
Integrating SMT with Theorem Proving for
Analog/Mixed-Signal Circuit Verification?

Yan Peng and Mark Greenstreet

University of British Columbia
Vancouver, British Columbia, Canada
{yanpeng,mrg}@cs.ubc.ca

Abstract. We present our integration of the Z3 SMT solver into the ACL2 the-
orem prover and its application to formal verification of analog-mixed signal cir-
cuits by proving global convergence for a state-of-the-art digital phase-locked
loop (PLL). SMT (satisfiability modulo theory) solvers eliminate much of the
tedium associated with detailed proofs by providing automatic reasoning about
propositional formulas including equalities and inequalities of polynomial func-
tions. A theorem prover complements the SMT solver by providing a proof struc-
turing and proof by induction. We use this combined tool to show global con-
vergence (i.e. correct start-up and mode-switching) of a digital PLL. The PLL is
an example of a second-order hybrid control system; its verification demonstrates
how these methods can address challenges that arise when verifying such designs.

1 Introduction

We present our integration of the Z3 SMT solver [1] into the ACL2 theorem prover [2].
With this approach, high-level proof structure and proof techniques such as induction
can be handled by the theorem prover while many tedious details for verifying real-
world designs discharged by the SMT solver. The implementation presented in this
paper supports booleans, integers, and rationals/reals, and our approach could be readily
extended to other types including arrays, lists, strings, and more general algebraic data
types. For soundness, we want to rely on ACL2, Z3, and as little other code as possible.
We also want Z3 to be easily used from within ACL2; thus, our interface performs
many, automatic transformations of ACL2 formulas to convert them into the restricted
form required by Z3. We resolve these seemingly conflicting objectives with a software
architecture that divides the ACL2-to-Z3 translation process into two phases: most of
the transformations are performed in the first phase, and the result is verified by ACL2.
The second phase is a very simple direct translation from the s-expressions of ACL2
into their counterparts for Z3’s Python API.

We demonstrate our approach by using it to verify global convergence for an all-
digital phase-locked loop (PLL). The PLL is an example of an analog-mixed signal
(AMS) design. The AMS approach has emerged as the dominant paradigm for imple-
menting analog operations where digital circuits replace many analog functions and
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provide adaptation functions to compensate for variations in process, device, and op-
erating conditions. AMS designs play an important role in nearly every computing,
communication, and cyber-physical systems. These designs pose serious simulation
challenges because they involve an extremely wide range of time-scales from sub-
picosecond (e.g. for oscillator jitter) to milliseconds or longer for software controlled
adaptation loops or interactions with mechanical sensors and systems. Formal methods
can verify properties that are intractable or impossible to show with simulation. We
consider global convergence: showing that an AMS circuit converges to the intended
operating mode from all initial conditions. This requires modeling the large-scale, non-
linear behavior of the analog components. If such non-linearities create an unintended
basin of attraction, then the AMS circuit may fail to converge to the intended operating
point. AMS circuits may make many mode changes per second to minimize power con-
sumption, adapt to changing loads, or changes in operating conditions. Each of these
mode changes requires the AMS circuit to converge to a new operating region. Once
the AMS circuit is in the small operating region intended by the designer, small-signal
analysis based on linear-systems theory is sufficient to show correct operation [3, 4].

The key contributions of this paper are:

– A demonstration that the arithmetic decision procedures of an SMT solver can be
exploited effectively when verifying properties of physical systems with continuous
models.

– A description of the challenges that arise when using a SMT solver with a theorem
prover and present our solutions to these issues.

– the first integration of an SMT solver into the ACL2 theorem prover.
– A model for a state-of-the art digital PLL with recurrences using rational functions

that can be used for evaluating other verification approaches.
– A proof of global convergence of the digital PLL.

2 Related Work

There has been extensive work in the past decade on integrating SAT and SMT solvers
into theorem provers including [5–11]. Many of these papers have followed Harrison
and Théry’s “skeptical” approach and focused on methods for verifying SMT results
within the theorem prover using proof reconstruction, certificates, and similar methods.
Several of the papers showed how their methods could be used for the verification of
concurrent algorithms such as clock synchronization [6], and the Bakery and Memoir
algorithms [9]. While [6] used the CVC-Lite [12] SMT solver to verify properties of
simple quadratic inequalites, the use of SMT in theorem provers has generally made
light use of the arithmetic capability of such solvers. In fact [10] reported better re-
sults for SMT for several sets of benchmarks when the arithmetic theory solvers were
disabled!

