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Abstract. We review numerical methods for computing eigenvalues of ma-
trices. We start by considering the computation of the dominant eigenpair of a

general dense matrix using the power method, and then generalize to orthog-

onal iterations and the QR iteration with shifts. We also consider divide-and-
conquer algorithms for tridiagonal matrices. The second part of this survey

involves the computation of eigenvalues of large and sparse matrices. The

Lanczos and Arnoldi methods are developed and described within the con-
text of Krylov subspace eigensolvers. We also briefly present the idea of the

Jacobi–Davidson method.

1. Introduction

Eigenvalue problems form one of the central problems in Numerical Linear Algebra.
They arise in many areas of sciences and engineering. In this survey, we study
linear eigenvalue problems. The standard algebraic eigenvalue problem has the
form

Ax = λx.

We consider real eigenvalue problems, i.e., A ∈ Rn×n. In some places we will use
the notion of complex matrices, as they are crucial in mathematical as well compu-
tational aspects of eigenvalue solvers. There is a wide range of publications dealing
with numerical methods for solving eigenvalue problems, e.g., [39, 66, 22, 47, 62,
55, 32, 54]. Typically, eigensolvers are classified into methods for symmetric (or
Hermitian) and nonsymmetric (or non-Hermitian) matrices, or methods for small,
dense matrices and large, sparse matrices.

This survey reviews popular methods for computing eigenvalues of a given matrix.
It follows a minicourse presented by the second author at the 2015 Summer School
on “Geometric and Computational Spectral Theory” at the Université de Montréal,
and can be viewed as a set of comprehensive lecture notes.

When it comes to numerical computation of eigenvalues, it is reasonable to clas-
sify eigensolvers by the size and the nonzero pattern of the matrix. As opposed
to the solution of linear systems, where it is possible to obtain a solution within a
finite number of steps, most eigenvalue computations (except trivial cases such as
a diagonal or a triangular matrix) require an iterative process. For matrices that
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are not particularly large and do not have a specific nonzero structure, eigensolvers
are often based on matrix decompositions. One may be interested in a small num-
ber of the eigenvalues and/or eigenvectors, or all of them, and there are methods
that are available for accomplishing the stated goal. On the other hand, when the
matrix is large and sparse, it is rare to seek the entire spectrum; in most cases we
are interested in just a few eigenvalues and eigenvectors, and typical methods are
based on matrix-vector products rather than matrix decompositions. Interestingly,
despite the fact that all processes of eigenvalue computations are iterative, methods
that are based on matrix decompositions are often referred to as direct, whereas
methods that are based on matrix-vector products are termed iterative. This slight
abuse of terminology is nonetheless widely understood and typically does not cause
any confusion.

It is a bit ambitious to talk in general terms about a recipe for solution of eigen-
value problems, but it is legitimate to identify a few main components. A typical
eigensolver starts with applying similarity transformations and transforming the
matrix into one that has an appealing nonzero structure: for example tridiagonal if
the original matrix was symmetric. Once this is accomplished, an iterative process
is pursued, whereby repeated orthogonal similarity transformations are applied to
get us closer and closer to a diagonal or triangular form. For large and sparse ma-
trices, an additional component, generally speaking, in state of the art methods, is
the transformation of the problem to a small and dense one on a projected subspace.

This survey devotes a significant amount of space to elaborating on the above
principles. It is organized as follows. In Section 2, we briefly review basic concepts
of Numerical Linear Algebra that are related to eigenvalue problems. We start with
presenting methods for computing a few or all eigenvalues for small to moderate-
sized matrices in Section 3. This is followed by a review of eigenvalue solvers for
large and sparse matrices in Section 4. Conclusions complete the paper.

2. Background in Numerical Linear Algebra

2.1. Theoretical basics. We begin our survey with a review of basic con-
cepts in Numerical Linear Algebra. We introduce some notation used throughout
the survey.

