
To appear in ACM TOG 35(4).

Terrain-Adaptive Locomotion Skills
Using Deep Reinforcement Learning

Xue Bin Peng, Glen Berseth, Michiel van de Panne∗

University of British Columbia

Figure 1: Terrain traversal using a learned actor-critic ensemble. The color-coding of the center-of-mass trajectory indicates the choice of
actor used for each leap.

Abstract

Reinforcement learning offers a promising methodology for devel-
oping skills for simulated characters, but typically requires work-
ing with sparse hand-crafted features. Building on recent progress
in deep reinforcement learning (DeepRL), we introduce a mix-
ture of actor-critic experts (MACE) approach that learns terrain-
adaptive dynamic locomotion skills using high-dimensional state
and terrain descriptions as input, and parameterized leaps or steps
as output actions. MACE learns more quickly than a single actor-
critic approach and results in actor-critic experts that exhibit spe-
cialization. Additional elements of our solution that contribute
towards efficient learning include Boltzmann exploration and the
use of initial actor biases to encourage specialization. Results are
demonstrated for multiple planar characters and terrain classes.

Keywords: physics-based characters, reinforcement learning

Concepts: •Computing methodologies→ Animation; Physical
simulation;

1 Introduction

Humans and animals move with grace and agility through their
environment. In animation, their movement is most often created
with the help of a skilled animator or motion capture data. The
use of reinforcement learning (RL) together with physics-based
simulations offers the enticing prospect of developing classes of
motion skills from first principles. This requires viewing the prob-
lem through the lens of a sequential decision problem involving
states, actions, rewards, and a control policy. Given the current sit-
uation of the character, as captured by the state, the control policy
decides on the best action to take, and this then results in a sub-
sequent state, as well as a reward that reflects the desirability of
the observed state transition. The goal of the control policy is to
maximize the sum of expected future rewards, i.e., any immediate
rewards as well as all future rewards.

∗xbpeng|gberseth|van@cs.ubc.ca
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from permissions@acm.org. c©
2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
SIGGRAPH ’16 Technical Paper,, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925881

In practice, a number of challenges need to be overcome when ap-
plying the RL framework to problems with continuous and high-
dimensional states and actions, as required by movement skills.
A control policy needs to select the best actions for the distribu-
tion of states that will be encountered, but this distribution is often
not known in advance. Similarly, the distribution of actions that
will prove to be useful for these states is also seldom known in
advance. Furthermore, the state-and-action distributions are not
static in nature; as changes are made to the control policy, new
states may be visited, and, conversely, the best possible policy may
change as new actions are introduced. It is furthermore not obvious
how to best represent the state of a character and its environment.
Using large descriptors allows for very general and complete de-
scriptions, but such high-dimensional descriptors define large state
spaces that pose a challenge for many RL methods. Using sparse
descriptors makes the learning more manageable, but requires do-
main knowledge to design an informative-and-compact feature set
that may nevertheless be missing important information.

Contributions: In this paper we use deep neural networks in
combination with reinforcement learning (DeepRL) to address the
above challenges. This allows for the design of control policies
that operate directly on high-dimensional character state descrip-
tions (83D) and an environment state that consists of a height-field
image of the upcoming terrain (200D). We provide a parameter-
ized action space (29D) that allows the control policy to operate at
the level of bounds, leaps, and steps. We introduce a novel mixture
of actor-critic experts (MACE) architecture to enable accelerated
learning. MACE develops n individual control policies and their
associated value functions, which each then specialize in particular
regimes of the overall motion. During final policy execution, the
policy associated with the highest value function is executed, in a
fashion analogous to Q-learning with discrete actions. We show
the benefits of Boltzmann exploration and various algorithmic fea-
tures for our problem domain. We demonstrate improvements in
motion quality and terrain abilities over previous work.

2 Related Work

Physics-based Character Animation:
Significant progress has been made in recent years in develop-
ing methods to create motion from first principles, i.e., con-
trol and physics, as a means of character animation [Geijtenbeek
and Pronost 2012]. Many methods focus mainly on controlling
physics-based locomotion over flat terrain. Some methods assume
no access to the equations of motion and rely on domain knowl-
edge to develop simplified models that can be used in the design
of controllers that are commonly developed around a phase-based
state machine, e.g., [Hodgins et al. 1995; Laszlo et al. 1996; Yin
et al. 2007; Sok et al. 2007; Coros et al. 2010; Lee et al. 2010b].
Inverse-dynamics based methods also provide highly effective so-

1

http://dx.doi.org/10.1145/2897824.2925881

To appear in ACM TOG 35(4).

lutions, with the short and long-term goals being encoded into the
objectives of a quadratic program that is solved at every time-step,
e.g., [da Silva et al. 2008; Muico et al. 2009; Mordatch et al. 2010;
Ye and Liu 2010]. Many methods use some form of model-free
policy search, wherein a controller is first designed and then has
a number of its free parameters optimized using episodic evalua-
tions, e.g., [Yin et al. 2008; Wang et al. 2009; Coros et al. 2011; Liu
et al. 2012; Tan et al. 2014]. Our work uses the control structures
found in much of the prior work in this area to design the action pa-
rameterization, but then goes on to learn controllers that can move
with agility across different classes of terrain, a capability that has
been difficult to achieve with prior methods.

Reinforcement learning as guided by value or action-value func-
tions have also been used for motion synthesis. In particular, this
type of RL has been highly successful for making decisions about
which motion clip to play next in order to achieve a given objec-
tive [Lee and Lee 2006; Treuille et al. 2007; Lee et al. 2009; Lee
et al. 2010a; Levine et al. 2012]. Work that applies value-function-
based RL to the difficult problem of controlling the movement of
physics-based characters has been more limited [Coros et al. 2009;
Peng et al. 2015] and has relied on the manual selection of a small
set of important features that represent the state of the character
and its environment.

Deep Neural Networks (DNNs):
Control policies based on DNNs have been learned to control mo-
tions such as swimming [Grzeszczuk et al. 1998], as aided by a
differentiable neural network approximation of the physics. The
recent successes of deep learning have also seen a resurgence of its
use for learning control policies, These can be broadly character-
ized into three categories, which we now elaborate on.

Direct policy approximation: DNNs can be used to directly ap-
proximate a control policy, a = π(s) from example data points
(si, ai) as generated by some other control process. For example,
trajectory optimization can be used to compute families of optimal
control solutions from various initial states, and each trajectory
then yields a large number of data points suitable for supervised
learning. A naive application of these ideas will often fail because
when the approximated policy is deployed, the system state will
nevertheless easily drift into regions of state space for which no
data has been collected. This problem is rooted in the fact that
a control policy and the state-distribution that it encounters are
tightly coupled. Recent methods have made progress on this issue
by proposing iterative techniques. Optimal trajectories are gener-
ated in close proximity to the trajectories resulting from the current
policy; the current policy is then updated with the new data, and the
iteration repeats. These guided policy search methods have been
applied to produce motions for robust bipedal walking and swim-
ming gaits for planar models [Levine and Koltun 2014; Levine
and Abbeel 2014] and a growing number of challenging robotics
applications. Relatedly, methods that leverage contact-invariant
trajectory optimization have also demonstrated many capabilities,
including planar swimmers, planar walkers, and 3D arm reach-
ing [Mordatch and Todorov 2014], and, more recently, simulated
3D swimming and flying, as well as 3D bipeds and quadrupeds
capable of skilled interactive stepping behaviors [Mordatch et al.
2015]. In this most recent work, the simulation is carried out as
a state optimization, which allows for large timesteps, albeit with
the caveat that dynamics is a soft constraint and thus may result in
some residual root forces. A contribution of our work is to develop
model-free methods that are complementary to the model-based
trajectory optimization methods described above.

