingress,
Deployments, Volumes...

Add-ons: Istio, Knative...

Network: Weave, Flannel...

Control Plane: scheduler,
api-server,
controller-manager, etcd...

15

Kubernetes - Architecture

Too many
big words
that have
too little
meaning

Abstractions: Pods,
Services, Ingress,
Deployments, Volumes...

Add-ons: Istio, Knative...

Network: Weave, Flannel...

Control Plane: scheduler,
api-server,
controller-manager, etcd...

16

Kubernetes - Execution

Computer

Process A
Process B
Process C

Operating System

17

Kubernetes - Execution

Gomputer Node

Process A
Process B
Process C

Operating System

18

Kubernetes - Execution

Gomputer Node

Process A
Process B
Process C

Operating System

Pod

19

Kubernetes - Execution

Gomputer Node

Pod

Pod

7 $S920.d

g sse20.d

V SS820.1d

7 $S900.d

g SS820.d

V SS820.d

0 $S920.d

g sse20.d
V SS820.d

7 s$s800.d

g sse20.d

V $S820.1d

Operating System

20

Kubernetes - Execution

Gomputer Node

Pod Pod

Process A
Process B
Process C

<
N
N
Q
Q
o
o
o

Process A
Process B

<
0
)
O]
&}
o
o

Process C
Process B
Process C

Process B

Process C

Operating System

Fate sharing: e.g., processes in a
pod live/die together (a webserver
and its local SQL instance

21

Kubernetes - Execution

Gomputer Node

Pod Pod

Process A

Process B

Process C

Process A
Process B

<
0
%)
O]
&)
o
o

Process B
Process C

Process C

<
)
)
Q
&)
)
o
o

Process B

Process C

Operating System

Fate sharing: e.g., processes in a
pod live/die together (a webserver
and its local SQL instance

Fault tolerance and scalability:
multiple pods can become replicas
and execute on different nodes
dynamically

22

Kubernetes - Execution

Gomputer Node

Pod Pod

Process A

Process B

Process C

Process A
Process B

<
0
%)
O]
&)
O
—
o

Process B
Process C

Process C

<
)
)
Q
&)
)
o
o

Process B

Process C

Operating System

Fate sharing: e.g., processes in a
pod live/die together (a webserver
and its local SQL instance

Fault tolerance and scalability:
multiple pods can become replicas
and execute on different nodes
dynamically

Multi-tenancy: multiple pods can
run on a single node, provide
scalability and efficient use of
cluster-wide resources

23

Kubernetes - Execution

Gomputer Node

Question: For Cloud Providers, why is resource efficiency
related to availability?

Pod

Pod

Process A

Process B

Process C

<
0
%)
O]
&)
O
—
o

Process B
Process C
Process A
Process B

Process C

<
)
)
Q
&)
)
o
o

Process B

Process C

Operating System

Fate sharing: e.g., processes in a
pod live/die together (a webserver
and its local SQL instance

Fault tolerance and scalability:
multiple pods can become replicas
and execute on different nodes
dynamically

Multi-tenancy: multiple pods can
run on a single node, provide
scalability and efficient use of
cluster-wide resources

24

Kubernetes - Execution

Gomputer Node

Do you manually
create/delete pods? That
would be a huge hassle.

Pod Pod

Process A
Process B
Process C

<
N
N
Q
Q
o
o
o

Process A
Process B

<
2}
N
@
o
o
o

Process C
Process B
Process C

Process B
Process C

Operating System

25

Kubernetes - Execution

Gomputer Node
Pod Pod

<Ol O <Ol O
2llallallalalalllal g alalsls
O[O |OII|D|I| DO © (|l O | O|I| || O ©
Ol O[Ol ©Of] O] O O|| Of| O|fl O] O O
Oo||Of| oflloll oll © O||Of| Ofll Ol Ol O
S || &= | | S|P &= &< || — S || = | S &= ~ | —
ollal|lalllalicla Ao |alllallala

Operating System

Do you manually
create/delete pods? That
would be a huge hassle.