Let A ∈ Cm×n. The kernel or nullspace of A is given as

ker(A) = {x ∈ Cn : Ax = 0} .
Another important subspace, which is often related to the kernel, is the range of
A, which is given as

ran(A) = {Ax : x ∈ Cn} .
The rank of A is the maximal number of linearly independent columns (or rows),
i.e.,

rank(A) = dim (ran(A)) .

It holds n = rank(A) + dim (ker(A)). A is called rank-deficient if rank(A) <
min{m,n}.

In what follows, we consider real matrices A ∈ Rn×n if not stated otherwise.
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Definition 2.1 (Invertibility). A is called invertible or nonsingular if there exists
a matrix B ∈ Rn×n such that

AB = BA = I.

Here, I ∈ Rn×n is the identity matrix. The inverse of A is uniquely determined,
and we denote it by A−1.

Related to the inverse and a matrix norm ‖ · ‖ is the condition number, which is
defined for a general square matrix A as

κ(A) = ‖A‖ ‖A−1‖.

In general, if κ(A) is large1, then A is said to be an ill-conditioned matrix. Useful
matrix norms include the well-known p-norms or the Frobenius norm ‖ · ‖F , which
is given as

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

|ai,j |2,

where ai,j is the (i, j) entry of A.

Let us come to the heart of this paper. The algebraic eigenvalue problem has the
following form:

Definition 2.2 (Algebraic Eigenvalue Problem). λ ∈ C is called an eigenvalue of
A if there exists a vector 0 6= x ∈ Cn such that

Ax = λx.

The vector x is called a (right) eigenvector of A associated with λ. We call the
pair (λ,x) an eigenpair of A. The set of all eigenvalues of A is called the spectrum
of A and is denoted by λ(A).

Note from the above definition that real matrices can have complex eigenpairs.
Geometrically, the action of a matrix A expands or shrinks any vector lying in the
direction of an eigenvector of A by a scalar factor. This scalar factor is given by
the corresponding eigenvalue of A.

Remark 2.3. Similarly, a left eigenvector of A associated with the eigenvalue λ is
defined as a vector 0 6= y ∈ Cn that satisfies y∗A = λy∗. Here, y∗ = ȳT is the
conjugate transpose of y.

Throughout the survey, we use the term eigenvector for a right eigenvector.

Another way to define eigenvalues is the following:

Definition 2.4 (Characteristic Polynomial). Let det(·) denote the determinant of
a matrix. Then the polynomial

pA(x) = det(A− xI)

is called the characteristic polynomial of A. It is a polynomial of degree n. The
roots of pA(x) are the eigenvalues of A.

1Of course, this depends on the definition of “large”; see, e.g., [22, Chap. 3.5].
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The eigenvalues of A can be used to determine the invertibility of A. If λ(A) =
{λ1, . . . , λn}, then the determinant of A is equal to

det(A) =

n∏
i=1

λi.

A is nonsingular if and only if det(A) 6= 0.

A useful concept for eigenvalues solvers is the Rayleigh quotient :

Definition 2.5 (Rayleigh Quotient). Let 0 6= z ∈ Cn. The Rayleigh quotient of
A and z is defined by

RA(z) =
z∗Az

z∗z
.

Note that if z is an eigenvector of A, then the Rayleigh quotient is the correspond-
ing eigenvalue.

Another way to express the eigenvalue problem in Definition 2.2 is that (λ,x) is an
eigenpair of A if and only if 0 6= x ∈ ker(A − λI). Based on this kernel, we can
define the eigenspace of A:

Definition 2.6 (Eigenspace).

Eλ(A) = ker(A− λI)

is the eigenspace of A corresponding to λ.

The following concept of invariant subspaces bears similarities to the eigenvalue
problem.

Definition 2.7 (Invariant Subspace). A subspace S ⊂ Cn is said to be invariant
under a matrix A ∈ Cn×n (A-invariant) if AS ⊂ S.