Deep Q-Learning: For decision problems with discrete action
spaces, a DNN can be used to approximate a set of value functions,
one for each action, thereby learning a complete state-action value
(Q) function. A notable achievement of this approach has been the

ability to learn to play a large suite of Atari games at a human-level
of skill, using only raw screen images and the score as input [Mnih
et al. 2015]. Many additional improvements have since been pro-
posed, including prioritized experience replay [Schaul et al. 2015],
double-Q learning [Van Hasselt et al. 2015], better exploration
strategies [Stadie et al. 2015], and accelerated learning using dis-
tributed computation [Nair et al. 2015]. However, it is not obvi-
ous how to directly extend these methods to control problems with
continuous action spaces.

Policy gradient methods: In the case of continuous actions learned
in the absence of an oracle, DNNs can be used to model both the Q-
function, Q(s, a), and the policy π(s). This leads to a single com-
posite network, Q(s, π(s)), that allows for the back-propagation
of value-gradients back through to the control policy, and therefore
provides a mechanism for policy improvement. Since the original
method for using deterministic policy gradients [Silver et al. 2014],
several variations have been proposed with a growing portfolio of
demonstrated capabilities. This includes a method for stochas-
tic policies that can span a range of model-free and model-based
methods [Heess et al. 2015], as demonstrated on examples that in-
clude a monoped, a planar biped walker, and an 8-link planar chee-
tah model. Recently, further improvements have been proposed
to allow end-to-end learning of image-to-control-torque policies
for a wide selection of physical systems [Lillicrap et al. 2015].
While promising, the resulting capabilities and motion quality as
applied to locomoting articulated figures still fall well short of what
is needed for animation applications. Another recent work pro-
poses the use of policy-gradient DNN-RL with parameterized con-
trollers for simulated robot soccer [Hausknecht and Stone 2015],
and theoretically-grounded algorithms have been proposed to en-
sure monotonic policy improvement [Schulman et al. 2015]. Our
work develops an alternative learning method to policy-gradient
methods and demonstrates its capability to generate agile terrain-
adaptive motion for planar articulated figures.

Mixure-of-Experts and Ensemble methods: The idea of mod-
ular selection and identification for control has been proposed in
many variations. Well-known work in sensorimotor control pro-
poses the use of a responsibility predictor that divides experiences
among several contexts [Haruno et al. 2001]. Similar concepts
can be found in the use of skill libraries indexed based on sen-
sory information [Pastor et al. 2012], Gaussian mixture models for
multi-optima policy search for episodic tasks [Calinon et al. 2013],
and the use of random forests for model-based control [Hester and
Stone 2013]. Ensemble methods for RL problems with discrete ac-
tions have been investigated in some detail [Wiering and Van Has-
selt 2008]. Adaptive mixtures of local experts [Jacobs et al. 1991]
allow for specialization by allocating learning examples to a partic-
ular expert among an available set of experts according to a local
gating function, which is also learned so as to maximize perfor-
mance. This has also been shown to work well in the context
of reinforcement learning [Doya et al. 2002; Uchibe and Doya
2004]. More recently, there has been strong interest in develop-
ing deep RL architectures for multi-task learning, where the tasks
are known in advance [Parisotto et al. 2015; Rusu et al. 2015],
with a goal of achieving policy compression. In the context of
physics-based character animation, a number of papers propose to
use selections or combinations of controllers as the basis for de-
veloping more complex locomotion skills [Faloutsos et al. 2001;
Coros et al. 2008; da Silva et al. 2009; Muico et al. 2011].

Our work: We propose a deep reinforcement learning method
based on learning Q-functions and a policy, π(s), for continuous
action spaces as modeled on the CACLA RL algorithm [Van Has-
selt and Wiering 2007; Van Hasselt 2012]. In particular, we show
the effectiveness of using a mixture of actor-critic experts (MACE),
as constructed from multiple actor-critic pairs that each specialize
in particular aspects of the motion. Unlike prior work on dynamic

2

To appear in ACM TOG 35(4).

terrain traversal using reinforcement learning [Peng et al. 2015],
our method can work directly with high-dimensional character and
terrain state descriptions without requiring the feature engineering
often needed by non-parametric methods. Our results also improve
on the motion quality and expand upon the types of terrains that
can be navigated with agility.

3 Overview

An overview of the system is shown in Figure 2, which illustrates
three nested loops that each correspond to a different time scale.
In the following description, we review its operation for our dog
control policies, with other control policies being similar.

The inner-most loop models the low-level control and physics-
based simulation process. At each time-step δt, individual joint
torques are computed by low-level control structures, such as PD-
controllers and Jacobian transpose forces (see §4). These low-level
control structures are organized into a small number of motion
phases using a finite state machine. The motion of the character
during the time step is then simulated by a physics engine.

The middle loop operates at the time scale of locomotion cycles,
i.e., leaps for the dog. Touch-down of the hind-leg marks the be-
ginning of a motion cycle, and at this moment the control policy,
a = π(s), chooses the action that will define the subsequent cy-
cle. The state, s, is defined by C, a set of 83 numbers describing
the character state, and T , a set of 200 numbers that provides a
one-dimensional heightfield “image” of the upcoming terrain. The
output action, a, assigns specific values to a set of 29 parameters of
the FSM controller, which then governs the evolution of the motion
during the next leap.

The control policy is defined by a small set of actor-critic pairs,
whose outputs taken together represent the outputs of the learned
deep network (see Figure 8). Each actor represents an individual
control policy; they each model their own actions, Aµ(s), as a
function of the current state, s. The critics, Qµ(s), each estimate
the quality of the action of their corresponding actor in the given
situation, as given by the Q-value that they produce. This is a
scalar that defines the objective function, i.e., the expected value of
the cumulative sum of (discounted) future rewards. The functions
Aµ(s) and Qµ(s) are modeled using a single deep neural network
that has multiple corresponding outputs, with most network layers
being shared. At run-time, the critics are queried at the start of
each locomotion cycle in order to select the actor that is best suited
for the current state, according to the highest estimated Q-value.
The output action of the corresponding actor is then used to drive
the current locomotion cycle.

Learning requires exploration of “off-policy” behaviors. This is
implemented in two parts. First, an actor can be selected proba-
bilistically, instead of deterministically choosing the max-Q actor.
This is done using a softmax-based selection, which probabilisti-
cally selects an actor, with higher probabilities being assigned to
actor-critic pairs with largerQ-values. Second, Gaussian noise can
be added to the output of an actor with a probability εt, as enabled
by an exploration choice of λ = 1.

For learning purposes, each locomotion cycle is summarized in
terms of an experience tuple τ = (s, a, r, s′, µ, λ), where the pa-
rameters specify the starting state, action, reward, next state, in-
dex of the active actor, and a flag indicating the application of
exploration noise. The tuples are captured in a replay memory
that stores the most recent 50k tuples and is divided into a critic
buffer and an actor buffer. Experiences are collected in batches of
32 tuples, with the motion being restarted as needed, i.e., if the
character falls. Tuples that result from added exploration noise are
stored in the actor buffer, while the remaining tuples are stored

Figure 2: System Overview

Figure 3: 21-link planar dog (left), and 19-link raptor (right).

in the critic buffer, which are later used to update the actors and
critics respectively. Our use of actor buffers and critic buffers in
a MACE-style architecture is new, to the best of our knowledge,
although the actor buffer is inspired by recent work on prioritized
experience replay [Schaul et al. 2015].

The outer loop defines the learning process. After the collection
of a new minibatch of tuples, a learning iteration is invoked. This
involves sampling minibatches of tuples from the replay memory,
which are used to improve the actor-critic experts. The actors are
updated according to a positive-temporal difference strategy, mod-
eled after CACLA [Van Hasselt 2012], while the critics are up-
dated using the standard temporal difference updates, regardless of
the sign of their temporal differences. For more complex terrains,
learning requires on the order of 300k iterations.