Pods are controlled usually via higher level
abstractions (e.g., Deployment, Jobs)

Deployment

e declares the number of pods and
what to execute in them

e Maintains that number of pods
forever

e To scale up, create another
deployment with new number of
pods, similarly to scale down

Jobs
e Pod that runs a single time until end
of execution and then is deleted
e Timeout 26

Kubernetes - Execution

Gomputer Node
Pod Pod

< |m | O||<||m@|O < |0} O
gl g lglalalla 2llalalals
VOO D|| O © QOO D O ©
O|| O|| O] ©]] O|| O O|l| O|| O] O] O|| O
ol|o|| o0 Sl ol © ollo||SIHel ol ©
O S S =1 =] = | = &= = =
oo ajfjalo)a oo ajfjaloa

Operating System

What if | don’t want to
even do manual scaling?

Answer: another layer of abstractions!
Knative!

Knative is a Kubernetes Add-On
e Add-on is a fancy word for a bunch
of kubernetes abstractions packaged
together
e Auto-scales the number of pods
according to traffic/demand

27

Kubernetes - Execution

Deployment -P Knative

Application — Images \
i i /E" Pod

Computers Node

Physical Logical Kubernetes
Objects o Objects ' Kubernetes Abstractions ' Add-Ons

__

Kubernetes - Execution Recap

Recap:

What is a pod?
How many processes can run in a container?

If you wanted multiple replicas of the same
application, what would you do?

If you had a web server and a database, how do
you run them so that if a node fails, both the web
server and database fail together? How would you
run them if you wanted them to fail separately?

What is the difference between a Kubernetes

Add-On and Kubernetes abstraction (they are

actually called resources, but let’s call them 29
abstractions for generality)?

Kubernetes - Execution Recap

Recap:
e \Who are the users of Kubernetes?

e \What do developers of Kubernetes develop?

30

Kubernetes - Networking Model

But nodes are physical servers, they don’t have to be in the
same network address space in the data center.

31

Kubernetes - Networking Model

But nodes are physical servers, they don’t have to be in the
same network address space in the data center. e All containers in a pod are in the
same network (as if local)

e All pods are in a flat address space
(same subdomain)

S) S S, S

I 1009612 | | 10098.1.3 | | 1008823 | | 1009825 | | 1009535 | | 1009837 | i

:l - " 0w
dockerd 100.95|.1.1,24 docxerd 100.95[2.1;24 dockerd 100.98].3.11’24 vaenay network: 100.96.0.0/16
flanel0 | 100.96.1.0/16 flannel0 | 100.96.2.0/16 flannel0 | 100.96.3.016 :
ethC |172.20.33.102119) eth0 | 172.20.54.98M19 J | eth0 [172,20.34.167119
< < <
Node 1 Node 2 Node 3
Host network: 172.20.32.018

Kubernetes - Networking Model

But nodes are physical servers, they don’t have to be in the
same network address space in the data center. °

Solution: overlay a logical network onto the physical network
(e.g., Flannel, Weave, GCP, AWS, Azure,) °

|
| |
I w

|

All containers in a pod are in the
same network (as if local)

All pods are in a flat address space
(same subdomain)

33

Kubernetes - Discovery

Node e All containers in a pod are in the
same network (as if local)
< m
% % e All pods are in a flat address space
Lé g (same subdomain)
o o
e Pods are dynamically allocated
(initial position unknown) and can
move around (e.g, replicas
Node destroyed and re-created)

Process D
Process E

Kubernetes - Discovery

Node

Process A

Process B

Node

Process D

Process E

How do pods find each
other inside of the flat
address space we just
created?