The work that may be the most similar to ours is [11] that presents a translation of
Event-B sequents from Rodin [13] to the SMT-LIB format [14]. Like our work, [11]
verifies a claim by using a SMT solver to show that its negation is unsatisfiable. They
address issues of types and functions. They perform extensive rewriting using Event-B
sequents, and then have simple translations of the rewritten form into SMT-LIB. While



noting that proof reconstruction is possible in principle, they do not appear to implement
such measures. The main focus of [11] is supporting the set-theoretic constructs of
Event-B. In contrast, our work shows how the procedures for non-linear arithmetic of a
modern SMT solver can be used when reasoning about VLSI circuits.

Our work demonstrates the value of theorem proving combined with SMT solvers
for verifying properties that are characterized by functions on real numbers and vector
fields. Accordingly, the linear- and non-linear arithmetic theory solvers have a central
role. As our concern is bringing these techniques to new problem domains, we deliber-
ately take a pragmatic approach to integration and trust both the theorem prover and the
SMT solver.

Prior work on using theorem proving methods to reason about dynamical systems
includes [15] which uses the Isabelle theorem prover to verify bounds on solutions
to simple ODEs from a single initial condition. In contrast, we verify properties that
hold from all initial conditions. Harutunian [16] presented a very general framework
for reasoning about hybrid systems using ACL2 and demonstrated the approach with
some very simple examples. Here we demonstrate that by discharging arithmetic proof
obligations using a SMT solver, it is practical to reason about much realistic designs.

The past decade has also seen a rapidly growing interest in applying formal meth-
ods to analog and mixed-signal designs. Much of this work goes back to early model-
checking results by Kurshan and MacMillan [17]. Other early work includes [18–21].
To verify phase-locked loops, Dong et al. [22] proposed using property checking for
AMS verification, including PLLs. Shortly after the work by Dong et al., Jesser and
Hedrich [23] described a model-checking result for a simple analog PLL. Althoff et
al. [24] presented the verification of a charge-pump PLL using an approach that they
refer to as “continuization.” They use a purely linear model for the components of their
PLL, and their focus is on the switching activities of the phase-frequency detector, in
particular, uncertainties in switching delays.

More recently, Lin et al. [25, 26] developed an approach for verifying a digital PLL
using SMT techniques. To the best of our knowledge, they are the first to claim formal
verification of a digital PLL. They consider a purely linear, analog model and then rea-
son about the discrepancies between this idealized model and a digital implementation.
They use the KRR SMT solver to verify bounds on this discrepancy. They verify bounds
on the lock time of a digitally intensive PLL assuming that most of the digital variables
are initialized to fixed values, and that only the oscillator phase is unknown. Our work
shows initialization for a different PLL design over the complete state space.

Using the SpaceEx [27] reachability tool, Wei et al. [28] presented a verification of
the same digital PLL as described in this paper. That work made a over-approximation
of the reachable space by over-approximating the recurrences of the digital PLL with
linear, differential inclusions. As SpaceEx could not verify convergence property for
the entire space in a single run, [28] broke the problem into a collection of lemmas that
were composed manually. Their work demonstrated the need for some kind of theorem-
proving tool to compose results. Furthermore, they could not show the limit cycles that
our proof does; therefore their proof does not provide as tight of bounds on PLL jitter
and other properties as can be obtained with our techniques.



3 Integrating Z3 into ACL2

Theorem provers and SMT solvers provide complementary reasoning capabilities. The
main challenge is connecting the two with an interface that is both useful and trust-
worthy. We achieve these goals by using a two-step translation process. The first step
translates the user-provided goal into a minimal subset of operations that all have direct
counterparts in the logic of the SMT solver. The second step performs a direct trans-
lation of this expanded and simplified version of the goal into the syntax and logic of
the SMT solver. The SMT solver then proves the goal, provides a counter-example, or
reports that it could not decide. A key feature of this architecture is that most of the
complexity of the translation process is in the first step. The first step translates a goal
in the theorem prover logic to an equivalent or stronger goal, still in the theorem prover
logic. We use the theorem prover to verify this implication for each translated goal.
Thus, the first step does not introduce any soundness assumptions beyond our existing
faith in the theorem prover. The second step provides the translation between the the-
orem prover and SMT solver. This is trusted code, and our design allows it to be very
simple and easily reviewed by other humans.