4 Characters and Terrains

Our planar dog model is a reconstruction of that used in previous
work [Peng et al. 2015], although it is smaller, standing approx-
imately 0.5 m tall at the shoulders, as opposed to 0.75 m. It is
composed of 21 links and has a mass of 33.7 kg. The pelvis is
designated as the root link and each link is connected to its parent
link with a revolute joint, yielding a total of 20 internal degrees of
freedom and a further 3 degrees of freedom defined by the position
and orientation of the root in the world. The raptor is composed of
19 links, with a total mass of 33 kg, and a head-to-tail body length
of 1.5 m. The motion of the characters are driven by the application
of internal joint torques and is simulated using the Bullet physics
engine [Bullet 2015] at 600 Hz, with friction set to 0.81.

4.1 Controllers

Similar to much prior work in physics-based character animation,
the motion is driven using joint torques and is guided by a finite
state machine. Figure 4 shows the four phase-structure of the con-
troller. In each motion phase, the applied torques can be decom-
posed into three components,

τ = τspd + τg + τvf

where τspd are torques computed from joint-specific stable (semi-
implicit) proportional-derivative (SPD) controllers [Tan et al.

3

To appear in ACM TOG 35(4).

Figure 4: Dog controller motion phases.

2011], τg provides gravity compensation for all links, as referred
back to the root link, and τvf implements virtual leg forces for the
front and hind legs when they are in contact with the ground, as
described in detail in [Peng et al. 2015]. The stable PD controllers
are integrated into Bullet with the help of a Featherstone dynam-
ics formulation [Featherstone 2014]. For our system, conventional
PD-controllers with explicit Euler integration require a time-step
δt = 0.0005s to remain stable, while SPD remains stable for a
time-step of δt = 0.0017s, yielding a two-fold speedup once the
setup computations are taken into account.

The character’s propulsion is principally achieved by exerting
forces on the ground with its end effectors, represented by the front
and back feet. Virtual force controllers are used to compute the
joint torques τe needed to exert a desired force fe on a particular
end effector e.

τe = δeJ
T
e fe

where δe is the contact indicator variable for the end effector, and
Je is the end effector Jacobian. The final control forces for the
virtual force controllers are the sum of the control forces for the
front and back feet.

τvf = τf + τb

4.2 Terrain classes

We evaluate the learning method on multiple classes of terrain ob-
stacles that include gaps, steps, walls, and slopes. It is possible
to make the obstacles arbitrarily difficult and thus we use environ-
ments that are challenging while remaining viable. All of the ter-
rains are represented by 1D height-fields, and generated randomly
by drawing uniformly from predefined ranges of values for the pa-
rameters that characterize each type of obstacle. In the flat terrains,
gaps are spaced between 4 to 7m apart, with widths ranging from
0.5 to 2m, and a fixed gap depth of 2m. Steps are spaced 5 to 7m
apart, with changes in height ranging from 0.1 to 0.4m. Walls are
spaced 6 to 8m apart, with heights ranging between 0.25 to 0.5m,
and a fixed width of 0.2m. Slopes are generated by varying the
change in slope of the terrain at each vertex following a momen-
tum model. The height yi of vertex i is computed according to

yi = yi−1 +4xsi

si = si−1 +4si

4si = sign(U(−1, 1)− si−1

smax
)× U(0,4smax)

where smax = 0.5 and4smax = 0.05,4x = 0.1m, and vertices
are ordered such that xi−1 < xi. When slopes are combined with

Figure 5: The character features consist of the displacements of
the centers of mass of all links relative to the root (red) and their
linear velocities (green).

Figure 6: Terrain features consist of height samples of the terrain
in front of the character, evenly spaced 5cm apart. All heights are
expressed relative to the height of the ground immediately under
the root of the character.

the various obstacles, the obstacles are adjusted to be smaller than
those in the flat terrains.

5 Policy Representation

A policy is a mapping between a state space S and an action
space A, i.e., π(s) : S 7→ A. For our framework, S is a con-
tinuous space that describes the state of the character as well as the
configuration of the upcoming terrain. The action spaceA is repre-
sented by a 29D continuous space where each action specifies a set
of parameters to the FSM. The following sections provide further
details about the policy representation.

5.1 State

A state s consists of features describing the configuration of the
character and the upcoming terrain. The state of the character is
represented by its pose q and velocity q̇, where q records the po-
sitions of the center of mass of each link with respect to the root
and q̇ records the center of mass velocity of each link. The ter-
rain features, T , consist of a 1D array of samples from the ter-
rain height-field, beginning at the position of the root and spanning
10 m ahead. All heights are expressed relative to the height of the
terrain immediately below the root of the character. The samples
are spaced 5 cm apart, for a total of 200 height samples. Com-
bined, the final state representation is 283-dimensional. Figure 5
and 6 illustrate the character and terrain features.

5.2 Actions

A total of 29 controller parameters serve to define the available
policy actions. These include specifications of the target spine cur-
vature as well as the target joint angles for the shoulder, elbow, hip,
knee, hock, and hind-foot, for each of the four motion phases de-
fined by the controller FSM. Additionally, the x and y components
of the hind-leg and front-leg virtual forces, as applied in phases 1
and 3 of the controller, are also part of the parameter set. Phases 2
and 4 apply the same forces as phases 1 and 3, respectively, if the
relevant leg is still in contact with the ground. Lastly, the velocity
feedback gain for the swing hip (and shoulder) provides one last
action parameter.

Prior to learning the policy, a small set of initial actions are created
which are used to seed the learning process. The set of actions
consists of 4 runs and 4 leaps. All actions are synthesized using

4

To appear in ACM TOG 35(4).

a derivative-free optimization process, CMA [Hansen 2006]. Two
runs are produced that travel at approximately 4 m/s and 2 m/s, re-
spectively. These two runs are then interpolated to produce 4 runs
of varying speeds. Given a sequence of successive fast-run cy-
cles, a single cycle of that fast-run is then optimized for distance
traveled, yielding a 2.5 m leap that can then be executed from the
fast run. The leap action is then interpolated with the fast run to
generate 4 parametrized leaps that travel different distances.

5.3 Reward

In reinforcement learning the reward function, r(s, a, s′), is used
as a training signal to encourage or discourage behaviors in the
context of a desired task. The reward provides a scalar value re-
flecting the desirability of a particular state transition that is ob-
served by performing action a starting in the initial state s and re-
sulting in a successor state s′. Figure 7 is an example of a sequence
of state transitions for terrain traversal. For the terrain traversal
task, the reward is provided by

r(s, a, s′) =

{
0, character falls during the cycle
e−ω(v

∗−v)2 , otherwise

where a fall is defined as any link of the character’s trunk making
contact with the ground for an extended period of time, v is the
average horizontal velocity of the center of mass during a cycle,
v∗ = 4m/s is the desired velocity, and ω = 0.5 is the weight
for the velocity error. This simple reward is therefore designed
to encourage the character to travel forward at a consistent speed
without falling. If the character falls during a cycle, it is reset to a
default state and the terrain is regenerated randomly.

The goal of learning is to find a control policy that maximizes the
expected value of the cumulative reward, R. Here, R can be ex-
pressed as the time-discounted sum of all transition rewards, ri,
from the current action up to a horizon T , where T may be infi-
nite, i.e.,

R(s0) = r0 + γr1 + ...+ γT rT

ri = r(si, ai, s
′
i) and γ = 0.9 is a discount factor. The sequence

of states and actions are determined by the policy and the dynam-
ics of the system. γ ∈ [0, 1) ensures that the cumulative reward
is bounded, and captures the intuition that events occurring in the
distant future are likely to be of less consequence than those occur-
ing in the more immediate future. The summation can be rewritten
recursively as

R(s0) = r0 + γ

T∑
i=1

γi−1ri = r0 + γR(s1)

This recursive property provides the foundations for temporal dif-
ference learning, which lies at the heart of many RL algorithms.