All containers in a pod are in the
same network (as if local)

All pods are in a flat address space
(same subdomain)

Pods are dynamically allocated
(initial position unknown) and can
move around (e.g, replicas destroyed
and re-created)

35

Kubernetes - Service

Node
< m
(7)) (7))
3 i
(&) (&)
o o
o o
Pod
Node

Process D

L
0
N
0]
O
(©)
o

o

How do pods find each
other inside of the flat
address space we just
created?

80INIBS

All containers in a pod are in the
same network (as if local)

All pods are in a flat address space
(same subdomain)

Pods are dynamically allocated
(initial position unknown) and can
move around (e.g, replicas destroyed
and re-created)

Service: discovery (e.g., DNS), also
inter-pod load-balancing

36

Kubernetes - Service Mesh

SINELS

Node
| Pod
Node
| Pod
Node
| Pod
Node

Pod

80IAI8S

Microservices have a lot
of services...how do |
manage them?

37

Kubernetes - Service Mesh

SINELS

ons|

Node

| Pod

Node

| Pod K
Node

| Pod /
Node

Pod

80IAI8S

Microservices have a lot
of services...how do |
manage them?

Answer: another layer of abstraction!
Another add-on!

Istio: a service mesh manager

Control: traffic splits (e.g., A/B
testing)

Policies: rate limiting between
services

AAA: authentication, authorization,
etc.,

Observability: tracing, metrics, logs

38

Kubernetes -

Physical

Network

Physical
Objects

Network Abstractions
Logical
Network

Logical Kubernetes
Objects || Abstractions

__

—-— Service — Istio

Kubernetes
Add-ons

39

Kubernetes - Network Abstractions Recap

Recap:

What is needed to get physical servers on different
racks to look like they are in the same subdomain?
Note: each rack is a different subdomain

Why would you not just deploy a cluster on a single
server rack?

How do your pods find each other?

40

Kubernetes - Network Abstractions Recap

Recap:

What is needed to get physical servers on different
racks to look like they are in the same subdomain?
Note: each rack is a different subdomain

Why would you not just deploy a cluster on a single
server rack?

How do your pods find each other?

What is the difference between Istio and a Service?

41

Kubernetes - Persistence

pods are ephemeral but some states need to persist

Ok but how do | store
data persistently for the
code | am running in a
container in a pod? (e.g.,
pod get moved to another
node, how do | keep the
data | wrote to files on
the previous node?

42

Kubernetes - Persistence

pods are ephemeral but some states need to persist

(@)

execution (pods) are stateless, consistency semantics
(multi-reader, multi-writer) are provided by different backing stores
and restrictions (e.g., only one pod may mount a GCP persistent
disk at a time)

Ok but how do | store
data persistently for the
code | am running in a
container in a pod? (e.g.,
pod get moved to another
node, how do | keep the
data | wrote to files on
the previous node?

43

Kubernetes - Persistence

pods are ephemeral but some states need to persist
o execution (pods) are stateless, consistency semantics
(multi-reader, multi-writer) are provided by different backing stores
and restrictions (e.g., only one pod may mount a GCP persistent
disk at a time)

volumes: mount points of pod during runtime
o ephemeral (e.g., use file system on the node)
m Each pod has its own isolated disk space
o Persistent Disks (e.g., GCP Persistent Disk, AWS Elastic Block
Store, Azure Disk, etc,...)
m Mountable by a single pod at a time
o Many more

API calls to your favourite distributed data store (e.qg.,
Spanner, S3, etc,...)

Ok but how do | store
data persistently for the
code | am running in a
container in a pod? (e.g.,
pod get moved to another
node, how do | keep the
data | wrote to files on
the previous node?

44

Kubernetes - Persistence Recap

Recap:

e | have an app that runs in a Kubernetes pod, and |
want to store some user data. What are my

options?

e \What are the benefits of keeping “management” of
persistent state out of Kubernetes execution?