This section describes our solution to integrating Z3 into ACL2 in more detail.
We describe the issues that arose to ensure the soundness of our implementation and
features that we’ve included to make the combination easy to use. First, Section 3.1
gives a very brief description of the key features of ACL2 and Z3 used in our design.

3.1 ACL2 and Z3

ACL2 [2] is a theorem prover for programs written in a comprehensive, applicative
subset of Common Lisp. ACL2 provides a very general notion of induction based on
recursive function definition in lisp: every recursive function defines a corresponding in-
duction schema. This is ideal for our application where we are using a theorem prover
to compensate for the lack of induction capabilities in SMT solvers. While ACL2 sup-
ports many other methods for proving goals in its “waterfall”, our approach is to allow
ACL2 to automate a proof where it can, and use an integrated SMT solver to discharge
tedious obligations, especially those involving systems of non-linear inequalities that
frequently arise when reasoning about AMS circuits or other physical systems. ACL2
supports the integration of external decision procedures through its clause processor
mechanism described below.

ACL2 represents a proof goal as a conjunction of clauses, where each clause is a
disjunction of terms. The terms can be arbitrary s-expressions. ACL2 supports the in-
clusion of user-defined “clause processors”. A clause processor takes an ACL2 clause
(i.e. proposition) as an argument and returns a list of clauses with the interpretation that
the conjunction of the result clauses implies the original clause. In particular, if the re-
sult list is empty, then the clause processor is asserting that the original clause is true
for all valuations of any free variables. ACL2 supports two types of clause processors:
verified and trusted. A verified clause processor is written in the ACL2 subset of Com-
mon Lisp and proven correct by ACL2. A trusted clause processor does not require a
correctness proof; instead, all theorems are tagged to identify the trusted processors that
they may depend on. The soundness of the trusted clause processor becomes, in effect,
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Fig. 1. The Clause Processor

a hypothesis of any theorem that uses the clause processor. We connected the Z3 SMT
solver to ACL2 by writing a trusted clause processor.

Z3 [1] is a SMT solver developed at Microsoft Research that has been used in many
software verification tools. Z3 combines procedures for boolean combinations of linear
equalities and inequalities over linear, polynomial, and rational functions along with
and operations on arrays and algebraic data types within the framework of a CDCL
satisfiability solver [29]. We make incidental use of some of the other capabilities of
Z3 such as lists to simplify the implementation of our interface. Formulas for Z3 can
be written using the SMTLIB format [14], an Ocaml API, or a Python API (z3py). We
used z3py for the ease of prototyping in Python.

3.2 The Clause Processor

Figure 1 shows the architecture of our clause processor. The critical part of this design
for soundness is the second translation step. This step supports a very small subset of
the ACL2 logic consisting of nineteen functions:

– five arithmetic functions – binary plus, minus, and times; and unary
negation, and reciprocal.

– five comparison functions – equal, <, ≤, ≥, and >.
– three more logical operations – if, not, and implies.
– three functions for declaring the types of Z3 variables – booleanp, integerp,

and rationalp.
– three functions to support other ACL2 constructions – array, lambda, and nth.

This translation step is implemented using 220 lines of lisp code (translate step 2 in
the figure), and 130 lines of python (class acl2SMT in the figure). The lisp code is
driven by an association list to map lisp functions to their python counterparts. The
python code defines an object whose methods call the appropriate Z3 functions. As
classes implementing the same interface could be defined for other SMT solvers, our
architecture is largely solver agnostic. The code is straightforward and easily inspected.



