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Abstract. We propose a variant of GMRES, where multiple (two or more) preconditioners are
applied simultaneously, while maintaining minimal residual optimality properties. To accomplish
this, a block version of Flexible GMRES is used, but instead of considering blocks associated with
multiple right hand sides, we consider a single right-hand side and grow the space by applying each of
the preconditioners to all current search directions, minimizing the residual norm over the resulting
larger subspace. To alleviate the difficulty of rapidly increasing storage requirements, we present a
heuristic limited-memory selective algorithm, and demonstrate the effectiveness of this approach.
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1. Introduction. We are interested in the iterative solution of a linear system
of the form

Ax = b, (1.1)

where A ∈ R
n×n is a large and sparse, possibly nonsymmetric or indefinite, matrix.

We would like to use a modern iterative method, such as those associated with a
Krylov subspace [36], [45], and in particular GMRES [37]. One ingredient in the
successful application of these methods is the use of a (nonsingular) preconditioner,
P . Here we consider only right preconditioning, i.e., we consider the equivalent system

AP−1u = b, (1.2)

where u = Px.
It is common to have two or more different candidate preconditioners for the

same linear system, each possessing different properties. For example, in the case of
saddle-point problems, block diagonal preconditioners and constraint preconditioners
provide such a choice; see, e.g., [4], [22], [24], [31], [41]. What we propose in this
paper is a way to use more than one preconditioner simultaneously. We accomplish
this by employing what one may think of as a block version of Flexible GMRES
(FGMRES) [35], whereby at each step we add to the space multiple directions based
on the application of all the preconditioned operators. The new iterate is optimal in
this subspace in the minimum residual least-squares sense. We mention that Calandra
et al. [8] have recently described a block version of FGMRES which—while sharing
some similarities with the work described here—differs both in scope and details with
the GMRES algorithm with multiple preconditioners we propose.

Block methods are used either for the solution of linear systems with multiple right
hand sides, or to enrich the space with additional directions; see, e.g., the pioneering
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paper [26], the survey [17], or [10], [32], and references therein. One of the new
ingredients in our proposed technique is the use of different preconditioning directions
for each component of the block method.

Another element that distinguishes our proposal from standard block methods is
that, since all preconditioners are applied to the existing basis at each step, the dimen-
sion of the subspace may increase very rapidly. This has the advantage of generating
a very rich space (with information coming from all the preconditioners) where the
solution is sought; indeed, our method might yield significantly faster convergence
by combining the preconditioners compared to methods that force the user to pick
just one direction (or even one at a time). On the other hand, this approach has the
disadvantage of excessive memory requirements. Thus, we consider also a heuristic
variant where a selective set of directions from this rich space are used. We mention
that there are cases where the selective and the complete versions coincide, i.e., the
problems are such that the growth in storage is only linear; see, e.g., Section 2.5
and [2].

While the new GMRES with multiple preconditioners (MPGMRES) we propose
here (both in its complete and selective versions) can be used with any number of
preconditioners, we expect that it will be most useful with a small number of precon-
ditioners, typically two, and our study is in part driven by this consideration.

We present numerical experiments in practical situations where our method with
multiple preconditioners converges faster than alternative formulations involving
GMRES with any one of the preconditioners alone, and faster than FGMRES where
one simply cycles through the available preconditioners, as done in [34] for a particular
application.

This work is inspired in part by previous work involving one of the authors [6],
where such multiple preconditioning is used for the conjugate gradient method (CG)
for symmetric positive definite linear systems. The algorithm in [6] is called mul-
tipreconditioned conjugate gradients (MPCG), and it combines the preconditioners
while aiming to preserve the optimality criterion of minimizing the energy norm of
the error. However, a drawback of MPCG is that, while being designed for symmetric
positive definite matrices, it does not in general retain the short-term recurrence of
CG. By contrast, since GMRES for general non-symmetric matrices does not use short
recurrences, their absence in the method discussed in this paper is not a problem.

The remainder of the paper is organized as follows. In Section 2 we derive and
study our proposed MPGMRES algorithm. We develop a complete algorithm and
then present a selective version of it. In Section 3 we give a few details on the
computational cost and implementation issues, including pointers to our software,
which is available for the interested readers. In Section 4 we present some numerical
experiments illustrating the effectiveness of the proposed method.

2. MPGMRES. We start this section with a brief description of the GMRES
algorithm and its flexible version. We do this in part to fix the notation and establish
some concepts which we then use to construct GMRES with multiple preconditioners
(MPGMRES). We then move on to discuss the complete and selective MPGMRES
algorithms and some of their properties.

2.1. GMRES and flexible GMRES. GMRES is often the solution method of
choice for non-symmetric linear systems of the form (1.1). Starting from some initial
vector x(0), and the corresponding initial residual r(0) = b − Ax(0), the kth step of
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GMRES consists of computing the vector x(k) in the space x(0) +Kk(A, r(0)), where

Kk(A, r(0)) := span{r(0),Ar(0), . . . ,Ak−1r(0)} = {p(A)r(0), deg p < k}

is the standard Krylov subspace (p here denotes a polynomial), such that the residual
corresponding to x(k) has the minimal norm among all vectors in Kk(A, r(0)).