45

Kubernetes - Execution + Network Abstractions = Dataplane

Jobs
Application —-'-> Images
¥ Deployment Knative
Computers » Node A
Service Istio
Physical »| Logical
Network ' Network :
: ¥ ¥ Kubernetes ' Kubernetes
. Physical Objects i Logical Objects Abstractions ' Add-ons
DIY Data PaaS laaS User-Friendly laaS

Center

Kubernetes - Execution + Network Abstractions = Dataplane

| i | Jobs |
| | Application = Images \ |
/ Pod Deployment Knative
i Computers —L-> Node A
X Service Istio
"'| Volume
Physical i . Logical :
! Network ¥ Network | :
x ¥ Kubernetes ' Kubernetes
| Physical Objects 1| Logical Objects Abstractions ' Add-ons
DIY Data PaaS laaS User-Friendly
Center laaS

Extensibility: build your own
infrastructure (e.qg.,
cluster-level abstractions)

Kubernetes - Execution + Network Abstractions = Dataplane

DIY Data
Center

' | Application =9 Images
i] > Pod
i Computers —L-> Node
| Volume
Physical I . Logical ¥
Network ' Network

Deployment

Service

Kubernetes
Abstractions

Knative

A

Istio

Kubernetes
Add-ons

User-Friendly
laaS

Managed Services: users
only need to care about
applications

Extensibility: build your own
infrastructure (e.g.,
cluster-level abstractions)

48

Kubernetes - Execution + Network Abstractions = Dataplane

__

E Application = Images

Knative

Managed Services: users
A only need to care about
applications

) Pod Deployment

! Computers ——'—> Node

. X X Service Istio
| Volume | Extensibility: build your own
Physical I . Logical infrastructure (e.g.,
; Network I Network | : cluster-level abstractions)
: ' ¥ Kubernetes ' Kubernetes
| Physical Objects 1| Logical Objects Abstractions ' Add-ons
DIY Data PaaS laaS User-Friendly
Center laaS

Question: If you where an engineer developing a service, why would
you use containers and Kubernetes to deploy your service, what

value is it providing you and your organization? 49

How is all this controlled

I?
Kubernetes - Management and managed
i ! } Jobs e
| | Application = Images \
. / Pod Deployment = Knative
E Computers —L'-> Node
. i —P> Service & Istio
| Volurpe
Physical i | Logical
: Network ¥ Network | ' :
' ¥ Kubernetes '\ Kubernetes
| Physical Objects !: Logical Objects ! Abstractions ' Add-ons
DIY Data PaaS laaS User-Friendly

Center laaS

How is all this controlled

I?
Kubernetes - Control Plane and managed
i ! } Jobs e
E Application —H-> Images § i
i ' > Pod Deployment = Knative
E Computers —+9» Node I
—P Service ¢~ Istio
"'| Volurhe
Physical | ! »| Logical I
: Network ¥ Network | ' :
' ¥ Kubernetes '\ Kubernetes
| Physical Objects !: Logical Objects ! Abstractions ' Add-ons
DIY Data PaaS laaS User-Friendly

Center laaS

Kubernetes - Control Plane Controller Manager

API Server

Where does the logic for
the Kubernetes
abstractions and add-ons
all live?

Scheduler

Kubelet

Kubectl

52

Kubernetes - Control Plane Controller Manager

API Server

etcd _ Scheduler Kubelet Kubectl

A controller is:

Config

e A non-terminating code loop that anneals
state from desired to current

Controller

Status

o Eventually consistent

e Steps:
ﬁ o Look at config

o Make changes to the cluster (e.g.,

Where does the logic for create/delete pods based on the
the Kubernetes number configured in Deployment)
abstractions and add-ons o Write result to status

all live?