Figure 7: Each state transition can be recorded as a tuple τi =
(si, ai, ri, s

′
i). si is the initial state, ai is the action taken, s′i is the

resulting state, and ri is the reward received during the ith cycle.

5.4 Policy Representation

To represent the policy, we use a convolutional neural network,
with weights θ, following the structure illustrated in Figure 8. The
network is queried once at the start of each locomotion cycle. The
overall structure of the convolutional network is inspired by the re-
cent work of Minh et al. [2015]. For a query state s = (q, q̇, T), the
network first processes the terrain features T by passing it through
16 8 × 1 convolution filters. The resulting feature maps are then
convolved with 32 4 × 1 filters, followed by another layer of 32
4× 1 filters. A stride of 1 is used for all convolutional layers. The
output of the final convolutional layer is processed by 64 fully con-
nected units, and the resulting features are then concatenated with
the character features q and q̇, as inspired by [Levine et al. 2015].
The combined features are processed by a fully connected layer
composed of 256 units. The network then branches into critic and
actor subnetworks. The critic sub-network predicts the Q-values
for each actor, while each actor subnetwork proposes an action for
the given state. All subnetworks follow a similar structure with
a fully connected layer of 128 units followed by a linear output
layer. The size of the output layers vary depending on the subnet-
work, ranging from 3 output units for the critics to 29 units for each
actor. The combined network has approximately 570k parameters.
Rectified linear units are used for all layers, except for the output
layers.

During final runtime use, i.e., when learning has completed, the
actor associated with the highest predicted Q-value is selected and
its proposed action is applied for the given state.

µ∗ = arg max
µ

Qµ(s)

π(s) = Aµ∗(s)

The inputs are standardized before being used by the network.
The mean and standard deviation for this standardization are de-
termined using data collected from an initial random-action policy.
The outputs are also followed by the inverse of a similar transfor-
mation in order to allow the network to learn standardized outputs.
We apply the following transformation:

Aµ(s) = ΣĀµ(s) + βµ

where Āµ is the output of each actor subnetwork, Σ =
diag(σ0, σ1, ...), {σi} are pre-specified scales for each action pa-
rameter, and βµ is an actor bias. {σi} are selected such that
the range of values for each output of Āµ remains approximately
within [-1, 1]. This transformation helps to prevent excessively
small or large gradients during back-propagation, improving sta-
bility during learning. The choice of different biases for each actor
helps to encourage specialization of the actors for different situa-
tions, a point which we revisit later. For the dog policy, we select
a fast run, slow run, and large jump as biases for the three actors.

6 Learning

Algorithm 1 illustrates the overall learning process. θ represents
the weights of the composite actor-critic network, and Qµ(s|θ) is
the Q-value predicted by the critic for the result of activating actor
Aµ in state s, where Aµ(s|θ) is the action proposed by the actor
for s. Since an action is decided by first selecting an actor followed
by querying the chosen actor for its proposed action, exploration
in MACE can be decomposed into critic exploration and actor
exploration. Critic exploration allows for the selection of an actor
other than the “best” actor as predicted by the Q-values. For this
we use Boltzmann exploration, which assigns a selection probabil-
ity pµ to each actor based on its predicted Q-value:

pµ(s) =
eQµ(s|θ)/Tt∑
j e
Qµj (s|θ)/Tt

,

5

To appear in ACM TOG 35(4).

Figure 8: Schematic illustration of the MACE convolutional neu-
ral network. T and C are the input terrain and character features.
Each Aµ represents the proposed action of actor µ, and Qµ is the
critic’s predicted reward when activating the corresponding actor.

where Tt is a temperature parameter. Actors with higher predicted
values are more likely to be selected, and the bias in favor of actors
with higher Q-values can be adjusted via Tt. Actor exploration
results in changes to the output of the selected actor, in the form of
Gaussian noise that is added to the proposed action. This generates
a new action from the continuous action space according to:

a = Aµ(s) +N (0,Σ2),

where Σ are pre-specified scales for each action parameter. Ac-
tor exploration is enabled via a Bernoulli selector variable, λ ∼
Ber(εt): Ber(εt) = 1 with probability εt, and Ber(εt) = 0 other-
wise.

Once recorded, experience tuples are stored into separate replay
buffers, for use during updates. Tuples collected during actor ex-
ploration are stored in an actor bufferDa, while all other tuples are
stored in a critic buffer Dc. This separation allows the actors to be
updated using only the off-policy tuples inDa, and the critics to be
updated using only tuples without exploration noise in Dc During
a critic update, a minibatch of n = 32 tuples {τi} are sampled
from Dc and used to perform a Bellman backup,

yi = ri + γ max
µ

Qµ(s′i|θ)

θ ← θ + α

(
1

n

∑
i

(yi −Qµi(si|θ))
∂Qµi(si|θ)

∂θ

)
During an actor update, a minibatch of tuples {τj} are sampled
from Da and a CACLA-style positive-temporal difference update
is applied to each tuple’s respective actor,

δj = yj −max
µ

Qµ(sj |θ)

if δj > 0 : θ ← θ + α

(
1

n
(aj −Aµj (sj |θ))

∂Aµj (sj |θ))
∂θ

)
Target network: Similarly to [Mnih et al. 2015], we used a sep-
arate target network when computing the target values yi during
updates. The target network is fixed for 500 iterations, after which
it is updated by copying the most up-to-date weights θ, and then
held fixed again for another 500 iterations.

Hyperparameter settings: m = 32 steps are simulated before
each update. Updates are performed using stochastic gradient de-
scent with momentum, with a learning rate, α = 0.001, a weight
decay of 0.0005 for regularization, and momentum set to 0.9. εt is
initialized to 0.9 and linearly annealed to 0.2 after 50k iterations.
Similarly, the temperature Tt used in Boltzmann exploration is ini-
tialized to 20 and linearly annealed to 0.025 over 50k iterations.

Algorithm 1 MACE

1: θ ← random weights
2: Initialize Dc and Da with tuples from a random policy

3: while not done do
4: for step = 1, ...,m do
5: s← character and terrain initial state
6: µ ← select each actor with probability pµi =

exp(Qµi (s|θ)/Tt)∑
j(exp(Qµj (s|θ)/Tt))

7: λ← Ber(εt)
8: a← Aµ(s|θ) + λNt
9: Apply a and simulate forward 1 cycle

10: s′ ← character and terrain terminal state
11: r ← reward
12: τ ← (s, a, r, s′, µ, λ)
13: if λ = 1 then
14: Store τ in Da
15: else
16: Store τ in Dc
17: end if
18: end for

19: Update critic:
20: Sample minibatch of n tuples {τi = (si, ai, ri, s

′
i, µi, λi)}

from Dc
21: yi ← ri + γmax

µ
Qµ(s′i|θ) for each τi

22: θ ← θ + α(1
n

∑
i(yi −Qµi(si|θ))

∂Qµi (si|θ)
∂θ

)

23: Update actors:
24: Sample minibatch of n tuples {τj =

(sj , aj , rj , s
′
j , µj , λj)} from Da

25: for each τj do
26: yj ← max

µ
Qµ(sj |θ)

27: y′j ← rj + γmax
µ
Qµ(s′j |θ)

28: if y′j > yj then

29: θ ← θ + α(1
n

(aj −Aµj (sj |θ))
∂Aµj (sj |θ))

∂θ
)

30: end if
31: end for
32: end while

Initialization: The actor and critic buffers are initialized with 50k
tuples from a random policy that selects an action uniformly from
the initial action set for each cycle. Each of the initial actions are
manually associated with a subset of the available actors using the
actor bias. When recording an initial experience tuple, µ will be
randomly assigned to be one of the actors in its respective set.

