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DP considerations

(TJ)(x) = min
a

{
ga(x) + α

∑
y

Pa(x , y)J(y)

}

Stationary policies
T kJ approaches J∗ when k is large enough, TJ∗ = J∗

Infinite horizon, discounted-cost
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Optimization Problem

Consider the optimization problem:

maxJ cT J
subject to TJ ≥ J

Vector c is strictly positive
J∗ is the unique solution to this problem
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Linear Programming Problem

maxJ cT J
subject to TJ ≥ J

Strictly, this is not a linear program:

(TJ)(x) ≥ J(x)

min
a

{
ga(x) + α

∑
y

Pa(x , y)J(y)

}
≥ J(x)

But can be converted to linear program:

ga(x) + α
∑

y

Pa(x , y)J(y) ≥ J(x),∀a ∈ Ax
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Exact LP

Exact LP

maxJ cT J
subject to ga(x) + α

∑
y

Pa(x , y)J(y) ≥ J(x),∀a ∈ Ax

Variables: states in the system
Constraints: state-action pairs

Jonatan Schroeder Linear Programming Approach to Dynamic Programming



Basic Optimization Approach
Dual Linear Programming

Approximate Linear Programming

Exact LP

Exact LP

maxJ cT J
subject to ga(x) + α

∑
y

Pa(x , y)J(y) ≥ J(x),∀a ∈ Ax

Variables: states in the system

Constraints: state-action pairs

Jonatan Schroeder Linear Programming Approach to Dynamic Programming



Basic Optimization Approach
Dual Linear Programming

Approximate Linear Programming

Exact LP

Exact LP

maxJ cT J
subject to ga(x) + α

∑
y

Pa(x , y)J(y) ≥ J(x),∀a ∈ Ax

Variables: states in the system
Constraints: state-action pairs

Jonatan Schroeder Linear Programming Approach to Dynamic Programming



Basic Optimization Approach
Dual Linear Programming

Approximate Linear Programming

Dual Linear Programming

Consider a dual LP:

minµ
∑
x ,a

µ(x ,a)ga(x)

subject to
∑

y

∑
a

µ(y ,a)Pa(y , x) =
∑

a

µ(x ,a),∀x∑
x ,a

µ(x ,a) = 1

µ(x ,a) ≥ 0, ∀x ,a

µ(x ,a): probability over the state-action space that action a
is taken when current state is x
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Randomized Policies

Usually a policy is a mapping from states to actions
A randomized policy is a function u which prescribes a
probability u(x ,a) for taking action a when current state is
x

gu(x) =
∑

a

u(x ,a)ga(x)

π(x) =
∑

a

µ(x ,a)

u(x ,a) =
µ(x ,a)

π(x)
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Randomized Policies (cont.)

Transition matrix Pu: Pu(x , y) =
∑

a

u(x ,a)Pa(x , y)

Stationary distribution πu:

πT
u Pu = πT

u∑
x

πu(x) = 1

πu(x) ≥ 0

Proposal: The dual LP solution finds a stationary
distribution πu
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Dual LP - Proof
Constraints (1)

∑
y

∑
a

µ(y ,a)Pa(y , x) =
∑

a

µ(x ,a)

∑
y

∑
a

π(y)u(y ,a)Pa(y , x) = π(x)

∑
y

π(y)Pu(y , x) = π(x)

πT Pu = πT
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Dual LP - Proof
Constraints (2)

∑
x

∑
a

µ(x ,a) = 1

∑
x

π(x) = 1

π is a stationary distribution associated with policy u
(π = πu)
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Dual LP - Proof
Goal function

∑
x ,a

µ(x ,a)ga(x)

=
∑

x

∑
a

µ(x)u(x ,a)ga(x)

=
∑

x

πu(x)gu(x)

= λu

The dual LP goal corresponds to the average cost λu of
policy u.
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Recap – Approximate DP

J̃(·, r) ≈ J∗(·)
J̃(x , r) is an approximation to J∗(x)

Consider Φ a matrix such that J̃ = Φr̃
r̃ is “simpler” than J
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New Optimization Problem

The original exact DP was:

maxJ cT J
subject to TJ ≥ J

A close approximation r̃ can be computed by:

maxr cT Φr
subject to T Φr ≥ Φr
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Approximate LP

maxr cT Φr
subject to ga(x) + α

∑
y∈S

Pa(x , y)(Φr)(y) ≥ (Φr)(x)

Smaller number of variables
Same number of constraints
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Reduced Linear Program (RLP)

To reduce the number of constraints, we may use Reduced
Linear Program
Based on:

A constraint sample size m
A probability measure Ψ over the set of state-action pairs
A bounding set N ∈ <K

A set X is constructed with m state-action pairs sampled
according to Ψ
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Reduced Linear Program (RLP)

The RLP is defined by:

maxr cT Φr
subject to ga(x) + α

∑
y∈S

Pa(x , y)(Φr)(y) ≥ (Φr)(x),

∀(x ,a) ∈ X
r ∈ N

m, Ψ and X should be carefully chosen
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