53

Kubernetes - Control Plane Controller Manager

API Server

Config

Controller

Status

—

Where does the logic for
the Kubernetes
abstractions and add-ons
all live?

etcd _ Scheduler Kubelet Kubectl

Option 1: deployed as part of Kubernetes
control plane

e Compiled together to create controller manager
e Naturally fault-tolerant with the control plane with
leader and standby controller managers

54

Kubernetes - Control Plane Controller Manager

API Server

Config

Controller

Status

—

Where does the logic for
the Kubernetes
abstractions and add-ons
all live?

etcd _ Scheduler Kubelet Kubectl

Option 1: deployed as part of Kubernetes
control plane

e Compiled together to create controller manager
e Naturally fault-tolerant with the control plane with
leader and standby controller managers

Option 2: deployed as a pod (extensible)

e Developers self-manage leader election
e Keep only one replica that is managed by native
Kubernetes applications (e.g., Deployment)

55

Kubernetes - Control Plane API Server

etcd

Scheduler

Kubelet

Kubectl

View YAML

1 apiversion: "v1"

2 kind: "Pod"”
metadata:

: generateName: “"frontend-"

labels:
app: "guestbook™
tier: "frontend"

name: "frontend-2f79x"

namespace: "vctest”
ownerReferences:

pod)?

- apiversion: "apps/v1i"

kind: "ReplicaSet”
blockOwnerDeletion:
controller: true
name: "frontend"

containers:

true

16 uid: "39a67cad-c37d-11e9-9013-420816a8001ac”
' spec:

- name: "GET_HOSTS_FROM"

value: "dns"

image: "gcr.io/google_samples/gb-frontend:v3"
imagePullPolicy: "IfNotPresent™

name: "php-redis”
ports:
- containerPort: 80
protocol: “"TCP"
resources:
requests:
cou: "1@em"

Download YAML

Where do you send your
config (e.g., make me a

x

Close

56

Kubernetes - Control Plane API Server

etcd

Declarative API

Resources: Kubernetes abstractions
such as pod, service, etc.,

HTTP endpoints (e.g.
apiextensions.k8s.io/v1)

YAML

labels:
app: "guestbook™
tier: "frontend”

name: "frontend-2f79x"

namespace: "vctest”

ownerReferences:

- apiversion: "apps/v1i"
kind: "ReplicaSet"
blockOwnerDeletion: true
controller: true
name: "frontend"
uid: "39a67cad-c37d-11e9-9013-420816a8001ac”

spec:

containers:

- env:

- name: "GET_HOSTS_FROM"

Where do you send your
config (e.g., make me a
pod)?

value: "dns"
image: "gcr.io/google_samples/gb-frontend:v3"
imagePullPolicy: "IfNotPresent™
name: "php-redis”
ports:
- containerPort: 8@

protocol: “"TCP"
resources:

requests:

cou: "1@em"

Download YAML

Close

Scheduler Kubelet Kubectl
View YAML »
apiversion: "v1" =
2 kind: "Pod”
metadata:
generateName: “"frontend-"

57

Kubernetes - Control Plane API Server

etcd

Pass information through state

e eventually consistent

e Config (YAML) declares intent to
Controller

e Controller polls intent, takes action and
query result of its actions from cluster

e Controller writes the result of its actions
to status

e Intent and result are made fault-tolerant
via state, exist past the lifetime of
controllers (e.g., not message passing)

Scheduler Kubelet Kubectl

View YAML ®

apivi
kind
meta
ge
la

na
na
Oow!

spec
co

ersion: "v1"
: "Pod”
data:
nerateName:
bels:

app: "guestbook”

tier: "frontend”

me: "frontend-2f79x"
mespace: "vctest”
nerReferences:
apiVersion: “apps/v1i"
kind: "ReplicaSet"
blockOwnerDeletion: true
controller: true

name: "frontend"

uid: "39a67ca4-c37d-11e9-2813-42010a8601ac”

"frontend-"

Where do you send your
config (e.g., make me a
pod)?