Consider the preconditioned system (1.2); preconditioned GMRES finds u(k)

which minimizes the 2-norm of the residual over u(0) + Kk(AP−1, r(0)). Written
in terms of x, since x = P−1u, we therefore find

x(k) ∈ x(0) + P−1Kk(AP−1, r(0))

∈ x(0) +Kk(P−1A,P−1r(0)). (2.1)

Note that the latter space is the same as in left-preconditioned GMRES, but when
using left or right preconditioning, the functional which is minimized is different; see,
e.g., [36, p. 272], [40].

An orthonormal basis for the Krylov subspace Kk(AP−1, r(0)) is computed using
the Arnoldi algorithm. This generates a decomposition of the form

AZk := AP−1Vk = Vk+1H̃k,

where Vk ∈ R
n×k has orthonormal columns with the first being r(0)/‖r(0)‖2, and

H̃k ∈ R
(k+1)×k is upper Hessenberg. Since the columns of Vk span the space

Kk(AP−1, r(0)), the iterate x(k) therefore must have the form

x(k) = x(0) + P−1Vky
(k) = x(0) + Zky

(k)

for some vector y(k) ∈ R
k. GMRES finds this vector y(k) by solving a least-squares

problem

min
y∈Rk

‖‖r(0)‖2e1 − H̃ky‖2, (2.2)

since ‖b−Ax(k)‖2 = ‖‖r(0)‖2e1 − H̃ky
(k)‖2.

The Flexible GMRES method of Saad [35] allows us to use a different precondi-
tioner at each iteration. The key idea of FGMRES is to store the application of the
preconditioner at the jth step, P−1

j vj , in the jth column of Zk, so that we still have

AZk = Vk+1H̃k, (2.3)

and the same least-squares problem (2.2) is solved. Thus, the approximation at the
kth step is still in x(0) + R(Zk), where R(·) denotes the range of a linear operator.
Note that R(Zk) is not, strictly speaking, a Krylov subspace, but it is nonetheless the
space where the approximation is sought [44], [45]. We also note that in FGMRES,
one usually stores both Vk and Zk, i.e., effectively doubling the storage requirements
of GMRES.

2.2. Derivation of MPGMRES. Suppose that instead of just a single precon-
ditioner we have t (nonsingular) preconditioners, P1, . . . ,Pt, t ≥ 2. We have in mind
t = 2 for most applications, and to simplify notation, we will in the sequel occasionally
discuss certain issues specifically for two preconditioners. For a fixed preconditioner,
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say Pj , the GMRES algorithm would commence with the product P−1
j r(0) as in (2.1).

In our proposed method, we collect all these vectors in

Z(1) = [P−1
1 r(0), . . . ,P−1

t r(0)] ∈ R
n×t,

and consider the first iterate x(1), which minimizes the residual norm of vectors over

x(0) + span{P−1
1 r(0), . . . ,P−1

t r(0)}. (2.4)

We can therefore define the first iterate of a new method as

x(1) := x(0) + Z(1)y(1),

where the vector y(1) ∈ R
t is chosen to minimize the residual in the 2-norm. Thus, x(1)

is the best approximation which incorporates information from all preconditioners.
Observe that it follows from (2.4) that

r(1) = b−Ax(1) ∈ r(0) + span
{
AP−1

1 r(0), . . . ,AP−1
t r(0)

}
. (2.5)

Our proposed method is in part based on block GMRES, which was first intro-
duced in [49] for multiple right hand sides. It was studied, e.g., in [10], [23], [32], [43],
and applied recently, e.g., in [8]; see also [17] and references therein. We also mention
block Arnoldi as a necessary important ingredient; see, e.g., [38], [39], [36, §6.12].

In our Arnoldi-type block procedure to obtain an orthonormal basis of the search
space, we start by orthogonalizing every column of W := AZ(1) with respect to
V (1) := r(0)/‖r(0)‖2, and among themselves (using a reduced QR factorization), and
storing the coefficients in the matrices H(j,1), j = 1, 2, which are part of the upper
Hessenberg matrix H̃k (see diagram below); thus obtaining V (2). Then we increase
the space by applying the multiple preconditioners, i.e., at step k, compute

Z(k) = [P−1
1 V (k) · · · P−1

t V (k)], (2.6)

and repeat the process.
As with block Arnoldi, we obtain the following relation

AZ̃k = Ṽk+1H̃k, (2.7)

where

Z̃k =
[
Z(1) · · · Z(k)

]
, Ṽk+1 =

[
V (1) · · · V (k+1)

]

and

H̃k =




H(1,1) H(1,2) · · · H(1,k)

H(2,1) H(2,2) H(2,k)

. . .
...

H(k,k−1) H(k,k)

H(k+1,k)



.

We have implicitly assumed that Z(k) and Z̃k have full rank. We keep this as-
sumption throughout this section and address the situation when this assumption fails
to hold, and deflation is needed, in Section 3.
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We call the columns of Z(k) search directions, and the columns of V (k) basis
vectors.

