
Query Execution
Presenter: Soo Yee Lim

Discussion Lead: Xuechun Cao

1

2

Our focus today!

Covered in previous classes

Discussion #1 – Group of 3
The author states that DBMSs have not been used in many areas for two

reasons:

• application development and maintenance is difficult.

• the data in those areas is SO big, that speed trumps all, and people would

rather hand-code.

Why do you think databases aren't used more? Why don't "you" use them on

"your" data?

3

4

Logical Algebra Physical Algebra

5

Logical Algebra Physical Algebra

• Closely related to data model.

• Defines what queries can be

expressed in the data model.

• E.g., relational algebra

• Query processing algorithms.

• Can vary across systems.

• Cost functions are associated

only with physical operators.

Logical -> Physical Mapping
•Why?

• Due to the lack of algorithm specification, logical algebra expressions is

not directly executable.

•Why is it non-trivial?
• Involves algorithmic choices.

• Logical and physical operators often do not map directly into one another.

6

DBMS Overview

•Query Optimization
• Mapping from logical to physical operations.

•Query Execution Engine
• Implementation of operations on physical representation types (e.g., file).

• Implementation of mechanisms for coordination and cooperation among

multiple operations in a complex query.

7

Synchronization & Data Transfer

8

Join 1 results Join 2

Synchronization & Data Transfer

9

Temporary Files Pipes

• Execute Join 1 completely

before starting Join 2.

• No pipelining, hence,

performance loss.

• Transfer data via interprocess

communication mechanisms.

• Introduces new overhead

(scheduling and IPC).

Synchronization & Data Transfer

10

Better Alternative?
Let the operators schedule each other within a single operating

system process.

Iterators

11

filter function invokes the filescan function as needed and can
pace the filescan according to the needs of the filter.

Benefits of Iterators
• The entire query plan is executed within a single process.

• Operators produce one item at a time on request.

• Items never wait in a temporary file or buffer between operators.

• Efficient in its time-space-product memory costs.

• No operator is affected by the complexity of the whole plan.

12

Discussion #2: Group of 3
• How do database systems' needs for dealing with large amounts of data differ

from other applications? How much overlap is there with what is taken care

of by the OS or other system changes?

13

Sorting

•All sorting algorithms in DBMS use merging:
• Input data is written into initial sorted runs and then merged into larger

runs until only one run is left -> the sorted output.

• E.g., merge sort, quicksort.

•What happens if input is larger than main memory?

14

15

Quicksort
Replacement

Selection
• Each run will have the size of

allocated memory.

• The number of initial runs

= input size / memory size.

• Recursively fill buffers in order

from smallest, one at a time.

• The number of runs is about

half of quicksort.

Hashing

•An alternative to sorting.

•Expected complexity of set algorithms:
• Hashing, O(N)

• Sorting, O(N log N)

16

Hash Table Overflow
• Hash-based query processing algorithms use an in-memory hash

table of database objects to perform matching.

• If the required hash table is larger than memory, hash table

overflow occurs.

17

18

• Input is divided into multiple

partitions; process each

independently.

• Concatenate the results of

each partition to get the result

of the entire operation.

Indices
• Indices map keys or attribute values to locator information with

which database objects can be retrieved.

• Reduce the number of accesses to secondary storage (which is

slower compared to main memory).

19

Characteristic of Indices
• Clustering

• Can be used to cluster the actual data items.

• The order of index entries determines the order of items in the data file.

• Sparse
• One index entry for each page of the primary file.

• Dense
• There are the same number of entries in the index as there are items in the primary file.

20

Buffer Management
• Motivation

• I/O cost can be reduced by caching data in an I/O buffer.

• Fixed page is not subject to replacement in the buffer pool.

• If all buffer frames are fixed, but a page needs to be replaced:

• Dynamically grow the buffer pool

• Abort transaction

21

Discussion #3 – Group of 3
Do you think that in the time since then the issues would have gotten better,

because memories have gotten larger, or worse because there is a bigger

gap between the time it takes to access memory and the time to access

things on disk?

22

Merge Join
• Requires both inputs to be sorted.

• Merging the two inputs is like the merge process in sorting.

• Nested-Loop Join + Merge Join = Heap-Filter Merge-Join

• Compared to block nested loops, the number of scans of the inner input

is reduced by one half.

• Compared to merge join, it saves writing and reading temporary files for

the larger outer input.

23

Hash Join
• Build an in-memory hash table on the build input, and then

probe the hash table using items from the probe input.

• Hybrid-hash allows extensive pipelining.

• If the build input fits into memory, no temporary files needed.

• Requires overflow avoidance/resolution for larger build input.

24

Nested-Loop Join
• For each item in the outer input:

Scan the entire inner input and find matches.

• Simple.

• If the inner input is produced by a complex subplan, it must be

stored in a temporary file.

25

Benefits of Left-Deep Join
• Efficient; no need to scan inner

(right) multiple times.

• Can be fully pipelined.

• Recall: System R considers

only left-deep join trees.

26

Discussion #4: Group of 3
• Does the # of generally used joins seem large or small to

you? Why?

• Are you surprised by any of the joins that are used?

27

Summary
• Sort-based or hash-based query processing algorithms?

• Neither algorithm type outperforms the other in all situations.

• Both should be available in query execution engines, for a choice to be

made by the query optimizer.

• Choices should depend on:

 - sizes of the two inputs

 - performance impairments due to skewed data or hash distributions

28

Discussion #5: Group of 2 (different
research interests)
From the summary: "Query processing has been explored extensively in the

last 20 years in the context of relational database management systems and

is slowly gaining interest in the research community for extensible and

object-oriented systems. This is a very encouraging development, because

if these new systems have increased modeling power over previous data

models and database management systems but cannot execute even

simple requests efficiently, they will never gain widespread use and

acceptance."

What tradeoff would you accept for better functionality with your data? Is

this comparable to the tradeoff in programming languages, e.g., the

slowness of Java vs its becoming an accepted programming language?

29

Discussion #6: Group of 3
• Do you find survey papers useful?

oWhat kind of person do you think would be beneficial for reading and
writing this kind of paper?

oWho do you think can be able to write these papers?

• Compared to this old style of survey paper, what are
advantages or disadvantages of having more recent SoK
(Systemization of Knowledge) papers?

30

	Slide 1: Query Execution
	Slide 2
	Slide 3: Discussion #1 – Group of 3
	Slide 4
	Slide 5
	Slide 6: Logical -> Physical Mapping
	Slide 7: DBMS Overview
	Slide 8: Synchronization & Data Transfer
	Slide 9: Synchronization & Data Transfer
	Slide 10: Synchronization & Data Transfer
	Slide 11: Iterators
	Slide 12: Benefits of Iterators
	Slide 13: Discussion #2: Group of 3
	Slide 14: Sorting
	Slide 15
	Slide 16: Hashing
	Slide 17: Hash Table Overflow
	Slide 18
	Slide 19: Indices
	Slide 20: Characteristic of Indices
	Slide 21: Buffer Management
	Slide 22: Discussion #3 – Group of 3
	Slide 23: Merge Join
	Slide 24: Hash Join
	Slide 25: Nested-Loop Join
	Slide 26: Benefits of Left-Deep Join
	Slide 27: Discussion #4: Group of 3
	Slide 28: Summary
	Slide 29: Discussion #5: Group of 2 (different research interests)
	Slide 30: Discussion #6: Group of 3