7 Results

The motions resulting from the learned policies are best seen in
the supplemental video. The majority of the results we present
are on policies for the dog, as learned for the 7 different classes
of terrain shown in Figure 9. By default, each policy uses three
actor-critic pairs. The final policies are the result of 300k itera-
tions of training, collecting about 10 million tuples, and requiring
approximately 20h of compute time on a 16-core cluster, using
a multithreaded C++ implementation. All networks are built and
trained using Caffe [Jia et al. 2014]. Source code is available at
https://github.com/xbpeng/DeepTerrainRL. The learning time re-
mains dominated by the cost of simulating the motion of the char-
acter rather than the neural network updates. Because of this, we
did not pursue the use of GPU-accelerated training. Once the con-

6

https://github.com/xbpeng/DeepTerrainRL

To appear in ACM TOG 35(4).

(a) mixed terrain

(b) slopes-mixed terrain

(c) narrow-gaps terrain

(d) tight-gaps terrain

(e) slopes-gaps terrain

(f) slopes-steps terrain

(g) slopes-walls terrain

Figure 9: Dog control policies.

trol policies have been learned, all results run faster than real time.
Exploration is turned off during the evaluation of the control poli-
cies. Separate policies are learned for each class of terrain. The
development of a single policy that would be capable of all these
terrain classes is left as future work.

In order to evaluate attributes of the learning algorithm, we use the
mean distance before a fall as our performance metric, as measured
across 250 evaluations. We do not use the Q-function estimates
computed by the policies for evaluation as these can over time pro-
vide inflated estimates of the cumulative rewards that constitute the
true objective.

We compare the final performance of using a mixture of three
actor-critic experts, i.e., MACE(3), to two alternatives. First, we
compare to Double Q-learning using a set of DNN approximators,
Qi(s), for each of the 8 initial actions [Van Hasselt et al. 2015].
This is motivated by the impressive success of DNNs in learning
control policies for discrete action spaces [Mnih et al. 2015]. We
use a similar DNN architecture to the network shown in Figure 8,
except for the exclusion of the actor subnetworks. Second, we
compare against the CACLA algorithm [Van Hasselt 2012]. In our
case, CACLA is identical to MACE(1), except without the use of a
critic buffer, which means that CACLA uses all experience tuples
to update the critic, while MACE(1) only uses the tuples generated

Scenario Performance (m)
dog + mixed: MACE(3) 2094
dog + mixed: Q 194
dog + mixed: CACLA 1095
dog + slopes-mixed: MACE(3) 1364
dog + slopes-mixed: Q 110
dog + slopes-mixed: CACLA 739
dog + narrow-gaps: MACE(3) 176
dog + narrow-gaps: Q 74
dog + narrow-gaps: CACLA 38
dog + tight-gaps: MACE(3) 44
dog + slopes-gaps: MACE(3) 1916
dog + slopes-steps: MACE(3) 3782
dog + slopes-walls: MACE(3) 4312
goat + variable-steps: MACE(3) 1004
raptor + mixed: MACE(3) 1111
raptor + slopes-mixed: MACE(3) 562
raptor + narrow-gaps: MACE(3) 145

Table 1: Performance of the final policies.

without applied exploration noise. In practice, we often find the
performance of CACLA and MACE(1) to be similar.

Table 1 gives the final performance numbers for all the control
policies, including the MACE/Q/CACLA comparisons. The final
mean performance may not always tell the full story, and thus his-
tograms of the performance distributions are provided in the sup-
plemental material, i.e., Figures 16–19, and we also compare the
learning curves, as we shall discuss shortly. MACE(3) significantly
outperforms Q-learning and CACLA for all three terrain classes
used for comparison. In two out of three terrain classes, CACLA
outperforms Q-learning with discrete actions. This may reflect the
importance of being able to learn new actions. As measured by
their final performance, all three approaches rank the terrains in
the same order in terms of difficulty: narrow-gaps (hardest),
slopes-mixed, mixed (easiest). The tight-gaps terrain
proved to be the most difficult for MACE(3); it consists of the
same types of gaps as narrow-gaps, but with half the recovery
distance between sequences of gaps.

In addition to the dog, we apply MACE(3) to learn control policies
for other characters and terrain types, as shown in Figure 10.
The raptor model uses a 4-states-per-step finite state machine con-
troller, with fixed 0.0825 s state transitions and a final state transi-
tion occurring when the swing foot strikes the ground. The control
policy is invoked at the start of each step to make a decision with
regard to the FSM parameters to apply in the next step. It uses a set
of 28 control parameters, similar to those of the dog. We also ex-
plored goat locomotion by training the dog to climb never-ending
sequences of steep steps that have variable widths and heights. A
set of 5 initial actions are provided, corresponding to jumps of
heights varying from 0.2 m to 0.75 m, and 3 of which are used
as the initial actor biases. Though the character uses the same un-
derlying model as the dog, it is rendered as a goat in the figures
and video as homage to the inspiration for this scenario.

In Figure 11, we provide learning curve comparisons for differ-
ent architectures and algorithm features. As before, we evaluate
performance by measuring the mean distance before a fall across
100 randomly generated terrains. Figure 11(a) compares MACE(3)
with discrete-action-set Q-learning and CACLA, as measured for
the dog on mixed terrain. The Q-learning plateaus after 50k iter-
ations, while CACLA continues to improve with further learning
iterations, but at a slower rate than MACE(3).

Figure 11(b) shows the effects of disabling features of MACE
that are enabled by default. Boltzmann exploration has a signifi-

7

To appear in ACM TOG 35(4).

(a) Raptor mixed terrain

(b) Raptor slopes-mixed terrain

(c) Raptor narrow-gaps terrain

(d) Goat on variable-steps terrain

Figure 10: Other Control Policies

cant impact on learning. This is likely because it helps to encour-
age specialization by selecting actors with high predictedQ-values
more frequently, while also enabling exploration of multiple actors
in cases where they share similar predicted values, thus helping to
better disambiguate between the utilities of the different actors.
The actor buffer has a large impact, as it allows learning to focus
on exploratory actions that yielded an improvement. The initial use
of actor bias also proves to be significant, which we attribute to the
breaking of initial symmetry between the actor-critic pairs. Lastly,
the critic buffer, which enables the critics to learn exclusively from
the actions of the deterministic actor policies without exploration
noise, does not show a significant benefit for this particular exam-
ple. However, we found the critic buffer to yield improved learning
in earlier experiments, and we further keep this feature because of
the more principled learning that it enables.

Figure 11(c) shows the impact of the number of actor-critic
pairs, comparing MACE(1), MACE(2), MACE(3), MACE(6) for
the dog on mixed terrain. MACE(2) and MACE(3) yield the best
learning performance, while MACE(6) results in a drop in learn-
ing performance, and MACE(1) is the worst. A larger number of
actor-critic pairs allows for increased specialization, but results in
fewer learning tuples for each actor-critic pair, given that our cur-
rent MACE learning method only allows for a single actor-critic
pair to learn from a particular tuple.

Learning good control policies requires learning new actions that
yield improved performance. The MACE architecture supports
actor-critic specialization by having multiple experts that can spe-
cialize in different motions, as well as taking advantage of unique
biases for each actor to encourage diversity in their specializations.
Figure 12 illustrates the space of policy actions early and late in
the learning process. This visualization is created using t-SNE
(t-distributed Stochastic Neighbor Embedding) [van der Maaten
and Hinton 2008], where a single embedding is constructed using
all the action samples collected at various iterations in the train-
ing process. Samples from each iteration are then rendered sepa-
rately. The numbers embedded in the plots correspond to the set of

(a) MACE(3) vs CACLA and Q-learning on mixed terrain

(b) MACE(3) with features disabled.