Observe that Z(1) and V (2) have t columns, while Z(2) and V (3) have t2 columns,
and in general Z(i) and V (i+1) have ti columns. Therefore Ṽk+1 has

τk :=
k∑

i=0

ti =
tk+1 − 1

t− 1
(2.8)

columns, while Z̃k has τk − 1 = (tk+1 − t)/(t− 1) columns. Thus, in the common case
of t = 2 the dimension of the search space is 2(2k − 1). Note also that H(1,i) ∈ R

1×t

for all i, and since the blocks H(i+1,i) on the sub-diagonal come from the QR factor-
ization, they are all upper triangular. Therefore, as in this Arnoldi-type algorithm,
the matrix H̃k above is upper Hessenberg, here of order (τk − 1) × τk. Figure 2.1 is
a schematic diagram of the Arnoldi-type decomposition (2.7) showing the dimensions
of the matrices involved.

Fig. 2.1. Schematic diagram of the Arnoldi-type decomposition (2.7)

As in block GMRES, since the columns of the basis matrix Ṽk+1 are orthogonal,
we have

arg min
x̂∈x(0)+R(Z̃k)

‖b−Ax̂‖2 = argmin
y

‖βe1 − H̃ky‖2, (2.9)

where we have used x̂ = x(0) + Z̃ky and β = ‖r(0)‖2. The proposed method,
complete MPGMRES, is given as Algorithm 1.

Note that Algorithm 1 contains the variant of block Arnoldi and reduced QR
factorizations. Both of these algorithms can be thought of in terms of Gram-Schmidt
orthogonalization, and we can perform the QR step explicitly in an Arnoldi-style
algorithm. This is known as the band Arnoldi algorithm, and was first proposed (for
the block-Lanczos case) by Ruhe [33]; see, e.g., [13, §6], [17, §9], [36, p. 209], for the
block-Arnoldi case. In our experience taking advantage of blocking techniques (e.g., by
using Level 3 BLAS calls), rather than the vector-based calculations needed in a Ruhe-
style implementation, make Algorithm 1 the most efficient style of implementation.
On the other hand, an implementation of the Ruhe version may mitigate the effects
of dealing with loss of rank, which we discuss in some detail in Section 3.

2.3. The search and residual spaces. We describe the spaces where the iter-
ates, and more importantly, the associated residuals computed in Algorithm 1 reside.
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Algorithm 1 Complete MPGMRES

Choose x(0), r(0) = b−Ax(0)

β = ‖r(0)‖, V (1) = r(0)/β
for k = 1, . . ., until convergence do
Z(k) = [P−1

1 V (k) · · · P−1
t V (k)]

W = AZ(k)

for j = 1, . . . , k do
H(j,k) = (V (j))TW
W = W − V (j)H(j,k)

end for
W = V (k+1)H(k+1,k) (reduced QR factorization)

y(k) = argmin‖βe1 − H̃ky‖2
x(k) = x(0) + [Z(1) · · ·Z(k)]y(k)

end for

We illustrate first the case t = 2. The first two iterates satisfy

x(1) − x(0) ∈ span{P−1
1 r(0),P−1

2 r(0)};
x(2) − x(0) ∈ span{P−1

1 r(0),P−1
2 r(0),P−1

1 AP−1
1 r(0),P−1

1 AP−1
2 r(0),

P−1
2 AP−1

1 r(0),P−1
2 AP−1

2 r(0)},

and the rest follows the same pattern. It follows (cf. (2.5)) that

r(1) − r(0) ∈ span{AP−1
1 r(0),AP−1

2 r(0)};
r(2) − r(0) ∈ span{AP−1

1 r(0),AP−1
2 r(0),AP−1

1 AP−1
1 r(0),AP−1

1 AP−1
2 r(0),

AP−1
2 AP−1

1 r(0),AP−1
2 AP−1

2 r(0)},
= {p(AP−1

1 ,AP−1
2 )r(0)},

where p = p(z1, z2) is a multivariate second degree polynomial in two (non-
commuting) variables with p(0, 0) = 1.

Using the same observation, it is not hard to see that in the case of t precondi-
tioners,

r(k) = r(0) + p(AP−1
1 , . . . ,AP−1

t )r(0)

∈ R(AZ(k)) = R(V (k+1)) = {p(AP−1
1 , . . . ,AP−1

t )r(0), p(0, . . . , 0) = 1},

where p = p(z1, . . . , zt) is a multivariate polynomial of degree k in t (non-commuting)
variables. We call this space Pk = Pk[z1, . . . , zt]. Note that what makes this space so
rich is the presence of not only the powers of AP−1

j , but also the cross terms, say of

the form AP−1
i AP−1

j .
Therefore, from (2.9), we have that

‖r(k)‖ = min
p∈Pk[z1,...,zt]

p(0,...,0)=1

‖p(AP−1
1 , · · · ,AP−1

t )r(0)‖. (2.10)

Notice that (2.10) reduces back to the standard minimal residual characterization of
GMRES in the case of a single preconditioner (t = 1).
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It follows from (2.10) that the known GMRES convergence bounds can be gen-
eralized to this situation, e.g., by replacing the univariate polynomial bounds with
those using multivariate polynomials (on the spectra of each preconditioned matrix
AP−1

j ).