ntainers:
env:
- name: "GET_HOSTS_FROM"

value: "dns"
image: "gcr.io/google_samples/gb-frontend:v3"
imagePullPolicy: "IfNotPresent™
name: "php-redis”
ports:
- containerPort: 80

protocol: “"TCP"
resources:

requests:

cou: "100m" Y,

Download YAML

58

Kubernetes - Control Plane API Server

etcd

Pass information through state

e eventually consistent

e Config (YAML) declares intent to
Controller

e Controller react to intent, takes action
and query result of its actions from cluster

e Controller writes the result of its actions
to status

e Intent and result are made fault-tolerant
via state, exist past the lifetime of
controllers (e.g., not message passing)

Question: why does controller query the
state of cluster, instead of just update the
status based on the actions it took?

Scheduler Kubelet Kubectl

View YAML ®

apiversion: "v1"

kind: "Pod"

metadata:
generateName:
labels:

"frontend-"

Where do you send your
config (e.g., make me a
pod)?

app: "guestbook™

tier: "frontend”
name: "frontend-2f79x"
namespace: "vctest”
ownerReferences:

- apiversion: "apps/v1"
kind: "ReplicaSet"
blockOwnerDeletion: true
controller: true
name: "frontend"
uid: "39a67cad-c37d-11e9-9013-420816a8001ac”

spec:
containers:
- env:
- name: "GET_HOSTS_FROM"
value: "dns"
image: "gcr.io/google_samples/gb-frontend:v3"
imagePullPolicy: "IfNotPresent™
name: "php-redis”
ports:
- containerPort: 80
protocol: “"TCP"
resources:
requests:
cou: "1eem” o

Close

Download YAML

59

Kubernetes - Control Plane API Server

etcd

Pass information through state

e eventually consistent

e Config (YAML) declares intent to
Controller

e Controller react to intent, takes action
and query result of its actions from cluster

e Controller writes the result of its actions
to status

e Intent and result are made fault-tolerant
via state, exist past the lifetime of
controllers (e.g., not message passing)

Question: what are the down-side of
message passing? (e.g., send config to
controller directly and getting status back)

Scheduler Kubelet Kubectl

View YAML ®

apiversion: "v1"

kind: "Pod"

metadata:
generateName:
labels:

"frontend-"

Where do you send your
config (e.g., make me a
pod)?

app: "guestbook™

tier: "frontend”
name: "frontend-2f79x"
namespace: "vctest”
ownerReferences:

- apiversion: "apps/v1"
kind: "ReplicaSet"
blockOwnerDeletion: true
controller: true
name: "frontend"
uid: "39a67cad-c37d-11e9-9013-420816a8001ac”

spec:
containers:
- env:
- name: "GET_HOSTS_FROM"
value: "dns"
image: "gcr.io/google_samples/gb-frontend:v3"
imagePullPolicy: "IfNotPresent™
name: "php-redis”
ports:
- containerPort: 80
protocol: “"TCP"
resources:
requests:
cou: "1eem” o

Close

Download YAML

60

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple etcd cluster: CYBERTEC

Where do | store the
state (e.g., config and
status) of a pod | / etcd 1

declared?

RAFT election RAFT election
& &

k/vd/ata replication k/v data rein
RAFT election :
- & S —
k/v data replication

etcd 2 etcd 3

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple eted cluster CYBERTEC Eted is a distributed key-value store for cluster
Where do | store the states (e.g., API configs, metadata)
state (e.g., config and
status) of a pod | sl
declared? /
RAFT ezl(ection RAFT e‘gl‘ection

k/vd/ata replication k/v data rein
RAFT election :
- & S —
k/v data replication

etcd 2 etcd 3

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple etcd cluster: CYBERTEC

LLLLLLLLLLLLLLLLLLLLL It does:
Where do | store the @ . .
state (e.g., config and e state replication
status) of a pod | / st O leader writes to logs which are
declared? replicated to non-leader nodes
RAFT election RAFT election
& &

k/vd/ata replication k/v data rein
RAFT election :
- & S —
k/v data replication

etcd 2 etcd 3

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple etcd cluster: QXLB;EBIGELQ It does:
Where do | store the . N
. e state replication
state (e.g., config and _ _
status) of a pod | axedln o leader writes to logs which are
declared? replicated to non-leader nodes
RAFT election RAFT election PY leader election
& &
k/v data replication k/v data replication o based on Raft (a VerS|On Of PaXOS
where there is a trusted leader)