(c) MACE(n) for various number of actors.

Figure 11: Comparisons of learning performance.

8 initial actions. The actions begin nearby the initial actions, then
evolve over time as demanded by the task, while remaining spe-
cialized. The evolution of the actions during learning is best seen
in the supplementary videos.

To encourage actor specialization, the actor-specific initialization

8

To appear in ACM TOG 35(4).

(a) 10k iterations (b) 300k iterations

Figure 12: Action space evolution for using MACE(3) with initial
actor bias.

(a) 10k iterations (b) 300k iterations

Figure 13: Action space evolution for using MACE(3) without ini-
tial actor bias.

bias helps to break symmetry early on in the learning process.
Without this initial bias, the benefit of multiple actor-critic ex-
perts is diminished. Figure 13 illustrates that actor specialization
is much less evident when all actors receive the same initial bias,
i.e., the fast run for the dog.

We test the generalization capability of the MACE(3) policy for
the dog in the slopes-mixed terrain, which can be parame-
terized according to a scale parameter, ψ, that acts a multiplier
for the size of all the gaps, steps, and walls. Here, ψ > 1
implies more difficult terrains, while ψ < 1 implies easier ter-
rains. Figure 14 shows that the performance degrades grace-
fully as the terrain difficulty is increased. To test the perfor-
mance of the policies when applied to unfamiliar terrain, i.e.,
terrains not encountered during training, we apply the policy
trained in mixed to slopes-mixed, slopes-gaps to
slopes-mixed, and slopes-mixed to slopes-gaps. Ta-
ble 1 summarizes the results of each scenario. The policies perform
poorly when encountering unfamiliar obstacles, such as slopes for
the mixed policy and walls for the slopes-gaps policy. The
slopes-mixed policy performs well in slopes-gaps, since
it has been previously exposed to gaps in slopes-mixed, but
nonetheless does not reach a similar level of performance as the
policy trained specifically for slopes-gaps.

8 Discussion

The use of a predefined action parameterization helps to pro-
vide a significant degree of action abstraction as compared to other
recent deep-RL methods that attempt to learn control policies that

Scenario Perf. (m)
mixed policy in slopes-mixed 80
slopes-gaps policy in slopes-mixed 35
slopes-mixed policy in slopes-gaps 1545

Table 2: Performance of applying policies to unfamiliar terrains.

Figure 14: Policy generalization to easier and more-difficult ter-
rains.

are directly based on joint torques, e.g., [Levine and Abbeel 2014;
Levine and Koltun 2014; Mordatch and Todorov 2014; Mordatch
et al. 2015; Heess et al. 2015; Lillicrap et al. 2015]. Instead of
focusing on the considerable complexities and challenges of tab-
ula rasa learning we show that deep-RL enables new capabilities
for physics-based character animation, as demonstrated by agile
dynamic locomotion across a multitude of terrain types. In future
work, it will be interesting to explore the best ways of learning ac-
tion abstractions and of determining the benefits, if any, of work-
ing with actuation that allows for control of stiffness, as allowed
by PD-controllers or muscles.

Our overall learning approach is quite different from methods that
interleave trajectory optimization (to generate reference data)
and neural network regression for supervised learning of the con-
trol policy [Levine and Abbeel 2014; Levine and Koltun 2014;
Mordatch and Todorov 2014; Mordatch et al. 2015]. The key role
of trajectory optimization makes these methods strongly model-
based, with the caveat that the models themselves can possibly be
learned. In contrast, our approach does not need an oracle that can
provide reference solutions. Another important difference is that
much of our network is devoted to processing the high-dimensional
terrain description that comprises a majority of our high-D state
description.

Recent methods have also demonstrated the use of more direct
policy-gradient methods with deep neural network architectures.
This involves chaining a state-action value function approxima-
tor in sequence with a control policy approximator, which then
allows for backpropagation of the value function gradients back
to the control policy parameters, e.g., [Silver et al. 2014; Lilli-
crap et al. 2015]. Recent work applies this approach with pre-
defined parameterized action abstractions [Hausknecht and Stone
2015]. We leave comparisons to these methods as important fu-
ture work. To our knowledge, these methods have not yet been
shown to be capable of highly dynamic terrain-adaptive motions.
Our work shares many of the same challenges of these methods,
such as making stationary-distribution assumptions which are then
violated in practice. We do not yet demonstrated the ability to work
directly with input images to represent character state features, as
shown by others [Lillicrap et al. 2015].

We provide a qualitative comparison to previous work using non-
parametric methods for similar terrain locomotion problems [Peng
et al. 2015] in the supplemental video for this paper. We have not
yet performed a quantitative comparison; the performance metrics
are not directly comparable given the use of simulated dogs of dif-
ferent sizes as well as physics engines that exhibit differences in
their modeling of contact friction, and further minor differences

9

To appear in ACM TOG 35(4).

in the control parameterization. Our simulated dog has a shorter
stride duration than the previous work, as might be expected from
its smaller size. However, it travels at a similar absolute speed
and therefore covers almost double the number of body lengths
per unit time. Our work is distinct in its ability to learn policies
from high-D state descriptors, without needing to rely on hand-
crafted character-state or terrain-state features. We would expect
to see worse performance from the non-parametric method for ter-
rains such as mixed-slopes and narrow gaps because of the diffi-
culty of designing meaningful compact state descriptors for such
terrains. We further note that only a single actor-critic is employed
in [Peng et al. 2015], thereby making it most similar to CACLA
and MACE(1) which exhibit significantly slower learning in our
tests. Another salient difference is that on-policy updates to the
critic in MACE can result in decreases to the state-value function
for a given state, as should be the case, whereas this was not the
case in the non-parametric approach because of its inherent opti-
mism in retaining the best performing tuples.

We have encountered difficult terrains for which learning does
not succeed, such as those that have small scale roughness, i.e.,
bumps 20-40 cm in width that are added to the other terrain fea-
tures. With extensive training of 500k iterations, the dog is capable
of performing robust navigation across the tight-gaps terrain,
thereby in some sense “aiming for” the best intermediate landing
location. However, we have not yet seen that a generalized ver-
sion of this capability can be achieved, i.e., one that can find a
suitable sequence of foot-holds if one exists. Challenging terrains
may need to learn new actions and therefore demand a carefully
staged learning process. A common failure mode is that of intro-
ducing overly-challenging terrains which therefore always cause
early failures and a commensurate lack of learning progress.

There remain many architecture hyperparameters that we set
based on limited experimentation, including the number of lay-
ers, the number of units per layer, regularization parameters, and
learning batch size. The space of possible network architectures is
large and we have explored this in only a minimal way. The magni-
tude of exploration for each action parameter is currently manually
specified; we wish to develop automated solutions for this. Also
of note is that all the actors and critics for any given controller cur-
rently share most of their network structure, branching only near
the last layers of the network. We would like to explore the benefit,
if any, of allowing individual critic and actor networks, thereby al-
lowing additional freedom to utilize more representational power
for the relevant aspects of their specialization. We also note that
a given actor in the mixture may become irrelevant if its expected
performance, as modeled by its critic, is never better than that of its
peers for all encountered states. This occurs for MACE(3) when
applied to the goat on variable-steps, where the distribution
of actor usages is (57, 0, 43), with all figures expressed as percent-
ages. Other example usage patterns are (43,48,9) for the dog on
mixed, (23,66,11) for dog on slopes-mixed, and (17,73,10)
for dog on narrow-gaps. One possible remedy to explore in fu-
ture work would be to reinitialize an obsolete actor-critic pair with
a copy of one of its more successful peers.