2.4. Selective MPGMRES. As we saw in Section 2.2, since Z(k) ∈ R
n×tk , the

dimension of the search space in MPGMRES grows exponentially fast. It is natural to
consider an approximation of the entire space by selective directions, and thus find an
appropriate subspace whose dimension would grow more slowly, ideally only linearly.
We call this algorithm selective MPGMRES (sMPGMRES). There is an inexhaustible
list of potential selection strategies, and we describe some possibilities below:

• First we describe our heuristic method of choice for modifying complete
MPGMRES to get a practical algorithm. At step k, apply the precondi-
tioners only to certain columns of V (k). As a default we apply P1 to the first
column of V (k), P2 to the second, and so on. Using this method the matrix
Z(k) is in R

n×t for all k, and we just have to perform a QR factorization of
a matrix whose number of columns is equal to the (typically small) number
of preconditioners. This process can be represented by replacing the second
to last line in Algorithm 1, namely (2.6), by

Z(k) = [P−1
1 V

(k)
1 · · · P−1

t V
(k)
t ]. (2.11)

Of course, it is not necessary to associate the ith preconditioner with the ith
column, and other alternatives are possible. In general, given some permuta-
tion π (which may or may not change with each iteration), we can compute

the ith column of Z(k) as P−1
i V

(k)
π(i).

• A viable alternative is to use all the columns of V (k) simultaneously by apply-
ing the multipreconditioning step to V (k)

αk for any vector αk of appropriate
size. Specifically, giving equal weight to all columns, i.e., using the vector
V (k)1, where 1 denotes the vector of ones, may be an appropriate choice.

• One could choose the “best” possible subspace in some sense, as was done by
de Sturler [9] in another context; see also [14]. Note that such choices still
keep Z(k) ∈ R

n×t for all k.
Applying any of the selective schemes described above produces an Arnoldi-type

decomposition, which we show schematically in Figure 2.2. For the rest of this section,
and in our numerical experiments, we will use the choice (2.11) as our selective version
of MPGMRES; see also Section 4.

In terms of the optimality condition (2.10), selective MPGMRES minimizes the
residual in a tk dimensional subspace of the space

{p(AP−1
1 , . . . ,AP−1

t )r(0), p ∈ Pk[z1, . . . , zt], p(0, · · · , 0) = 1},

which is itself (tk − 1) dimensional.
The heuristic choice (2.11), or any other choice of selected columns, determines

which subspace one is using.

2.5. A case of linear growth of the search space. Let us consider the
special case where we have two (nonsingular) preconditioners that add up to the
coefficient matrix, i.e., A = P1 +P2. This situation represents, for example, the ADI
preconditioning approach; see, e.g., [5], [20]. We begin with a general lemma which we
find of interest beyond its use in this paper: If the sum of two preconditioners equals
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Fig. 2.2. Schematic diagram of Arnoldi-type decomposition for selective MPGMRES.

the matrix of coefficients of the original problem, then the preconditioned operators
commute, and their product equals its sum. The converse also holds.

Lemma 2.1. Let A,P1,P2 be nonsingular matrices, and let M1 = AP−1
1 , M2 =

AP−1
2 . Then, A = P1 + P2 if and only if

M1M2 = M2M1 = M1 +M2.

Proof. Assume first that A = P1 + P2. Then,

M1 = AP−1
1 = I + P2P−1

1 , and M2 = AP−1
2 = I + P1P−1

2 .

It follows that

M1M2 = (I +P2P−1
1 )(I +P1P−1

2 ) = 2I +P2P−1
1 +P1P−1

2 = M1 +M2 = M2M1.

For the converse, we have that M1 +M2 = M1M2 implies

0 = A(P−1
1 + P−1

2 − P−1
1 AP−1

2 ) = AP−1
1 (P2 + P1 −A)P−1

2 ,

and the lemma follows.
Observe that Lemma 2.1 also applies to the matrices P−1

1 A and P−1
2 A. The proof

is essentially the same. The lemma is useful because it implies that the mixed terms
do not bring any additional information to the space. Specifically, we can see in the
case of polynomials of degree 2 that this lemma implies

P2[M1,M2] = span
{
I,M1,M2,M2

1,M2
2

}
= P2[M1] + P2[M2].

More generally, we have that the polynomials in two variables decouple into the sum
of polynomials in one variable of the same degree.

Proposition 2.2. Let the variables z1, z2 be such that z1z2 = z2z1 =
z1 + z2. Then, Pk[z1, z2] = Pk[z1] + Pk[z2], k = 1, 2, . . .

Proof. We use induction on k. For k = 1, there is nothing to prove since

P1[z1, z2] = span {I, z1, z2} = P1[z1] + P1[z2].

We then assume that the statement of the proposition is true for k, and prove it for
k+1. All we need to do is to show that any mixed terms of order k+1 can be written
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as a sum of terms in Pk[z1, z2]. Indeed, for 1 ≤ i ≤ k,

z1
k+1−iz2

i = z1
k−i(z1 + z2)z2

i−1

= z1
k+1−iz2

i−1 + z1
k−iz2

i .

One of the direct consequences of Proposition 2.2 is that the search space has
dimension 2k instead of O(2k).

While the case described here is indeed special, it indicates that in some cases
MPGMRES may perform very well without necessarily incurring an exponential
growth of the dimension of the search space; see, e.g., the very recent paper [2]
presenting another case where the search space has linear growth.