In principle, a user could transform a more general ACL2 clause into one that uses
the minimal set of operators described above by guiding ACL2’s rewriting process. The
tedious effort of doing so would largely nullify the advantages promised by using an
external decision procedure. To make the SMT solver of practical use, the first step of
the translation process converts a richer subset of the ACL2 logic into the minimal form
accepted by the final translation. As described below, the user can provide hints that
produce a translated clause that is stronger than the original clause. Further strength-
ening of the clause can occur because of the way we handle the connection between
ACL2’s use of rational numbers and the use of real numbers in the logic of Z3.

Once the clause has been translated into the logic of the SMT solver, we ask the
SMT solver to prove it by showing that the negation of the clause is unsatisfiable. If the
expanded clause is proven to be a theorem by the SMT solver, then the clause processor
returns (implies expanded original) to ACL2. In other words, the original
clause is a theorem if ACL2 can show that the expanded clause implies the original.
The soundness of the connection to the SMT solver does not depend on the first step of
the translation. If the SMT solver finds a satisfying assignment to the negated clause,
the original claim might not be a theorem. Presently, we report the failure, but do not
provide any proposed counter-example to ACL2.

Given this framework, the remainder of this section describes the logical issues that
arose when integrating Z3 into ACL2 and presents our solutions.

3.3 Connecting the logics

The logic of ACL2 is much more expressive than that of SMT solvers such as Z3. In
particular,

– ACL2 is untyped, but Z3 requires a declared sort (i.e. type) for each variable.
– ACL2 supports rational numbers, but Z3 uses reals.
– Users of ACL2 usually make extensive use of user-defined, recursive functions. Z3

only provides uninterpreted functions.
– The antecedent of an ACL2 clause may imply other facts that can be proven by

ACL2 and are needed by the SMT solver but that cannot be derived by the SMT
solver.

– Substitutions: a clause may include (in)equalities over terms that are neither poly-
nomials nor rational functions and thus outside the domain of Z3’s non-linear
solver.

– Hints: our clause processor may return clauses for ancillary conditions that ACL2
cannot discharge without further guidance.

We show in the remainder of this section how each of these issues are naturally ad-
dressed within the clause processor architecture described above.
Typed vs. untyped logics: ACL2 is untyped and all functions are total. However, ACL2
does provide type predicates, and it is common to write theorems of the form:

(thm (implies (and (and type−assertion1 type−assertion2 . . .)
(and other-hypotheses))

conclusion))



where type-assertions are of the form (rationalp x), (integerp n), etc. We
simply require that theorems be stated with this structure. Our clause processor checks
for this structure, identifies the type assertions, and generates the corresponding vari-
able declarations for the SMT solver. This is done in the second translation step, and
soundness requires exact correspondence between the ACL2 and Z3 types. This is the
case for booleans and integers (e.g. ACL2 and Z3 have the same definition of integer
additions, etc.). However, it raises an issue for ACL2 rationals vs. Z3 reals which we
discuss next.
Real numbers and rationals: Our translator represents variables that are restricted to
rational number values in ACL2 to ones that are real valued in Z3. We need to ensure
that results from Z3 are sound in ACL2. For example, in ACL2 can prove that there is
no (rational) number x such that x2 = 2. On the other hand, Z3 can prove that there is a
(real) number x such that x2 = 2. To preserve soundness, we restrict the use of the SMT
solver to discharging clauses where all variables are universally quantified, noting that

∀x ∈ R. p(x) ⇒ ∀x ∈Q. p(x)

because Q⊂ R. In practice, this is not a serious restriction.
Another consequence of this difference in representation is that Z3 may produce a

counter-example where some variables are assigned irrational (in particular, algebraic)
values. As illustrated by the x2 = 2 example above, such a counter-example is not valid
in ACL2. When Z3 produces a model for a formula, each value can be identified as be-
ing integer, rational, or algebraic. Thus, we could check if a counter-example generated
by Z3 could be used in ACL2. We have not needed existential witnesses, and restricting
the SMT solver as described above has been completely satisfactory.

An alternative would be to use ACL2r [30]. We have used our clause processor with
both ACL2 and ACL2r, and the same proof of convergence for the digital PLL works
in both systems. Presently, ACL2r is not fully upward compatible with ACL2, and we
chose to start with ACL2 because of its more comprehensive environment for proof
development.