RAFT election :
- & S —
k/v data replication

etcd 2 etcd 3

64

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple etcd cluster: CYBERTEC

LLLLLLLLLLLLLLLLLLLLL It does:

Where do | store the . N

. e state replication
state (e.g., config and _ _
status) of a pod | axedln o leader writes to logs which are
declared? replicated to non-leader nodes

RAFT election RAFT election PY leader election

& &
k/v data replication k/v data replication o based on Raft (a VerS|On Of PaXOS
where there is a trusted leader)

e distributed Locks

RAFT election :
s reslciten T @ o leader handles lease expiration

etcd 2 etcd 3

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple etcd cluster:

Where do | store the

state (e.g., config and

status) of a pod |

declared?

RAFT election

k/v data replication

<_

etcd 2

&

/N

RAFT election
&
k/v data replication

RAFT election

&

k/v data replication

-~

etcd 3

CYBERTEC

DATA SCIENCE & POSTGRESOL

It does:

state replication
o leader writes to logs which are replicated to
non-leader nodes
leader election
o based on Raft (a version of Paxos where there
is a trusted leader)
distributed Locks
o leader handles lease expiration
consistency
o no transactions (not ACID), but have a
“transaction abstraction” for
compare-and-swap
linearizable read

Versioned writes with compaction 66

Kubernetes - Control Plane State

I DT DR | cvecuer || kbl || e

simple etcd cluster: CYBERTEC

LLLLLLLLLLLLLLLLLLLLL Time to tie everything together.
Where do | store the Questions/Recap
state (e.g., config and
status) of a pod | eted e Why is etcd needed at all? (e.g., how does etcd,
declared? / controllers and API server all fit together)
RAFT ezl(ection RAFT e;ection

k/vd/ata replication k/v data rein
RAFT election :
- & S —
k/v data replication

etcd 2 etcd 3

Kubernetes - Control Plane Scheduler

Pod Scheduling Context

|:> Extensible API

..........

| Internal API

Pick a Pod from E Reserve a
scheduling 2 Node for the
queue § Pod in Cache

\

N

PreFilter
Score

Scheduling Cycle

10000

%

'._________
| WaitOnPermit
H

A8

PreBind
PostBind

Binding Cycle

>

Kubelet

Kubectl

4

How do | do resource
control (e.g., map pods to

nodes)?

68

Kubernetes - Control Plane Scheduler

3 5§ [N

Scheduler calculates a score for which node to run
a pod on based on the pod config which contains:

Pod Scheduling Context

|:> Extensible API

..........

| Internal API

Reserve a
Node for the
Pod in Cache

N

K Scheduling Cycle

Binding Cycle

PreBind
PostBind

4

How do | do resource
control (e.g., map pods to

nodes)?

affinity, anti-affinity
resource requirements and availability
soft tolerations and hard constraints (e.g., run

only on nodes with label GPU)
evictability

69

Kubernetes - Control Plane Scheduler

3 5§ [N

Scheduler calculates a score for which node to run

- Extensible API . . .
R ! el a7 a pod on based on the pod config which contains:
Pod Scheduling Context
i N N . e
Picka Pod rom — (_ e affinity, anti-affinity

scheduling N(ezzzf:r?he z:::odto)) .

- | BT Bh o e resource requirements and availability
([

soft tolerations and hard constraints (e.g., run
only on nodes with label GPU)
e evictability

® | PostBind

How do | do resource Extremely extensible, can interpose at any of the
control (e.g., map pods to points in the scoring system
nodes)?