Definition 2.8. Let A ∈ Cn×n, S ⊂ Cn, and S ∈ Cn×k with k = rank(S) =
dim(S) ≤ n and S = ran(S). Then, S is A-invariant if and only if there exists a
matrix B ∈ Ck×k such that

AS = SB.

Remark 2.9. Using Definition 2.8, it is easy to show the following relations:

• If (λ,x) is an eigenpair of B, then (λ,Sx) is an eigenpair of A. Hence,
λ(B) ⊂ λ(A).

• If k = n, then S is invertible and hence

A = SBS−1.

This means A and B are similar and λ(B) = λ(A). This concept is
introduced next.

Most of the presented algorithms will transform a matrixA into simpler forms, such
as diagonal or triangular matrices, in order to simplify the original eigenvalue prob-
lem. Transformations that preserve the eigenvalues of matrices are called similarity
transformations.
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Definition 2.10 (Similarity Transformation). Two matrices A,B ∈ Cn×n are said
to be similar if there exists a nonsingular matrix C ∈ Cn×n such that

A = CBC−1.

The mapping B → A is called a similarity transformation. The similarity of A
and B implies that they have the same eigenvalues. If (λ,x) is an eigenpair of B,
then (λ,Cx) is an eigenpair of A.

The simplest form to which a matrix can be transformed is a diagonal matrix. But
as we will see, this is not always possible.

Definition 2.11 (Diagonalizability). If A ∈ Cn×n is similar to a diagonal matrix,
then A is said to be diagonalizable.

A similarity transformation in which C is orthogonal (or unitary), i.e., CTC = I
(or C∗C = I), is called orthogonal (or unitary) similarity transformation. Uni-
tary/orthogonal similarity transformations play a key role in numerical computa-
tions since ‖C‖2 = 1. Considering the calculation of similarity transformations, it
can be shown (cf. [22, Chap. 7.1.5]) that the roundoff error E satisfies

‖E‖ ≈ εmachine κ2 (C)‖A‖2.
Here, εmachine is the machine precision2 and κ2(C) the condition number of C with
respect to the 2-norm. In particular, κ2(C) is the error gain. Therefore, if the
similarity transformation is unitary, we get

‖E‖ ≈ εmachine‖A‖2
and hence no amplification of error.

Theorem 2.12 (Unitary Diagonalizability; see [22, Cor. 7.1.4].). A ∈ Cn×n is
unitarily diagonalizable if and only if it is normal (A∗A = AA∗).

Now, let us show the connection between a similarity transformation of a matrix
A and its eigenpairs: It follows from Definition 2.4 and the Fundamental Theorem
of Algebra that A has n (not necessarily distinct) eigenvalues. If we denote the n
eigenpairs by (λ1,x1), . . . , (λn,xn), i.e. Axi = λixi for i = 1, . . . , n, we can write

(2.1) AX = XΛ,

where Λ = diag(λi)i=1,...,n ∈ Cn×n is a diagonal matrix containing the eigenval-
ues, and X = [x1| . . . |xn] ∈ Cn×n is a matrix whose columns are formed by the
eigenvectors. This looks almost as a similarity transformation. In fact, the “only”
additional ingredient we need is the invertibility of X. Under the assumption that
X is nonsingular, we obtain X−1AX = Λ, and hence, A and Λ are similar. But
when can we expect of X to be nonsingular? To discuss this, we introduce some
terminology:

Definition 2.13 (Multiplicity). Let λ be an eigenvalue of A.

• λ has algebraic multiplicity ma, if it is a root of multiplicity ma of the
characteristic polynomial pA.

• If ma = 1, then λ is called simple. Otherwise, λ is said to be multiple.

2The machine precision is εmachine = 2−53 ≈ 1.11 · 10−16 in the double precision IEEE

floating point format and εmachine = 2−24 ≈ 5.96 · 10−6 in the single precision IEEE floating
point format. For more details, we refer to, e.g., [37, 66, 27].
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• The geometric multiplicity mg of λ is defined as the dimension of the
associated eigenspace, i.e., mg = dim (Eλ(A)). It is the maximum number
of independent eigenvectors associated with λ.