Another difference between ACL2 and Z3 for numerical problems is division by
zero. While ACL2 and Z3 require all operations to be total, ACL2 defines (/ x 0)
to be 0 for all x; where as Z3 considers the quotient to be an unspecified number. Our
solution is implement reciprocal in the acl2SMT module to match the ACL2 definition:

def reciprocal(self, x): self.ifx(x == 0.0, 0.0, 1.0/x)

Functions. ACL2 users naturally use the expressiveness of lisp to write concise theorem
statements. This includes user-defined and library functions. While Z3 and other SMT
solvers support uninterpreted functions, this is almost always too imprecise to prove real
theorems. Many functions that appear in proofs are non-recursive; in other words, they
are macros. These are easily eliminated by expanding the function. Of course, clauses
can also include recursive functions.

Our clause processor accepts a user-provided “hint” called :functions that says
what functions should be expanded, to what depth they should be expanded, and the
type of the value produced by the function. These hints are used in the first transla-
tion step to expand function calls to the specified depth. Any deeper calls are replaced
by an unconstrained variable of the specified return type. These transformations are



performed in the first translation step; therefore, ACL2 verifies the soundness of this
transformation.

The expansion of function calls replaces (f actual1 actual2 . . .) with
( (lambda (newVar1, newVar2, newVar3) rewritten-body-of-f)

(actual1 actual2 . . .))

where the body of f is rewritten by replacing formal parameters with the fresh variables
(i.e. names that don’t otherwise appear in the clause) and recursively expanding any
function calls in the body. The second step translates this into the corresponding Python
lambda expression. The acl2SMT object provides a method that creates names for the
SMT solver for fresh variables.

This mechanism for supporting functions is also used to support let operations in
the user-provided clause – in fact, the ACL2 macro expansion turns them into the form
described above without any assistance from our clause processor.

Adding Hypotheses: The hypotheses of a clause may imply other facts that are not
derivable by the SMT solver but that can be readily shown within the theorem prover.
These include previously established theorems and claims that have straightforward
induction proofs. The SMT solver may need these additional facts to prove a clause.

Our clause processor accepts a user-provided hint called :hypothesize to add
additional hypotheses to the clause. The hypotheses are added in the first translation
step; therefore, ACL2 verifies the soundness of this transformation.

Non-polynomials: the non-linear arithmetic procedures in Z3 only support polynomials
and rational functions. For example, our reasoning about the digital PLL uses the Com-
mon Lisp function (expt r n) which computes rn for integer n. Our clause proces-
sor accepts a user-provided hint called :let to replace all occurrences of given subex-
pression with a new unconstrained variable of the user specified type. Our clause pro-
cessor then adds a proof obligation (to be returned to ACL2) that the type of the subex-
pression always matches the user specified type. These substitutions are performed in
the first translation step; therefore, ACL2 verifies the soundness of this transformation.
Typically, the user will also use :hypothesize hints to state constraints that must
hold for the value of this new variable. For example, we might include the hint

:hypothesize (equal (expt x (+ n 2)) (* x x (expt x n)))

As noted above, the soundness of these added hypotheses are verified by ACL2.

Nested Hints: as described above, our clause processor returns a new clause to check
the soundness of the translation and any user-provided assertions. In practice, this
means that Z3 establishes the truth of a complicated system of equalities and inequal-
ities, and ACL2 is required to discharge a handful of much simpler conditions. Oc-
casionally, these returned clauses can be non-trivial, and our clause processor accepts
a user-provided hint called :use that allows the user to attach hints to the clauses
returned to ACL2. A common form of this is to prove a lemma within ACL2 that cor-
responds to a :hypothesize hint. The user may then employ a :use hint to tell
ACL2 how to instantiate the lemma to discharge the added hypothesis. Proof hints in
ACL2 do not change the meaning of the formula that ACL2 is attempting to prove; they
only guide the theorem prover to use proof methods that the user believes will succeed.
Thus, these hints do not affect the soundness of our implementation.



3.4 Soundness of the connection

The previous section described the main issues that arose when integrating an SMT
solver into the ACL2 theorem prover. The two-step translation process allows the more
complicated transformations to be performed in the first step, and the result is veri-
fied by ACL2. The second step is very simple, and that is the only part that is trusted
for soundness. This section summarizes how a clause is discharged using our clause
processor by showing the logical transformations that are performed at each step.