Kubernetes - Control Plane Kubelet/Kubecitl

Kubelet

e Daemon running on the node that executes commands by the Kubernetes
control plane (e.g., start/evict a pod on the node)

Kubecitl

e Command-line interface for the Kubernetes cluster (talk to APl server)
e \What you use to interface with your Kubernetes Cluster

71

Kubernetes - Control Plane Data Model

Multi-Readers to etcd

e Reads can be linearizable (go to leader etcd node) or serializable (go to any of the
replica nodes in etcd)

72

Kubernetes - Control Plane Data Model

Multi-Readers to etcd

e Reads can be linearizable (go to leader etcd node) or serializable (go to any of the
replica nodes in etcd)

Multi-Writers to etcd

e [Option 1] don’t really care - everything is eventually consistent by observing the state of the cluster and then
trying to get the cluster there

o Coincident writes are merge/add/delete operation based on data type (single values vs. lists/maps) and
last write wins

o Transient inconsistencies are okay (e.g., 3 replicas, but might overshoot or undershoot temporarily)

o Controllers fact-check with the actual world instead of state in etcd,
what-you-see-is-eventually-what-you-get

73

Kubernetes - Control Plane Data Model

Multi-Readers
e Reads can be linearizable (go to leader etcd node) or serializable (go to any of the replica nodes in etcd)
Multi-Writers

e [Option 1] don’t really care - everything is eventually consistent by observing the state of the cluster and then
trying to get the cluster there

o Coincident writes are merge/add/delete operation based on data type (single values vs. lists/maps) and
last write wins

o Transient inconsistencies are okay (e.g., 3 replicas, but might overshoot or undershoot temporarily)

o Controllers fact-check with the actual world instead of state in etcd,
what-you-see-is-eventually-what-you-get

e [Option 2] use etcd in the control plane for serialization with distributed locks

74

Kubernetes - Integration

How does what | have in

Kubernetes connect with

. the wider internet/cloud
+ ecosystem?

oD ¢
&y |

ISR
= seee I

Load balancer (Internet), Security (IAM), Storage (Google Cloud Storage,
Spanner, Google Container Registry), Events (Pub/Sub), Graph (Cloud

Build, Google Dataflow), Al (Google Cloud Al) 75

Kubernetes - Summary

Kubernetes API apps (e.g., controllers,
sidecars, middleboxes)

Kubernetes APIs (e.g., pods, services, deployments, etc.,...)

Kubernetes Add-ons (Istio, Knative)

Kubernetes Control Plane (scheduler, API server, controller-manager, etcd)

Logical network (Flannel, Weave, bespoke cloud provider implementation)

Physical servers and network

76

Kubernetes - Architecture

CtrlPlane-1,2...n l

Kl
controller kube

o

Cloud

Provider
Network Edge

B Container Runtime

md kubelet

System Services

...................

) s
Balancer
End Users

..................

Container Runtime i

E »> kubelet

System Services

Abstractions: Pods,
Services, Ingress,
Deployments, Volumes...

Add-ons: Istio, Knative...

Network: Weave, Flannel...

Control Plane: scheduler,
api-server,
controller-manager, etcd...

77

Kubernetes - Interesting Problems

Dependency

e Controllers are all eventually consistent and order agnostic (ideall), but some abstractions have dependencies as outcome of

implementation
e Worse, administration of Kubernetes clusters are usually split (between user and cloud provider, neither can be sure what

the other has installed)
Configuration
e Thousands of lines of YAML with relationship defined by string labels
Debuggability

e Logs are spread out over multiple nodes, something goes wrong, how do you find out what went wrong?
e Distributed system debugging

Efficiency

e Essentially you build applications (containers) that run in cluster wide applications (also defined/built by you) that run on
Kubernetes framework (lightweight, but still a cost to it)

78