We wish to develop principled methods for integrating multiple
controllers that are each trained for a specific class of terrain.
This would allow for successful divide-and-conquer development
of control strategies. Recent work has tackled this problem in do-
mains involving discrete actions [Parisotto et al. 2015]. One obvi-
ous approach is to use another mixture model, wherein each policy
is queried for its expected Q-value, which is in turn modeled as the
best Q-value of its individual actors. In effect, each policy would
perform its own analysis of the terrain for the suitability of its ac-
tions. However, this ignores the fact that the Q-values also depend
on the expected distributions of the upcoming character states and
terrain, which remain specific to the given class of terrain. Another

problem is the lack of a model for the uncertainty of Q-value esti-
mates. Nevertheless, this approach may yield reasonable results in
many situations that do not demand extensive terrain-specific an-
ticipation. The addition of models to predict the state would allow
for more explicit prediction and planning based on the available set
of controllers. We believe that the tradeoff between implicit plan-
ning, as embodied by the actor-critic network, and explicit plan-
ning, as becomes possible with learned forward models, will be a
fruitful area for further reseach.

We have not yet demonstrated 3D terrain adaptive locomotion.
We expect that the major challenge for 3D will arise in the case of
terrain structure that requires identifying specific feasible foothold
sequences. The capacity limits of a MACE(n) policy remain un-
known.

Control policies for difficult terrains may need to be learned in a
progressive fashion via some form of curriculum learning, es-
pecially for scenarios where the initial random policy performs
so poorly that no meaningful directions for improvement can be
found. Self-paced learning is also a promising direction, where the
terrain difficulty is increased once a desired level of competence
is achieved with the current terrain difficulty. It may be possible
to design the terrain generator to work in concert with the learning
process by synthesizing terrains with a bias towards situations that
are known to be problematic. This would allow for “purposeful
practice” and for learning responses to rare events. Other paths
towards more data-efficient learning include the ability to transfer
aspects of learned solutions between classes of terrain, develop-
ing an explicit reduced-dimensionality action space, and learning
models of the dynamics, e.g., [Assael et al. 2015]. It would also
be interesting to explore the coevolution of the character and its
control policies.

It is not yet clear how to best enable control of the motion style.
The parameterization of the action space, the initial bootstrap ac-
tions, and the reward function all provide some influence over the
final motion styles of the control policy. Available reference mo-
tions could be used to help develop the initial actions or used to
help design style rewards.

9 Conclusions

We have presented a novel deep reinforcement learning architec-
ture, based on CACLA-style learning and a mixture of actor-critic
experts. We identify a number of other architectural features that
lead to improved performance, including initial actor biases, sep-
arate replay buffers for actor and critic updates, and Boltzmann
exploration. The architecture enables the development of control
policies that can work directly with high-dimensional state descrip-
tions for highly-dynamic terrain adaptive locomotion. This avoids
the need to engineer compact hand-crafted feature descriptors and
allows policies to be learned for classes of terrain for which it may
not be easy to develop compact feature descriptors. We believe
that the state of the art in physics-based character control will see
rapid and significant advances in the coming years, as enabled by
deep RL methods.

10 Acknowledgments

We thank KangKang Yin for her significant help in providing com-
putational resources for this project, the anonymous reviewers for
their helpful feedback. and NSERC for funding this research via a
Discovery Grant (RGPIN-2015-04843).

10

To appear in ACM TOG 35(4).

References

ASSAEL, J.-A. M., WAHLSTRÖM, N., SCHÖN, T. B., AND
DEISENROTH, M. P. 2015. Data-efficient learning of feed-
back policies from image pixels using deep dynamical models.
arXiv preprint arXiv:1510.02173.

BULLET, 2015. Bullet physics library, Dec.
http://bulletphysics.org.

CALINON, S., KORMUSHEV, P., AND CALDWELL, D. G. 2013.
Compliant skills acquisition and multi-optima policy search
with em-based reinforcement learning. Robotics and Au-
tonomous Systems 61, 4, 369–379.

COROS, S., BEAUDOIN, P., YIN, K. K., AND VAN DE PANNE,
M. 2008. Synthesis of constrained walking skills. ACM Trans.
Graph. 27, 5, Article 113.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009.
Robust task-based control policies for physics-based characters.
ACM Transctions on Graphics 28, 5, Article 170.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Gen-
eralized biped walking control. ACM Transctions on Graphics
29, 4, Article 130.

COROS, S., KARPATHY, A., JONES, B., REVERET, L., AND
VAN DE PANNE, M. 2011. Locomotion skills for simulated
quadrupeds. ACM Transactions on Graphics 30, 4, Article 59.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive
simulation of stylized human locomotion. ACM Trans. Graph.
27, 3, Article 82.

DA SILVA, M., DURAND, F., AND POPOVIĆ, J. 2009. Linear
bellman combination for control of character animation. ACM
Trans. Graph. 28, 3, Article 82.

DOYA, K., SAMEJIMA, K., KATAGIRI, K.-I., AND KAWATO, M.
2002. Multiple model-based reinforcement learning. Neural
computation 14, 6, 1347–1369.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proceedings of SIGGRAPH 2001, 251–260.

FEATHERSTONE, R. 2014. Rigid body dynamics algorithms.
Springer.

GEIJTENBEEK, T., AND PRONOST, N. 2012. Interactive character
animation using simulated physics: A state-of-the-art review.
In Computer Graphics Forum, vol. 31, Wiley Online Library,
2492–2515.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998.
Neuroanimator: Fast neural network emulation and control
of physics-based models. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques,
ACM, 9–20.

HANSEN, N. 2006. The cma evolution strategy: A comparing
review. In Towards a New Evolutionary Computation, 75–102.

HARUNO, M., WOLPERT, D. H., AND KAWATO, M. 2001. Mo-
saic model for sensorimotor learning and control. Neural com-
putation 13, 10, 2201–2220.

HAUSKNECHT, M., AND STONE, P. 2015. Deep reinforce-
ment learning in parameterized action space. arXiv preprint
arXiv:1511.04143.

HEESS, N., WAYNE, G., SILVER, D., LILLICRAP, T., EREZ, T.,
AND TASSA, Y. 2015. Learning continuous control policies by

stochastic value gradients. In Advances in Neural Information
Processing Systems, 2926–2934.

HESTER, T., AND STONE, P. 2013. Texplore: real-time sample-
efficient reinforcement learning for robots. Machine Learning
90, 3, 385–429.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In Pro-
ceedings of SIGGRAPH 1995, 71–78.

JACOBS, R. A., JORDAN, M. I., NOWLAN, S. J., AND HINTON,
G. E. 1991. Adaptive mixtures of local experts. Neural com-
putation 3, 1, 79–87.

JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG,
J., GIRSHICK, R., GUADARRAMA, S., AND DARRELL, T.
2014. Caffe: Convolutional architecture for fast feature em-
bedding. In Proceedings of the ACM International Conference
on Multimedia, ACM, New York, NY, USA, MM ’14, 675–678.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. 1996. Limit
cycle control and its application to the animation of balancing
and walking. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, ACM, 155–162.

LEE, J., AND LEE, K. H. 2006. Precomputing avatar behavior
from human motion data. Graphical Models 68, 2, 158–174.

LEE, Y., LEE, S. J., AND POPOVIĆ, Z. 2009. Compact character
controllers. ACM Transctions on Graphics 28, 5, Article 169.

LEE, Y., WAMPLER, K., BERNSTEIN, G., POPOVIĆ, J., AND
POPOVIĆ, Z. 2010. Motion fields for interactive character lo-
comotion. ACM Transctions on Graphics 29, 6, Article 138.

