The Gamma Database Machine Project

David DeWitt, Shahram Ghandeharizadeh, Donovan Schcheider, Allan Bricker, Hui-i Hsiao, and Rick Rasmussen

> Slides adopted from those of Deepak Bastakoty, and Ghandeharizadeh and DeWitt, Jianhao Cao

> > Presenter: Tanya Prasad Discussion Leader: Jonas Tai UBC CPSC 504 – 2023.03.06

U Why parallel databases?

- Obtain faster response time
- Increase query throughput
- Improve robustness to failure
- Reduce processor workload
- Enable scalability

DIRECT

- Early parallel database project
- Shared memory
- Centralized control of parallel algorithms

DIRECT

- Early parallel database project
- Shared memory
- Centralized control of parallel algorithms

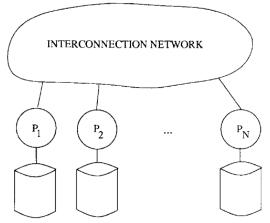
```
Impossible to scale the architecture
to hundreds of processors!
```

Share-nothing

• Each processor has it own memory or disk(s)

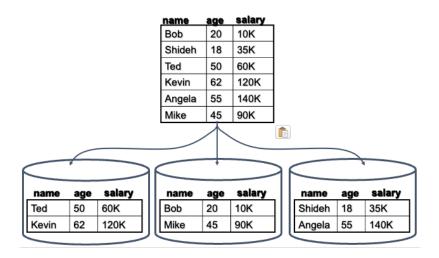
Hash-based parallel algorithms

No need for centralized control



Horizontal partitioning (declustering)

- Tuples of a relation distributed over multiple disks.
- Round robin; hashed; range partitioned



Hardware Architecture

GAMMA 1.0

- 17 VAX 11/750 processors, each with 2 MB memory
- Another VAX as the host machine
- An 80 Mb/s token ring to connect processors
- 8 processors attached with 333 MB disk drivers

Problems

- The token ring network packet size is too small (2K bytes)
- The bandwidth mismatch between the token ring and the Unibus on the 11/750
- Insufficient memory for each processor

Hardware Architecture

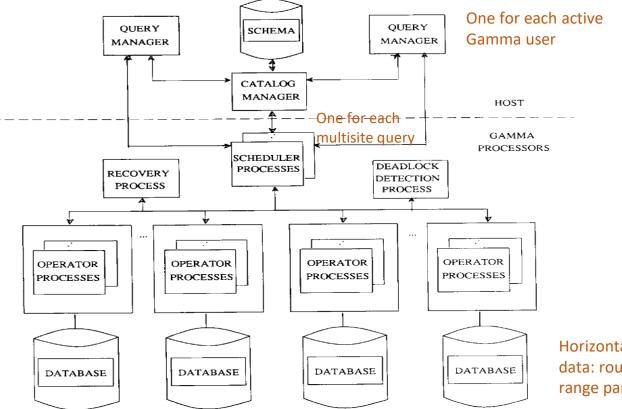
GAMMA 2.0

- 32 processor iPSC/2 hypercube from Intel
- 386 CPU, 8 MB memory
- 330 MB MAXTOR 4380 disk drive with a 45 KB RAM buffer
- Custom VLSI routing modules for network communication
- NOSE (Gamma's OS) run as a thread package inside a process

Discussion 1 (Groups of 3, at least 1 Systems)

- As some of you pointed out in their reviews, the authors spend a lot of time talking about hardware
 - Issues in Gamma Version 1.0 such as insufficient memory
 - Problems with the disk controller in Gamma Version 2.0
 - Conversion problems because of different addressing schemes
- What do you think was the motivation to include this long section about the hardware and the problems they faced?
- Do you think the experiences they made with the chosen hardware strengthen, weaken or do not impact the paper?