• It holds mg ≤ ma.
• If mg < ma, then λ and A are called defective or non-diagonalizable.

Note that if all eigenvalues of A are simple, then they are distinct. Now, we can
state a result about the nonsingularity of the eigenvector matrix X in (2.1):

Theorem 2.14 (Diagonal Form; see [22, Cor. 7.1.8].). Let A ∈ Rn×n with eigen-
values λ1, . . . , λn ∈ C. A is nondefective if and only if there exists a nonsingular
matrix X ∈ Cn×n such that

X−1AX = diag(λi)i=1,...,n.

The similarity transformation given in Theorem 2.14 transforms A into a diagonal
matrix whose entries reveal the eigenvalues of A.

We have seen that a similarity transformation to a diagonal matrix is not always
possible. Before we come to the next similarity transformation, we introduce the
concept of deflation – the process of breaking down an eigenvalue problem into
smaller eigenvalue problems.

Theorem 2.15 (See [22, Lemma 7.1.3].). Let A ∈ Cn×n, S ∈ Cn×k with rank(S) =
k < n and B ∈ Ck×k such that

AS = SB,

i.e., ran(S) is an A-invariant subspace. Then, there exists a unitary Q ∈ Cn×n
such that

Q∗AQ = T =

[
T11 T12

0 T22

]
and

λ(T ) = λ(T11) ∪ λ(T22),

λ(T11) = λ(A) ∩ λ(B)

with T11 ∈ Ck×k.

From Theorem 2.15, we obtain a similarity transformation that transforms a matrix
A into an upper triangular matrix whose diagonal entries reveal the eigenvalues of
A. Such a decomposition always exists.

Theorem 2.16 (Schur Decomposition; see [22, Theor. 7.1.3].). Given A ∈ Cn×n
with eigenvalues λ1, . . . , λn ∈ C. Then, there exists a unitary matrix Q ∈ Cn×n
such that

Q∗AQ = T = D +N ,

where D = diag(λi)i=1,...,n, and N ∈ Cn×n is strictly upper triangular. Moreover,
Q can be chosen such that the eigenvalues λi appear in any order in D.

The transformation in Theorem 2.16 deals with a complex matrixQ even whenA is
real. A slight variation of the Schur decomposition shows that complex arithmetic
can be avoided in this case. This is based on the fact that complex eigenvalues
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always occur in complex conjugate pairs, i.e., if (λ,x) is an eigenpair of A ∈ Rn×n,
then (λ̄, x̄) is an eigenpair of A.

Theorem 2.17 (Real Schur Decomposition; see [22, Theor. 7.4.1].). Let A ∈ Rn×n
with eigenvalues λ1, . . . , λn ∈ C. Then, there exists an orthogonal matrix Q ∈ Rn×n
such that

QTAQ = T =

 T1,1 · · · T1,m

. . .
...

Tm,m

 ,
where T ∈ Rn×n is quasi-upper triangular. The diagonal blocks Ti,i are either 1×1
or 2×2 matrices. A 1×1 block corresponds to a real eigenvalue λj ∈ R. A 2×2 block
corresponds to a pair of complex conjugate eigenvalues. For a complex conjugate
eigenvalue pair λk = µ+ ıν, λl = µ− ıν, Ti,i has the form

Ti,i =

[
µ ν
−ν µ

]
.

Moreover, Q can be chosen such that the diagonal blocks Ti,i appear in any order
in T .

The next similarity transformation we present transforms a matrix A into upper
Hessenberg form. Such a decomposition always exists and will play an important
role in eigenvalue solvers for nonsymmetric matrices.

Theorem 2.18 (Hessenberg Decomposition). Let A ∈ Cn×n. Then, there exists a
unitary matrix Q ∈ Cn×n such that

Q∗AQ = H =



h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3
. . .