2.6. Related algorithms. Recently, combination preconditioners of the form

P−1 = α1P−1
1 + α2P−1

2 (2.12)

have been proposed and explored for saddle-point problems, where the constants α1,
α2 are fixed; see in particular [29], [30], [47]. One can interpret the first step of
MPGMRES, for t = 2, as choosing the optimal values of α1, α2 in (2.12) so that
the residual r(1) is minimal. In the second step, though, MPGMRES changes the
values of α1, α2 in (2.12) to minimize the residual in a richer space, as described in
Section 2.3.

In the recent paper [1], linear combinations of two preconditioners are used as
in (2.12), and the coefficients are computed at each step to minimize the residual,
as in MPGMRES. The difference is that only linear combinations (2.12) and not
polynomials of higher order are sought.

In terms of the multipreconditioning paradigm considered in this paper, one could
cycle with FGMRES through the available preconditioners in some prescribed order.
This strategy was in fact proposed by Rui, Yong, and Chen in the context of electro-
magnetic wave scattering problems [34] in a method they termed ‘multipreconditioned
GMRES’. They show numerically that for their applications, the convergence of this
method is never better than the best preconditioner applied by itself, although of
course one may not know which preconditioner will perform best a priori. This is
in contrast to the selective MPGMRES method described here, which is derived to
work in a potentially richer subspace and may beat single preconditioners applied
separately (and therefore FGMRES with cycling); see the experiments in Section 4.

Numerical comparisons are reported in Section 4. In general, we can say that
(complete) MPGMRES is an extension of a block version of FGMRES, using an
Arnoldi-type process, where at each step the space grows with application of all pre-
conditioners to the current basis vectors. On the other hand, if one interprets FGM-
RES as any method having the property (2.3), then complete MPGMRES would be
a special case.

Finally, we mention multi-splitting methods. Given a set of preconditioners Pi,
i = 1, . . . , t, and a corresponding set of positive semi-definite diagonal weighting
matrices Di such that

∑
iDi = I, the multi-splitting algorithm [27] is defined as the

iterative method governed by the stationary iteration x(k+1) = x(k)+
∑t

i=1 DiP−1
i r(k),

where as usual r(k) = b − Ax(k). The difference is that in this method one has to
define a weighting of the preconditioners a priori, whereas in MPGMRES a weighting
which is in some sense optimal is computed as part of the algorithm.
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3. Implementation details and computational cost. We first discuss the
possibility of breakdowns and provide a few details on implementation. It is well
known that all breakdowns in GMRES – i.e., cases where the last sub-diagonal entry
of the matrix H̃k is zero – are ‘lucky’ in that they occur only when the algorithm
has converged to the exact solution. This is not the case with an algorithm that
uses multiple preconditioners, as there are cases – e.g., if P1 = P2 or P−1

1 AP−1
2 =

P−1
2 AP−1

1 – where the matrix defined in (2.6) will not be of full rank, and hence we

may have a zero on the sub-diagonal of H̃k before reaching the exact solution.
To remove linear dependence we need to detect the rank of the matrix W in

Algorithm 1; we do this by employing a rank-revealing QR factorization, e.g., the
LAPACK routine xGEQP3. Such a factorization applies column pivoting to find a
factorization of W of the form

WP = Q

[
R R̂
0 0

]
,

where P is a permutation matrix and R ∈ R
r×r is upper triangular, where r is the

(numerical) rank of W . We can then set V (k+1) to the first r columns of Q, and
H(k+1,k) to R. Note that, since we have a QR factorization of the permuted WP (not
W ) we must also change the other blocks H(i,k) in the last column of H ; we keep the
first r columns of the matrix H(i,k)P . The ordering of Z(k) also changes to Z(k)P .
Note that these changes of ordering can be done by storing an index vector, and no
copying or deleting of vectors need be performed. This process is related to deflation
in block GMRES algorithms; see, e.g., [17], [23], [32]. In block methods a vector
is removed when a linear combination of the right hand side vectors has converged.
Here, in contrast, the linear dependence is not an inherent issue, but is purely a result
of the redundancy of the user-provided preconditioners.

Since the matrix H̃k in MPGMRES is upper Hessenberg, the Givens rotations
used in the solution of the least-squares problem (2.9) are applied in the same way as
in GMRES1. The main difference in the implementation for MPGMRES is that – as
described above – it is possible to have a sub-diagonal entry of H̃k that is zero while
the algorithm has not converged to the exact solution. There can be two reasons why
the matrix W is deemed to be rank deficient. Either

• one or more of its columns have contributed nothing to the space; or
• we have a lucky breakdown, and the algorithm has converged.

We now establish a condition for distinguishing between these two situations.
Suppose, without loss of generality, that pivoting was not required. The difference
between an actual breakdown and a lucky breakdown is that in the former the cor-
responding column of Z(k) is linearly dependent on the previous columns, whereas in
the latter the linear dependence is a result of convergence, and so the relevant columns
of Z(k) are full rank.

Let Z̄k denote Z̃k−1 with the first r columns of Z(k) appended, and similarly V̄k+1

for Ṽk. Let H̄k be the upper Hessenberg matrix formed by appending
[(H(1,k))T · · · (H(r,k))T ]T to H̃k−1. Then for any vector v which is orthogonal to
the columns of V̄k+1 we have

[
G 0
0 I

]
[V̄k+1 v]TA[Z̄k (Z(k))i] =

[
GH̄k Gh
0 0

]

1As with GMRES, other implementations are possible, e.g., using Householder transformations.
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for some vector h, where G is the matrix corresponding to the previously defined
Givens rotations, and hence GH̄k is an upper triangular matrix.