LEE, Y., KIM, S., AND LEE, J. 2010. Data-driven biped control.
ACM Transctions on Graphics 29, 4, Article 129.

LEVINE, S., AND ABBEEL, P. 2014. Learning neural net-
work policies with guided policy search under unknown dy-
namics. In Advances in Neural Information Processing Systems
27, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Weinberger, Eds. Curran Associates, Inc., 1071–1079.

LEVINE, S., AND KOLTUN, V. 2014. Learning complex neural
network policies with trajectory optimization. In Proceedings of
the 31st International Conference on Machine Learning (ICML-
14), 829–837.

LEVINE, S., WANG, J. M., HARAUX, A., POPOVIĆ, Z., AND
KOLTUN, V. 2012. Continuous character control with low-
dimensional embeddings. ACM Transactions on Graphics
(TOG) 31, 4, 28.

LEVINE, S., FINN, C., DARRELL, T., AND ABBEEL, P. 2015.
End-to-end training of deep visuomotor policies. arXiv preprint
arXiv:1504.00702.

LILLICRAP, T. P., HUNT, J. J., PRITZEL, A., HEESS, N., EREZ,
T., TASSA, Y., SILVER, D., AND WIERSTRA, D. 2015.
Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

LIU, L., YIN, K., VAN DE PANNE, M., AND GUO, B. 2012. Ter-
rain runner: control, parameterization, composition, and plan-
ning for highly dynamic motions. ACM Trans. Graph. 31, 6,
154.

MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VE-
NESS, J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER,
M., FIDJELAND, A. K., OSTROVSKI, G., ET AL. 2015.
Human-level control through deep reinforcement learning. Na-
ture 518, 7540, 529–533.

11

To appear in ACM TOG 35(4).

MORDATCH, I., AND TODOROV, E. 2014. Combining the ben-
efits of function approximation and trajectory optimization. In
Robotics: Science and Systems (RSS).

MORDATCH, I., DE LASA, M., AND HERTZMANN, A. 2010.
Robust physics-based locomotion using low-dimensional plan-
ning. ACM Trans. Graph. 29, 4, Article 71.

MORDATCH, I., LOWREY, K., ANDREW, G., POPOVIC, Z., AND
TODOROV, E. V. 2015. Interactive control of diverse complex
characters with neural networks. In Advances in Neural Infor-
mation Processing Systems, 3114–3122.

MUICO, U., LEE, Y., POPOVIĆ, J., AND POPOVIĆ, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Trans. Graph. 28, 3, Article 81.

MUICO, U., POPOVIĆ, J., AND POPOVIĆ, Z. 2011. Composite
control of physically simulated characters. ACM Trans. Graph.
30, 3, Article 16.

NAIR, A., SRINIVASAN, P., BLACKWELL, S., ALCICEK, C.,
FEARON, R., DE MARIA, A., PANNEERSHELVAM, V., SU-
LEYMAN, M., BEATTIE, C., PETERSEN, S., ET AL. 2015.
Massively parallel methods for deep reinforcement learning.
arXiv preprint arXiv:1507.04296.

PARISOTTO, E., BA, J. L., AND SALAKHUTDINOV, R. 2015.
Actor-mimic: Deep multitask and transfer reinforcement learn-
ing. arXiv preprint arXiv:1511.06342.

PASTOR, P., KALAKRISHNAN, M., RIGHETTI, L., AND
SCHAAL, S. 2012. Towards associative skill memories. In
Humanoid Robots (Humanoids), 2012 12th IEEE-RAS Interna-
tional Conference on, IEEE, 309–315.

PENG, X. B., BERSETH, G., AND VAN DE PANNE, M. 2015.
Dynamic terrain traversal skills using reinforcement learning.
ACM Transactions on Graphics 34, 4.

RUSU, A. A., COLMENAREJO, S. G., GULCEHRE, C., DES-
JARDINS, G., KIRKPATRICK, J., PASCANU, R., MNIH, V.,
KAVUKCUOGLU, K., AND HADSELL, R. 2015. Policy dis-
tillation. arXiv preprint arXiv:1511.06295.

SCHAUL, T., QUAN, J., ANTONOGLOU, I., AND SILVER,
D. 2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

SCHULMAN, J., LEVINE, S., MORITZ, P., JORDAN, M. I., AND
ABBEEL, P. 2015. Trust region policy optimization. CoRR
abs/1502.05477.

SILVER, D., LEVER, G., HEESS, N., DEGRIS, T., WIERSTRA,
D., AND RIEDMILLER, M. 2014. Deterministic policy gradient
algorithms. In ICML.

SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped
behaviors from human motion data. ACM Trans. Graph. 26, 3,
Article 107.

STADIE, B. C., LEVINE, S., AND ABBEEL, P. 2015. Incentiviz-
ing exploration in reinforcement learning with deep predictive
models. arXiv preprint arXiv:1507.00814.

TAN, J., LIU, K., AND TURK, G. 2011. Stable proportional-
derivative controllers. Computer Graphics and Applications,
IEEE 31, 4, 34–44.

TAN, J., GU, Y., LIU, C. K., AND TURK, G. 2014. Learning
bicycle stunts. ACM Transactions on Graphics (TOG) 33, 4,
50.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
character animation with continuous control. ACM Transactions
on Graphics (TOG) 26, 3, Article 7.

UCHIBE, E., AND DOYA, K. 2004. Competitive-cooperative-
concurrent reinforcement learning with importance sampling.
In Proc. of International Conference on Simulation of Adaptive
Behavior: From Animals and Animats, 287–296.

VAN DER MAATEN, L., AND HINTON, G. E. 2008. Visualizing
high-dimensional data using t-sne. Journal of Machine Learn-
ing Research 9, 2579–2605.

VAN HASSELT, H., AND WIERING, M. A. 2007. Reinforce-
ment learning in continuous action spaces. In Approximate Dy-
namic Programming and Reinforcement Learning, 2007. AD-
PRL 2007. IEEE International Symposium on, IEEE, 272–279.

VAN HASSELT, H., GUEZ, A., AND SILVER, D. 2015. Deep
reinforcement learning with double q-learning. arXiv preprint
arXiv:1509.06461.

VAN HASSELT, H. 2012. Reinforcement learning in continuous
state and action spaces. In Reinforcement Learning. Springer,
207–251.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Opti-
mizing walking controllers. ACM Transctions on Graphics 28,
5, Article 168.

WIERING, M., AND VAN HASSELT, H. 2008. Ensemble algo-
rithms in reinforcement learning. Systems, Man, and Cybernet-
ics, Part B: Cybernetics, IEEE Transactions on 38, 4, 930–936.

YE, Y., AND LIU, C. K. 2010. Optimal feedback control for char-
acter animation using an abstract model. ACM Trans. Graph.
29, 4, Article 74.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon:
Simple biped locomotion control. ACM Transctions on Graph-
ics 26, 3, Article 105.

YIN, K., COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M.
2008. Continuation methods for adapting simulated skills. ACM
Transctions on Graphics 27, 3, Article 81.

12

To appear in ACM TOG 35(4).

A Performance Histograms

(a) MACE mixed

(b) CACLA mixed

(c) Q mixed

Figure 15: Performance Histograms

(a) MACE narrow-gaps

(b) CACLA narrow-gaps

(c) Q narrow-gaps

Figure 16: Performance Histograms

13

To appear in ACM TOG 35(4).

(a) MACE slopes-mixed

(b) CACLA slopes-mixed

(c) Q slopes-mixed

Figure 17: Performance Histograms

(a) MACE slopes-gaps

(b) MACE slopes-steps

(c) MACE slopes-walls

Figure 18: Performance Histograms

14

To appear in ACM TOG 35(4).

(a) MACE tight-gaps

Figure 19: Performance Histograms

15