...
...

. . .
. . .

. . . hn−1,n

0 · · · 0 hn,n−1 hn,n

 .

H is called an upper Hessenberg matrix. Further, H is said to be unreduced if
hj+1,j 6= 0 for all j = 1, . . . , n− 1.

From a theoretical point of view, one of the most important similarity transforma-
tions is the Jordan decomposition, or Jordan Canonical Form.

Theorem 2.19 (Jordan Decomposition; see [22, Theor. 7.1.9].). Let A ∈ Cn×n
with exactly p distinct eigenvalues λ1, . . . , λp ∈ C for p ≤ n. Then, there exists a
nonsingular matrix X ∈ Cn×n such that

X−1AX =

 J1(λ1)
. . .

Jp(λp)

 .
Each block Ji(λi) has the block diagonal structure

Ji(λi) =

 Ji,1(λi)
. . .

Ji,mg
i
(λi)

 ∈ Cm
a
i×m

a
i



8 JESSICA BOSCH AND CHEN GREIF

with

Ji,k(λi) =


λi 1

. . .
. . .

λi 1
λi

 ∈ Cmi,k×mi,k ,

where ma
i and mg

i are the algebraic and geometric multiplicity of the eigenvalue λi.
Each of the subblocks Ji,k(λi) is referred to as a Jordan block.

Unfortunately, from a computational point of view, the computation of the Jordan
Canonical Form is numerically unstable.

An important and practical factorization is the QR decomposition:

Definition 2.20 (QR Decomposition; see [22, Theor. 5.2.1].). Let A ∈ Rm×n.
Then, there exists an orthogonal Q ∈ Rm×m and an upper triangular R ∈ Rm×n
such that

A = QR.

This concludes the theoretical part of the background study. Next, we are getting
started with computational aspects.

2.2. First computational aspects. This section quickly reviews aspects of
perturbation theory and illustrates possible difficulties in computing eigenvalues
accurately. This is followed by a brief overview of different classes of methods for
solving eigenvalue problems. Details about all mentioned methods are given in the
upcoming sections.

First of all, it should be clear that in general we must iterate to find eigenvalues of a
matrix: According to Definition 2.4, the eigenvalues of a matrix A are the roots of
the characteristic polynomial pA(x). In 1824, Abel proved that for polynomials of
degree n ≥ 5, there is no formula for its roots in terms of its coefficients that uses
only the operations of addition, subtraction, multiplication, division, and taking
kth roots. Hence, even if we could work in exact arithmetic, no computer would
produce the exact roots of an arbitrarily polynomial in a finite number of steps.
(This is different than direct methods for solving systems of linear equations such
as Gaussian elimination.) Hence, computing the eigenvalues of any n × n matrix
A requires an iterative process if n ≥ 5.

As already indicated in the previous section, many methods are based on repeatedly
performing similarity transformations to bring A into a simpler equivalent form.
This typically means generating as many zero entries in the matrix as possible.
The goal is eventually to perform a Schur decomposition. If the matrix is normal,
then the Schur decomposition simplifies to a diagonal matrix (not only an upper
triangular matrix), and this has implications in terms of stability of numerical com-
putations. As part of the process, we often aim to reduce the matrix into tridiagonal
form (symmetric case) or upper Hessenberg form (nonsymmetric case). Deflation,
projection, and other tools can be incorporated and are extremely valuable.

Now, let us focus on the reduction of a matrix A to upper Hessenberg form. One
way to accomplish this is the use of Householder reflectors (also called Householder
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transformations). They can be used to zero out selected components of a vector.
Hence, by performing a sequence of Householder reflections on the columns of A,
we can transform A into a simpler form. Householder reflectors are matrices of the
form

P = I − 2

v∗v
vv∗,

where v ∈ Cn \ {0}. Householder matrices are Hermitian (P = P ∗), unitary, and
numerically stable. Geometrically, P applied to a vector x reflects it about the
hyperplane span{v}⊥.