Originally, the clause processor is asked to prove

(antecedent∧ typePredicates) → claim (1)

Let Goal denote this proposition. Furthermore, the user may provide the clause proces-
sor with various hints about function expansion, subexpression substitution, additional
hypotheses, and hints to give back to ACL2. The first translation step of the clause pro-
cessor rewrites antecedent to antecedent′ and claim to claim′. It also introduces new
hypotheses, both from :hypothesize hints and the type assumptions for functions
and :let hints. Let moreHyps denote these added hypotheses. The SMT solver at-
tempts to prove:

(antecedent′∧ typePredicates∧moreHyps) → claim′ (2)

Let Goal′ denote this “expanded” proposition. If the SMT solver proves Goal′, then the
clause processor returns the following clauses to ACL2:

Goal′ → Goal
(antecedent∧ typePredicates)→ moreHyps (3)

Where the last line is one clause for each added hypothesis in the actual implementation.
The original claim (Eq. 1) is an immediate consequence of the clause established by the
SMT solver (Eq. 2) and the clauses subsequently discharged by ACL2 (Eq. 3).

4 Verifying a Digital PLL

Figure 2 shows the digital phase-locked-loop (PLL) verified in this paper; it is a sim-
plified version of the design presented in [31]. The purpose of this PLL is to adjust the
digitally-controlled oscillator (DCO) so that its output, ΦDCO has a frequency that is
N times that of the reference input, Φref and so that their phase match (i.e. each rising
edge of Φref coincides with a rising edge of ΦDCO). The three control-paths shown in
the figure make this a third-order digital control system. By design, the lower two paths
dominate the dynamics making the system effectively second-order.

The DCO has three control inputs: φ , c, and v. The φ input is used by a proportional
control path: if Φref leads ΦDCO/N then the PFD will assert up, and the DCO will run
faster for a time interval corresponding to the phase difference. Conversely, if Φref lags
ΦDCO/N , the dn signal will be asserted, and the DCO will run slower for a time interval
corresponding to the phase difference. If the frequencies of Φref and ΦDCO/N are not
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Fig. 2. A Digital Phase-Locked Loop

closely matched, then the PFD simply outputs up (resp. dn) if the frequency of ΦDCO/N
is lower (resp. higher) than that of Φref .

The c input of the DCO is used by the integral control path. The DCO in [31] is
a ring-oscillator, and the c input controls switched capacitor loads on the oscillator –
increasing the capacitive load decreases the oscillator frequency. The bang-bang phase-
frequency detector (BBPFD) controls whether this capacitance is increased one step or
decreased one step with for each cycle of Φref . The c input provides a fast tracking loop.

The v input of the DCO is used to re-center c to restore tracking range. This input
sets the operating voltage of the oscillator – the oscillator frequency increases with
increasing v. The accumulator for this path is driven by the difference between c and its
target value ccenter.

As a control system, the PLL converges to a switching surface where c and φ fluctu-
ate near their ideal values. As presented in [31] these limit-cycle variations are designed
to be slightly smaller than the unavoidable thermal and shot-noise of the oscillator. Fur-
thermore, the time constants of the three control loops are widely separated. This facili-
tates intuitive reasoning about the system one loop at a time – it also introduces stiffness
into the dynamics that must be considered by any simulation or reachability analysis.
We believe that these characteristics of convergence to a switching surface and stiffness
from multiple control loops with widely separated tracking rates are common in digi-
tally controlled physical systems. This motivates using the digital PLL as a verification
example and challenge.