If [Z̄k (Z(k))i] has rank s, say, then since V̄k+1 and A have full rank, we must

have that

[
H̄k h
0 0

]
also has rank s. In particular, if (Z(k))i is a linear combination of

the columns of Z̄k, then Gh ∈ R(GH̄k), and hence the final entry of Gh will vanish.

On the other hand, if [Z̄k (Z(k))i] is full rank, then the rectangular matrix[
GH̄k Gh
0 0

]
must be of full rank too, and so the final entry of Gh must be non-

zero. Therefore, we can say that the zero in the (i, i) position of H(k+1,k) corresponds
to a lucky breakdown if and only if the entry in the ith column of the final row
of GH(k,k) is non-zero, where GH(k,k) denotes the matrix H(k,k) after the previous
Givens rotations have been applied to it.

We remark that in order to calculate the rank numerically we must prescribe
a tolerance on the diagonal entries of R. In our experience the performance of
MPGMRES is not very sensitive to the choice of this parameter – if a column is nearly
linearly dependent, then it may be removed and, in the case of selective MPGMRES,
we can find an alternative vector which enriches the space in a more meaningful way.
In our MATLAB and Fortran 95 codes we currently set this tolerance to

√
ǫmachine.

Note this is different than the situation for deflation in block GMRES for multiple
right hand sides, where there are good numerical reasons for keeping the deflated
columns available for further calculation; see, e.g., [23], [32].

We have made available two codes which implement MPGMRES. There is a MAT-
LAB implementation available on the Mathworks File Exchange2, and a Fortran 95
version, HSL MI29, which is part of HSL [19] and is freely available to academics. Of
these, the HSL code uses reverse communication for the user to apply the precondi-
tioner and matrix-vector products, and this can be done in parallel.

We now summarize the computational cost. In Table 3.1, we compare the number
of matrix-vector products, inner products, and preconditioner solves for Algorithm 1 in
its complete and selective versions, and Flexible GMRES with cycling preconditioners.
While complete MPGMRES offers the possibility of rapid convergence due to a very
rich space, its applicability with a large number of preconditioners, is limited by the
explosion of its storage requirements. On the other hand, the selective version remains
viable for small t.

matrix-vector inner preconditioner
products products solves

MPGMRES tk t2k+1+t2k+tk+1
−3tk

2(t−1) tk

sMPGMRES t (k − 1
2 )t

2 + 3
2 t t

FGMRES 1 k + 1 1
Table 3.1

Number of matrix-vector products, inner products and preconditioner solves at the kth iteration
when using t preconditioners, for complete and selective versions of MPGMRES, and FGMRES
with cycling multiple preconditioners.

Finally, we mention the potential for parallelization. Given a distributed memory
architecture, each preconditioner solve can be performed on a separate processor, and
by taking advantage of this one can obtain significant savings.

2http://www.mathworks.com/matlabcentral/fileexchange/34562-multi-preconditioned-gmres
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4. Applications and numerical experiments. In this section we apply the
proposed algorithms to two numerical examples: the solution of a problem from PDE-
constrained optimization, and preconditioners for the Navier-Stokes equations. See
also [16] for a domain decomposition example.

We present convergence graphs, as well as computational times. In one set of
examples we provide timings in a parallel setting with a Fortran code, and in other
examples the timings are based on running a serial MATLAB implementation. We
are aware that in many instances MATLAB times may be unreliable, but in this
case we are comparing very similar codes, and therefore the computational times are
representative of the performance of the method.

4.1. PDE-constrained optimization. Many real-world problems can be for-
mulated as PDE-constrained optimization problems; see, e.g., [18], [48], and references
therein. Consider the following model problem

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22 (4.1)

s.t. −∇2y = u in Ω

y = f on ∂Ω.

Here ŷ is some pre-determined optimal state, and we want the system to get to a state
y as close to the optimal state as possible – in the sense of minimizing the given cost
functional – while satisfying Poisson’s equation in some domain Ω. The mechanism
we have of changing y is by varying the right-hand side of the PDE, u, which is called
the control in this context. Note that the norm of the control appears in the cost
functional, along with a Tikhonov regularization parameter, β, to ensure that the
problem is well-posed.

If we discretize the problem using finite elements, then the minimum of the dis-
cretized cost functional is found by solving the linear system of equations




βQ 0 −Q
0 Q K

−Q K 0






u
y
p


 =




0
b
d


 , (4.2)

where Q is a mass matrix, K is a stiffness matrix and u, y and p represent the
discretized control, state and Lagrange multipliers respectively [31], [41]. This matrix
is typically very large and sparse, and the system (4.2) is generally solved iteratively.

It was shown in [31] that two preconditioners that are optimal in terms of the
mesh size taken are

Pbd :=




βQ 0 0
0 Q 0
0 0 KQ−1K



 and Pcon :=




0 0 −Q
0 βKQ−1K K

−Q K 0



 .

Although these preconditioners perform well for moderately small values of β – say
β > 10−4 – the clustering of the generalized eigenvalues of the preconditioned system
deteriorates as β → 0 [31, Corollary 3.3 and Corollary 4.4].