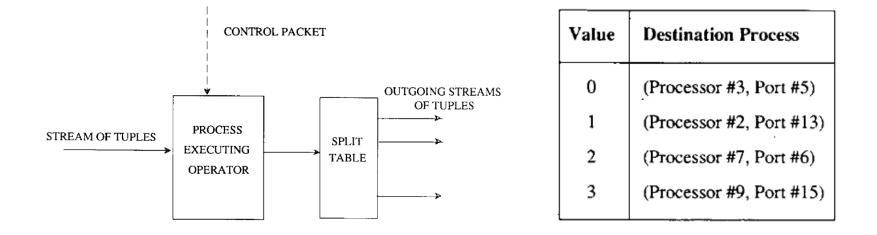
Software Architecture

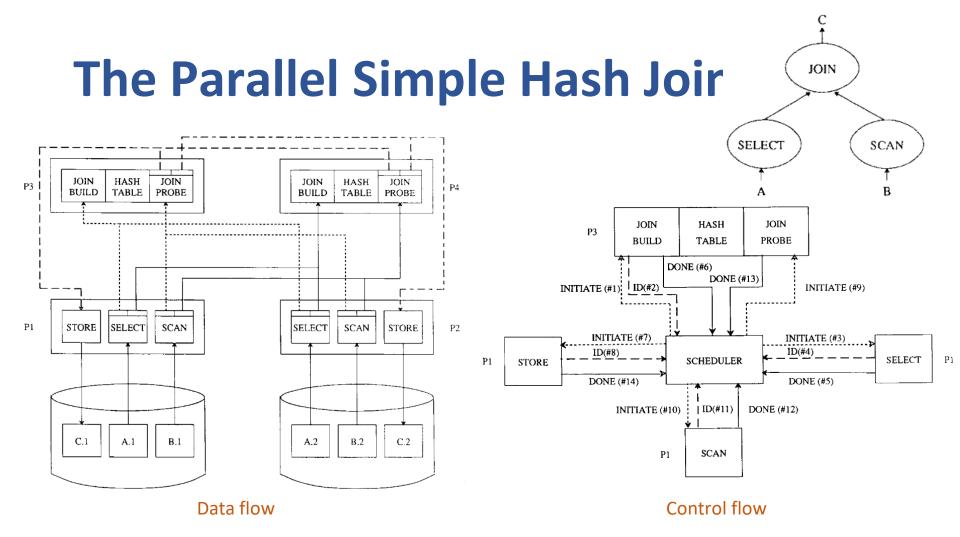


Horizontally partitioned data: round robin; hashed; range partitioned

Software Architecture

The split table defines a mapping of values to a set of destination processes.





Query Processing

Selection

- Selection on the partitioning attribute
 - Direct the selection to a subset of node if hash or range partitioned.
 - Initiate the selection on all nodes if round-robin partitioned.

🖵 Join

- Partition relations into disjoint subsets (buckets) by hashing on the join attribute.
- Four types of parallel joins: sort-merge, Grace, Simple, Hybrid.
- The Hybrid hash join almost always provides the best performance.

The Parallel Hybrid Hash Join

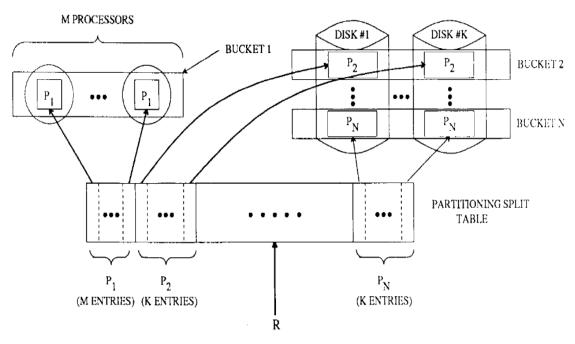


Fig. 8. Partitioning of R into N logical buckets for hybrid hash-join.

- A partitioning split table separates the relations into N logical buckets.
- A joining table sends tuples in the first bucket to M processors for the join operation.
- In-memory hash table for the first bucket of the inner table to be joined with the first bucket of the outer table.
- The N-1 buckets are temporarily stored on disks.

Query Processing Algorithms

Aggregate functions

- Each processor computes a partial results on its partition.
- The processors redistribute the results on hashing on the "group by" attribute.

Update operators

- Most operators are implemented with standard techniques.
- A replace operator will send a tuple to the partition to which it belongs.

Transaction and Failure Management

Concurrency control

- Two-phase locking.
- A local lock manager with a lock table and a transaction wait-for-graph.
- A centralized deadlock detector communicate with each node.

Recovery and Log manager

- A log record is generated when a tuple is updated.
- Log records are sent to one or more log managers.
- The log manager keeps track of the last flushed record from each node.
- The buffer managers observe the WAL protocol.

Data Placement

Chained declustering

Node	0	1	2	3	4	5	6	7
Primary Copy	R0	R1	R2	R3	R4	R5	R6	R 7
Backup Copy	r7	г0	гl	r2	r3	г4	г5	r6

Interleaved declustering

_		Clus	ter 0		Cluster 1					
Node	0	1	2	3	4	5	6	7		
Primary Copy	R0	R 1	R2	R3	R4	R5	R6	R7		
Backup Copy		r0.0	r0.1	r0.2		r4.0	r4.1	r4.2		
	r1.2		r1.0	r1.1	r5.2		r5.0	r5.1		
	r2.1	т2.2		r2.0	гб.1	r6.2		r6.0		
	г3.0	г3.1	r3.2		r7.0	r7.1	r7.2			