4.1 Modeling the Digital PLL

From Spectre simulations, we observe that the oscillator frequency is very nearly lin-
ear in v and nearly proportional to the inverse of c for a wide range of each of these
parameters. The phase error, φ is a continuous quantity, but the values of c and v are
determined by the digital accumulators that are updated on each cycle of the reference



clock, fref . This motivates modeling the PLL using a discrete-time recurrence for real-
valued variables:

c(i+1) = min(max(c(i)+gc sgn(φ),cmin),cmax)
v(i+1) = min(max(v(i)+gv(ccenter− c(i)),vmin),vmax)
φ(i+1) = wrap(φ(i)+( fDCO(c(i),v(i))− fref )−gφ φ(i))

fDCO(c,v) = 1+αv
1+βc f0

wrap(φ) = wrap(φ +1), if φ ≤−1
= φ , if −1 < φ < 1
= wrap(φ −1), if 1≤ φ

(4)

where gc, gv, and gφ are the gain coefficients for the bang-bang frequency control,
coarse frequency control, and linear phase paths respectively. The coefficient α is the
slope of oscillator frequency with respect to v, and β is the slope of oscillator period
with respect to c; both are determined from simulation data. We measure phase leads or
lags in cycles: φ = 0.1 means that ΦDCO/N leads Φref by 10% of the period of Φref . We
say that c is “saturated” if (c = cmin)∧ (φ < 0) or (c = cmax)∧ (φ > 0). Likewise, v is
saturated if (v = vmin)∧(c > ccenter) or (v = vmax)∧(c < ccenter). In this paper, we scale
fref to 1. With similar scaling, we choose gc = 1/3200, gv =−gc/5, and gφ = 0.8. We
assume bounds for c of cmin = 0.9 and cmax = 1.1 with ccenter = 1 and bounds for v of
vmin = 0.2 and vmax = 2.5. With these parameters, the PLL is intended to converge to a
small neighbourhood of c = ccenter = 1; v = fref ccenter = 1 and φ = 0.

4.2 Proving Global Convergence

Our verification proceeds in three phases as depicted in Fig. 3.a. First we show that
for all trajectories starting with c ∈ [cmin,cmax], v ∈ [vmin,vmax], and φ ∈ [−1,+1] (the
blue regions 3.a) the trajectory eventually reaches a relatively narrow stripe (the red and
green regions) for which fDCO ≈ fref . The proof is based on a simple ranking function
that Z3 easily verifies. By proving this we’ve shown that the non-linearities of the global
model do not create unintended stable modes.

The second part of the proof pertains to the small, red stripes where fDCO ≈ fref but
c is close enough to cmin or cmax that saturation remains a concern. Consider the red
stripe near c = cmin. We use Z3 as a bounded model checker to show that v increases,
and that c “tracks” v to keep fDCO close to fref and θ small. Together, these results show
that all trajectories eventually enter the region shown in green in Fig. 3.

The final part of the proof shows convergence to the limit-cycle region, shown in
yellow in Fig. 3.a. The key observation here is that φ repeatedly alternates between
positive and negative values. For any given value of v, we can calculate the value of c
for which fDCO(c,v) = fref — call this ceq(v). Figure 3.b depicts a trajectory from a
rising zero-crossing of φ to a falling crossing. Let c1 be the value of c following a rising
zero-crossing of φ , and let c2 be the value of c at the subsequent falling crossing. We
note that c1 < ceq(v)< c2.

The obvious way to show convergence is to show that c2 is closer to ceq than c1
is. However, this involves calculating the recurrence step at which φ makes its falling
crossing of zero, and that involves solving a non-linear system of equations. Although
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Fig. 3. Global Convergence Proof

Z3 has a non-linear arithmetic solver, it does not support induction as would be required
with an arbitrary choice for c1. Instead, we extrapolate the sequence to the last point to
the right of ceq that is closer to ceq than c1 is. We use formula from Eq. 4 for computing
c(i+1) assuming that sgnφ = 1; either this assumption is valid for the whole sequence,
or φ had a falling crossing even earlier. Either is sufficient to show convergence. The
proof involves solving the recurrence, and rewriting the resulting formula. The key
inequality has exponential terms of the form (1− gφ )

n multiplied by rational function
terms of the other model parameters. We use the substitution technique from Section 3.2
to replace these non-polynomial terms, and add a :hypothesize hint that 0 < (1−
gφ )

n < 1. ACL2 readily discharges this added hypothesis using a trivial induction.
Our proof is based on a 13-page, hand-written proof. The ACL2 version consists of

75 lemmas, 10 of which were discharged using the SMT solver. Of those ten, one was
the key, polynomial inequality from the manual proof. The others discharged steps in
the manual derivation that were not handled by the standard books of rewrite rules for
ACL2. ACL2 completes the proof in a few minutes running on a laptop computer. We
found one error in the process of transcribing the hand-written proof to ACL2.