We remark that since this is a symmetric problem, for single preconditioners we
would typically use a short-term recurrence Krylov method, such as MINRES in the
case of Pbd or projected CG in the case of Pcon. Using such a method would result
in smaller storage costs and computational time than with GMRES, although care
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must be taken if a large number of iterations are needed as MINRES can become
unstable; see [46]. Note also that other preconditioners have been developed which
may be better suited for small β, for example a block triangular preconditioner [3], or
preconditioners that are β independent [28], [41]. Here our aim is not to argue that
this is the way one should solve such control problems—justifying such a claim would
require more exhaustive tests and domain-specific theory, and as such is beyond the
scope of this work. Rather, we use it to highlight a real-world case where combin-
ing two preconditioners using MPGMRES gives a solution faster than solving using
GMRES with either preconditioner alone.

Example 4.1. We discretize the control problem (4.1) on the domain Ω = [0, 1]2

using Q1 finite elements with a uniform mesh size of h = 2−7. We take the desired
state as

ŷ =

{
(2x1 − 1)2(2x2 − 1)2 if (x1, x2) ∈ [0, 12 ]

2

0 otherwise
.

We apply the preconditioners Pbd, Pcon exactly (using MATLAB’s backslash com-
mand), with MPGMRES (selective and complete), GMRES, and FGMRES with cy-
cling. We used the MATLAB implementation of MPGMRES (available on the Math-
works File Exchange), and applied Pbd and Pcon to the first and second columns of
Z(k) respectively on odd iterations, reversing the order on even iterations. For all
other options we used the defaults. The results are given in Figure 4.1.

Figure 4.1 and the accompanying Table 4.13 show that, although neither of the
preconditioners Pbd or Pcon are effective for small β, their combination generates an
effective solution procedure. For β > 10−4 – the range in which the preconditioners
were designed to be effective – there is no benefit to using MPGMRES. We see that
FGMRES with cycling preconditioners is not competitive for this example. In Fig-
ure 4.1, we show relative residual norms vs. (preconditioned) matrix-vector products,
i.e., vs. the dimension of the search space. This measure represents most of the work
performed for each method (especially for t = 2), and thus it gives a fair comparison.

β = 10−4 β = 10−6 β = 10−8

complete MPGMRES 6.5 1.7 1.6
selective MPGMRES 4.1 1.3 1.2
GMRES, Pbd 2.1 6.9 16.2
GMRES, Pcon 1.9 4.7 17.4
FGMRES (cycling) 13.6 5.3 26.3

Table 4.1

Timings (sec.) for Example 4.1

We note that Pbd + Pcon = A+ E , where

E =




0 Q 0
0 βKQ−1K 0
0 0 KQ−1K



 .

In other words, especially for small β, these two preconditioners add up to the coeffi-
cient matrix, except in two blocks, one of which is small in magnitude if the regular-
ization parameter β is small. Thus, we are close, in a structural sense, to the special

3These experiments were ran on a machine with an Intel Core i5-2500S CPU @ 2.70GHz with
8GB RAM.
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Fig. 4.1. Convergence curves showing number of matrix-vector products vs. normalized resid-
uals for solving the optimal control problem with MPGMRES, GMRES and FGMRES with cycling.
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case analyzed in Section 2.5. This observation may provide some intuitive insight as
to why the complete and selective versions of MPGMRES perform almost identically.
The two preconditioners seem to complement each other in terms of the eigenvectors
associated with the eigenvalue 1. Both of the associated preconditioned matrices have
an eigenvalue 1 of high multiplicity and the eigenvectors associated with one of these
preconditioned matrices are orthogonal to the eigenvectors associated with the other
preconditioned matrix; cf. the analyses in [15] and [44].

4.2. Navier-Stokes equations. The steady-state Navier-Stokes equations de-
scribe the flow of an incompressible Newtonian fluid, and are given by

−ν∇2~u+ ~u · ∇~u+∇p = ~f

∇ · ~u = 0,

plus appropriate boundary conditions. A common method to solve these equations
numerically is to use a Picard iteration, which requires the solution of a linearized
version of the Navier-Stokes equations – the Oseen problem – at each iteration. The
Oseen problem takes the form

−ν∇2~u+ ~w · ∇~u+∇p = ~f

∇ · ~u = 0,

where, in a Picard method, the vector ~w is the computed velocity from the previous
iteration.

An important quantity when dealing with the Navier-Stokes equations is the
Reynolds number, R = UL/ν, where U denotes some reference value (e.g. the max-
imum magnitude of the inflow velocity) and L denotes a characteristic length scale.
Reynolds numbers R > 1 correspond to convection-dominated flows, which can be
challenging to compute numerically.

Discretization of the Oseen equations by finite elements leads to a saddle-point
system of the form

[
A+N BT

B 0

]
,

where A, N and B denote the vector Laplacian, vector convection and the divergence
matrices respectively. For further details, see, e.g., [12, Chapter 7.3]. A number of
preconditioners have been proposed for this linear system. Two of the most suc-
cessful have been the pressure-convection-diffusion (PCD) [21, 42] and least-squares-
commutator [11] (LSC) preconditioners.