Load Balancing When One Node Fails

Node	0	1	2	3	4	5	6	7
Primary Copy	R0	<u> </u>	R2	R3	R4	R5	R6	R7
Backup Copy	r7	.t	r1	r2	r3	r4	r5	r6
Node	0	1	2	3	4	5	6	7
Primary Copy	R0		$\frac{1}{7}$ R2	$\frac{2}{7}$ R3	$\frac{3}{7}$ R4	$\frac{4}{7}$ R5	$\frac{5}{7}$ R6	$\frac{6}{7}$ R7
Backup Copy	$\frac{1}{7}$ r7		r1	$\frac{6}{7}$ r2	$\frac{5}{7}$ r3	$\frac{4}{7}$ r4	$\frac{3}{7}$ r5	$\frac{2}{7}$ r6

Access both the primary and backup copies to balance load on each node.

Ideal Parallelism

Speedup

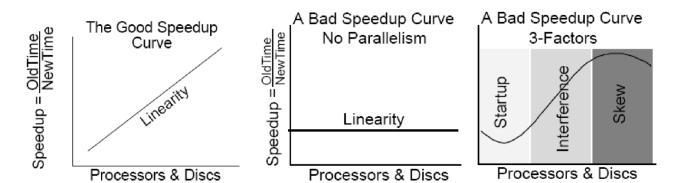
Given a system with 1 node, does adding *n* nodes speed it up with a factor of *n* ?

Speedup = $\frac{small_system_elapsed_time}{big_system_elapsed_time}$

Scaleup

Given a system with 1 node, does the response time remain the same with *n* nodes ?

Scaleup = $\frac{small_system_elapsed_time_on_small_problem}{big_system_elapsed_time_on_big_problem}$



Discussion 2 (Groups of 4)

- The Gamma database paper is quite old (as you probably also noticed from the used hardware).
- What kind of use cases do you think did the authors have in mind?
- Why do you think parallel databases were not a big breakthrough at the time?
- How do you think the demand for parallel databases has changed since then?

Conclusion

Three key ideas that enables Gamma to be scaled to hundreds of processors:

- Horizontally partitioned relations
- Extensive use of hash-based parallel algorithms
- Dataflow scheduling techniques for multioperator queries

MapReduce: Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat Google, OSDI 2004

Slides based on those by authors and other online sources

Presenter: Tanya Prasad

- Large scale data processing
 - Using hundreds or thousands of machines but without the hassle of management
- MapReduce benefits
 - Automatic parallelization & distribution
 - Fault tolerance
 - I/O scheduling
 - Monitoring & status updates

Programming model

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:

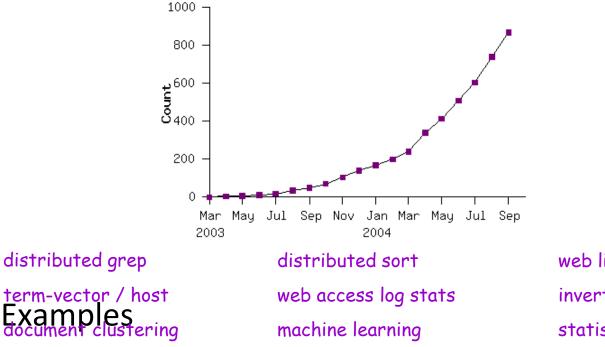
map(in_key, in_value) -> list(out_key, intermediate_value)

- Processes each input key/value pair
- Produces set of intermediate pairs
 reduce(out_key, list(intermediate_value)) ->
 list(out_value)
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values (usually just one)

In an include the sine iter and in the second second

MapReduce model widely applicable

MapReduce programs in Google source tree (2003-04)



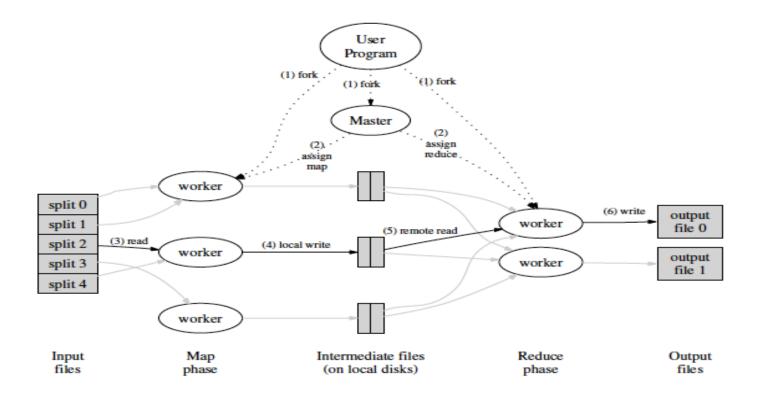
web link-graph reversal inverted index construction statistical machine translation