Assume we want to bring A into upper Hessenberg form. Then, the first step is
to introduce zeros into all except the first two entries of the first column of A.
Let us denote by x = [a2,1, . . . , an,1]T the part of the first column of A under
consideration. We are looking for a vector v ∈ Cn−1 \ {0} such that Px results
in a multiple of the first unit vector e1. This can be achieved with the ansatz
v = x± ‖x‖2e1, since this yields

Px = ∓‖x‖2e1.

Let us illustrate the action of P to the first column of A:
a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

a3,1 a3,2 · · · a3,n

...
...

. . .
...

an,1 an,2 · · · an,n

→


a1,1 a1,2 · · · a1,n

∓‖x‖2 a2,2 · · · a2,n

0 a3,2 · · · a3,n

...
...

. . .
...

0 an,2 · · · an,n

 .
Note that the first step is not complete yet: Remember that, for a similarity trans-
formation, we need to apply the Householder matrix twice, i.e., P ∗AP . Note that
the right multiplication with P does not destroy the zeros:

∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 P ∗·−→


∗ ∗ · · · ∗
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 ·P−→


∗ ∗ · · · ∗
∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
A P ∗A P ∗AP

Let us denote the Householder matrix in the first step by P1. The above procedure
is repeated with the Householder matrix P2 to the second column of P ∗1AP1, then
to the third column of P ∗2 P

∗
1AP1P2 with the Householder matrix P3, and so on,

until we end up with a matrix in upper Hessenberg form as given in Definition 2.18.
Let us denote the Householder matrix in step i by Pi. After n− 2 steps, we obtain
the upper Hessenberg form:

P ∗n−2 · · ·P ∗1︸ ︷︷ ︸
P ∗

AP1 · · ·Pn−2︸ ︷︷ ︸
P

= H =



∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗

0 ∗ ∗
. . .

...
...

. . .
. . .

. . . ∗
0 · · · 0 ∗ ∗

 .

Remark 2.21. Here are a few additional comments about the process:
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• In practice, one choses v = x+sign(x1)‖x‖2e1, where x1 is the first entry
of the vector x under consideration.

• Note that in each step i, the corresponding vector xi, and hence vi and
Pi, shrink by one in size.

• The reduction of an n × n matrix to upper Hessenberg form via House-
holder reflections requires O(n3) operations.

One may ask why do we first bring A to upper Hessenberg form and not imme-
diately to triangular form using Householder reflections? In that case, the right
multiplication with P would destroy the zeros previously introduced:

∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 P ∗·−→


∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 ·P−→


∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 .
A P ∗A P ∗AP

This should not come as a surprise: we already knew from Abel (1824) that it is
impossible to obtain a Schur form ofA in a finite number of steps; see the beginning
of this Section.

Remark 2.22. If A is symmetric, the reduction to upper Hessenberg form turns
into a tridiagonal matrix. That is because the right multiplication with Pi also
introduces zeros above the diagonal:

∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗


P ∗

1 ·−→


∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗


·P1−→


∗ ∗ 0 · · · 0
∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗

 .
A P ∗1A P ∗1AP1

Later on, we will discuss fast algorithms for eigenvalue problems with symmetric
tridiagonal matrices.

Remark 2.23. The Hessenberg reduction via Householder reflections is backward
stable, i.e., there exists a small perturbation δA of A such that

Ĥ = P̂ ∗(A+ δA)P̂ , ‖δA‖F ≤ cn2εmachine‖A‖F .

Here, Ĥ is the computed upper Hessenberg matrix, P̂ = P̂1 · · · P̂n−2 is a product
of exactly unitary Householder matrices based on computed vectors v̂i, and c > 0
a constant. For more details, we refer to [66, p. 351] and [27, Sec. 19.3].