We completed much of the proof using ACL2 alone while implementing the clause
processor. We plan to rewrite the proof to take more advantage of the SMT solver and
believe that the resulting proof will be simpler, focus more on the high-level issues, and
be easer to write and understand. When faced with proving a complicated derivation,
one can guide ACL2 through the steps of the derivation, or just check the relationship
of the original formula to the final one using the SMT solver. The latter approach allows
novice users (including the authors of this paper) to quickly discharge claims that would
otherwise take a substantial amount of time even for an expert. As noted before, if Z3
finds a counter-example, we do not return it as a witness for ACL2. However, our clause
processor prints the counter-example (in its Z3 representation) to the ACL2 proof log.
The user can examine this counter-example; in practice, it often points directly to the
problem that needs to be addressed.



The ACL2 formulation enabled making generalizations that we would not consider
making to the manual proof. In particular, the manual proof assumed that ceq− c1 was
an integer multiple of g1. After verifying the manual proof, we removed this restriction
– this took about 12 hours of human time, most of which was to introduce an additional
variable 0≤ dc < 1 to account for the non-integer part. We also generalized the proof to
allow v to an interval whose width is a small multiple of |g2(cmax− cmin)|. This did not
require any new operators and took about 3 hours of human time. The interval can be
anywhere in [vlo,vhi]. This shows that the convergence of c and φ continues to hold as
v progresses toward fref ccenter. It also sets the foundation for verifying the PLL with a
more detailed model including the ∆Σ modulator in the c path, an additional low-pass
filter in the v path, and adding error terms in the formula for fDCO(c,v).

5 Conclusions

This paper presented the integration of the Z3 SMT solver into the ACL2 theorem
prover and demonstrated its application for the verification of global convergence for
a digital PLL. The proof involves reasoning about systems of polynomial and rational
function equalities and inequalities, which is greatly simplified by using Z3’s non-linear
arithmetic capabilities. ACL2 complements Z3 by providing a versatile induction capa-
bility along with a mature environment for proof development and structuring. Sec-
tion 3 described technical issues that must be addressed to ensure the soundness, of the
integrated prover, usability issues that are critical for the tool to be practical, and our
solutions to these challenges.

Section 4 showed how this integrated prover can be used to verify global conver-
gence for a digital phase-locked loop from all initial states to the final limit-cycle be-
haviours. The analysis of the limit cycle behaviour requires modeling the PLL with
recurrences. Such limit cycles are not captured by continuous approximations used
in [24, 28]. Our approach allowed uncertainty in the model parameters and not just
in the signal values. The reachability tools cited above require fixed model parame-
ters. Our approach shows much more promise for verification that accounts for device
variability and other uncertainties.

Prior work on integrating SMT solvers into theorem provers has focused on using
the non-numerical decision procedures of an SMT solver. Our work demonstrates the
value of bringing an SMT solver into a theorem prover for reasoning about systems
where a digital controller interacts with a continuous, analog, physical system. The
analysis of such systems often involves long, tedious, and error-prone derivations that
primarily use linear algebra and polynomials. We have shown that these are domains
where SMT solvers augmented with induction and proof structuring have great promise.
We are currently exploring using our methods to verify other AMS designs as well as
to similar problems that arise in hybrid control systems and machine learning.
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Appendix

We found 3 small mistakes in our paper after the submission.

1. Page 2, paragraph 3.
We’ve forgotten a citation for Harrison and Théry’s “skeptical” approach. Here we
give the citation:
Harrison, J., and Théry, L. A skeptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning 21 (1998), 279-294.

2. Page 7, paragraph 5.
We have mistakenly understood Z3’s way of handling divide by 0. Instead of con-
sidering the quotient to be an unspecified number, Z3 considers it to be any real
number, which naturally include ACL2’s interpretation of the quotient being 0.
Therefore, our concern for the mismatch is not necessary. However, the “recipro-
cal” function we introduced is still sound.

3. Page 13, paragraph 3.
[24]’s work does work for ranges of parameters.
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