Implementation overview

• Typical cluster:

- 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
- Limited bisection bandwidth
- Storage is on local IDE disks
- GFS: distributed file system manages data (SOSP'03)
- Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines
- Implementation as C++ library linked into user programs

Overall execution workflow



Discussion 3 (Pairs)

- MapReduce breaks with a lot of conventions: Input data has no schema, programs are written in Java, no indices,...
 - Why do you think MapReduce was still such a huge success?
 - Why or why not is that surprising to you?
- Discuss the questions with the lessons from last week's discussion in mind. How do they hold up here?
 - Lesson 12: Unless there is a big performance or functionality advantage, new constructs will go nowhere
 - Lesson 13: Packages will not sell to users unless they are in "major pain"
 - Lesson 16: Schema-last is probably a niche market

Fault-tolerance via re-execution

• On worker failure:

- Detect failure via periodic heartbeats
- Re-execute completed and in-progress *map* tasks
 - Output stored on the local disk becomes inaccessible
- Re-execute in progress *reduce* tasks
 - Output stored in a global file system
- Task completion committed through master
- Master failure:
 - Left unhandled as considered unlikely
 - Abort the MapReduce computation

Locality Optimization

- Master scheduling policy:
 - Asks GFS for locations of replicas of input file blocks
 - Map tasks typically split into 64MB (== GFS block size)
 - Map tasks scheduled so GFS input block replica are on same machine or same rack or nearest machine.
 - Goal to reduce communication overhead as much as possible
- Effect: Thousands of machines read input at local disk speed
 - Without this, rack switches limit read rate

Task Granularity

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution
 - Better dynamic load balancing
- Often use 200K map and 5000 reduce tasks running on 2000 machines

Process	Time>										
User Program	MapReduce()	wait									
Master		Assign tasks to worker machines									
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1				Read 2.2	Read	12.3	Red	uce 2

Backup Execution

- Slow workers significantly lengthen completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)
- Solution: Near end of phase, spawn backup task copies
 - Whichever one finishes first "wins"
- Benefit: Dramatically shortens job completion time

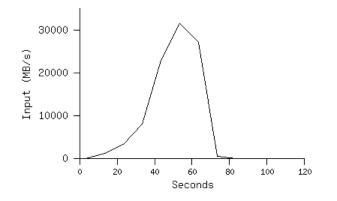
Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs
 - Best solution is to debug & fix, but not always possible
- On segmentation fault:
 - Send UDP packet to master from the signal handler
 - Include sequence number of record being processed
- If master sees two failures for the same record:
 - Next worker is told to skip the record
- Effect: Can work around bugs in third-party libraries

Some Refinements

- Sorting guarantees within each reduce partition
- Compression of intermediate data
- Combiner: useful for saving network bandwidth
- Local sequential execution for debugging/testing
- User-defined counters

MapReduce Grep

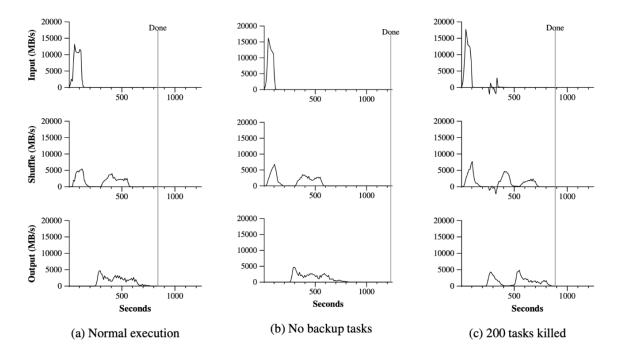


Locality optimization helps:

- 1800 machines read 1 TB at peak ~31 GB/s
- W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

MapReduce Sort



- Backup tasks reduce job completion time a lot!
- System deals well with failures

Google Experience: Rewrite of Production Indexing System

- Rewrote Google's production indexing system using MapReduce
 - New code is simpler, easier to understand
 - MapReduce takes care of failures, slow machines
 - Easy to make indexing faster by adding more machines

Discussion 4 (Groups of 4)

- With the Gamma database project and MapReduce we have seen two models to parallelize data processing:
 - What are the differences and similarities?
 - Which use cases are they designed for? Do they have the same kind of applications in mind?
 - Which model do you find more convincing and why?
- Gamma Database key features:
 - Parallel Database
 - Horizontally partitioned relations
 - Extensive use of hash-based parallel algorithms
 - Dataflow scheduling techniques for multioperator queries

Conclusions

- MapReduce has proven to be a useful abstraction.
- Network bandwidth is a scarce resource.
- Redundant execution can reduce the impact of slow machines and machine failures.