The ideal PCD preconditioner, derived using a commutator argument, is given
by the matrix

[
A+N BT

0 ApF
−1
p Q

]
,

where Ap denotes the discrete Laplacian in the pressure space, Fp = Ap +Np denotes
the convection-diffusion equation in the pressure space, and Q denotes the pressure
mass matrix. Alternatively, the ideal LSC preconditioner is given by the matrix

[
A+N BT

0 (BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT )

]
,
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where Q is the velocity mass matrix, and F = A+N.
We approximate the mass matrix by its diagonal, and other systems are solved

using a direct solver, either HSL MA48 (for non-symmetric systems) or HSL MA57 (for
the symmetric systems). In practice these solves may be replaced by a spectrally
equivalent preconditioner, e.g., a multigrid V-cycle.

As in Example 4.1, using MPGMRES here seems to be a promising alternative for
solving matrices from Navier-Stokes problems, but more focused testing on a range of
problems—which is beyond the scope of this manuscript—needs to be done before we
can justify such a claim. Our primary aim here is to demonstrate two preconditioners
that, when combined using MPGMRES, allow us to solve a non-artificial problem
faster than if we employed any single preconditioner alone.

Tables 4.2 and 4.3 give iteration counts and timings4 for solving an Oseen problem
posed on a unit square. We apply boundary conditions corresponding to a leaky cavity
problem [12, Example 7.1.3] with an advection field given by

[
2x2(1− x2

1), 2x1(1− x2
2)
]
.

The system is discretized with a uniform mesh using Q2-Q1 (Taylor-Hood) finite ele-
ments. The resulting linear system is solved using GMRES and selective MPGMRES,
with either the PCD preconditioner, the LSC preconditioner, or both. We use the
Fortran 95 implementation of MPGMRES – HSL MI29 – and apply the precondition-
ers inside a simple openMP parallel ‘do’ loop. In the case of selective MPGMRES,
the selection strategy used is to apply the LSC preconditioner to the first column of
Z(k), and the PCD preconditioner to the second, otherwise we use the default options
in HSL MI29.

N dim PCD LSC sMPGMRES
22 162 21 (0.03) 16 (0.02) 14 (<0.01)
23 578 30 (0.04) 21 (<0.01) 27 (0.07)
24 2,178 37 (0.03) 25 (0.04) 35 (0.22)
25 8,450 39 (0.19) 31 (0.17) 22 (0.13)
26 33,282 38 (0.50) 37 (0.60) 24 (0.30)
27 132,098 36 (1.92) 44 (2.62) 25 (1.05)
28 526,338 35 (6.27) 52 (9.60) 24 (3.84)

Table 4.2

Iteration numbers, with wall-clock times in parentheses, for solving an Oseen problem with
R=100.

R PCD LSC sMPGMRES
1 18 (2.86) 44 (8.18) 13 (2.07)
10 22 (3.81) 49 (9.49) 15 (2.32)
100 35 (5.99) 52 (10.16) 24 (3.92)

Table 4.3

Iteration numbers, with wall-clock times in parentheses, for solving an Oseen problem with
h = 2−8.

First, we highlight the fact that MPGMRES has greater memory requirements

4These experients were ran on a two-socket machine, each with Intel Xeon CPU E5-2687W 0 @
3.10GHz (i.e. 2× 8 cores), and with 64GB memory total.

16



than GMRES, in this case requiring two columns to be added to Vk in the decom-
position (2.7) per iteration, compared with the one added in standard GMRES (see
Section 2.4, and note that Zk can be recovered from Vk). Therefore, if memory is
limited, using a single preconditioner may give a solution where MPGMRES may run
out of memory.

Provided the problem can be solved using both methods, the wall clock time
tells us which method is better. Neither the PCD nor the LSC preconditioner is the
clear winner here, the best alternative depending on the mesh size. MPGMRES, on
the other hand, almost always has the fewest iterations. Although each iteration of
MPGMRES requires two preconditioner solves – and hence is more expensive – these
are done in parallel here, and so the cost in terms of wall-clock time is not much
greater (see the final column of the tables). The overhead of invoking the openMP
machinery is amortized as the matrix size increases.
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and comments which helped us improve our presentation.
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[18] Michael Hinze, René Pinnau, Michael Ulbrich, and Stefan Ulbrich, Optimization with PDE
constraints, Mathematical Modelling: Theory and Applications, Springer, 2008.

[19] HSL (2013). A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk

[20] S. Lennart Johnsson, Youcef Saad, and Martin H. Schultz, Alternating direction methods on
multiprocessors, SIAM Journal on Statistical and Scientific Computing 8 (1987), 686–700.

[21] David Kay, Daniel Loghin, and Andrew J. Wathen, A Preconditioner for the Steady-State
Navier–Stokes Equations, SIAM Journal on Scientific Computing 24 (2002), 237–256.

[22] Carsten Keller, Nicholas I. M. Gould, and Andrew J. Wathen, Constraint Preconditioning for
Indefinite Linear Systems, SIAM Journal on Matrix Analysis and Applications 21 (2000),
1300–1317.

[23] Julien Langou, Iterative methods for solving linear systems with multiple right hand sides.
Ph.D. thesis, INSA Toulouse, June 2003. CERFACS Report TH/PA/03/24.
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