During the next sections, we will see how the upper Hessenberg form (or the tridi-
agonal form in case of symmetric matrices) is used within eigenvalue solvers.

Before we talk about algorithms, we need to understand when it is difficult to
compute eigenvalues accurately. The following example shows that eigenvalues of
a matrix are continuous (but not necessarily differentiable) functions of it.
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Example 2.24. Consider the perturbed Jordan block

A(ε) =


0 1

. . .
. . .

. . . 1
ε 0

 ∈ Rn×n.

The characteristic polynomial is given as pA(ε)(x) = (−1)n(xn − ε). Hence, the

eigenvalues are λj(ε) = ε
1
n exp( 2ıjπ

n ) for j = 1, . . . , n. None of the eigenvalues is
differentiable at ε = 0. Their rate of change at the origin is infinite. Consider
for instance the case n = 20 and ε = 10−16 (machine precision), then λ1(ε) =
0.1507 + 0.0490ı whereas λ(0) = 0.

Let us quickly address the issue of estimating the quality of computed eigenvalues.
The question here is: How do eigenvalues and eigenvectors vary when the original
matrix undergoes small perturbations? We start with considering the sensitivity of
simple eigenvalues.

Theorem 2.25 (See, e.g. [22, Chap. 7.2.2].). Let A ∈ Cn×n with a simple eigen-
value λ, a right (unit norm) eigenvector x, and a left (unit norm) eigenvector y. Let
A+ δA be a perturbation of A and λ+ δλ the corresponding perturbed eigenvalue.
Then

δλ =
y∗δAx

y∗x
+O

(
‖δA‖22

)
.

The condition number of λ is defined as s(λ) = 1
|y∗x| . It can be shown that

s(λ) =
1

cos (θ(x,y))
,

where θ(x,y) is the angle between x and y.

In general, O(ε) perturbations inA can induce ε
s(λ) changes in an eigenvalue. Thus,

if s(λ) is small, then λ is ill-conditioned, and A is “close to” a matrix with multiple
eigenvalues. If A is normal, then every simple eigenvalue satisfies s(λ) = 1, which
means that these eigenvalues are well-conditioned. In the case of a multiple eigen-
value λ, s(λ) is not unique anymore. For a defective eigenvalue λ, it holds in general

that O(ε) perturbations in A can result in O
(
ε

1
p

)
changes in λ, where p denotes

the size of the largest Jordan block associated with λ. This is the effect we have
observed in Example 2.24: A(0) has the effective eigenvalue zero with algebraic
multiplicity n and geometric multiplicity one. Hence, O(10−16) perturbations in A

can result in O
(

10−
16
20

)
= O (0.1585) changes in the eigenvalue. In other words,

small perturbations in the input data caused a large perturbation in the output.
This can lead to numerical instabilities of eigenvalue solvers.

In the following, we start with algorithms for computing a few up to all eigenvalues
for small to moderate-sized matrices. Then, we continue with large and sparse
matrices.
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3. Small to moderate-sized matrices

In general, as previously stated, we may separate methods into ones that are based
on matrix decompositions vs. ones that are based on matrix-vector products. The
power method, which we start with in the sequel, is an important building block for
both classes of methods. It is based on matrix-vector products, but it is invaluable
for eigensolvers based on decompositions. We choose to include it in this section,
noting that it is relevant also for eigensolvers for large and sparse matrices.

3.1. Power method. The power method is one of the oldest techniques for
solving eigenvalue problems. It is used for computing a dominant eigenpair, i.e., the
eigenvalue of maximum modulus of a matrix A and a corresponding eigenvector.
The algorithm consists of generating a sequence of matrix-vector multiplications
{Akv0}k=0,1,..., where v0 is some nonzero initial vector.

Let A ∈ Rn×n with Axj = λjxj for j = 1, . . . , n. Assume that the eigenvectors
xj , j = 1, . . . , n, are linearly independent, i.e., A is nondefective. Given 0 6= v0 ∈
Cn, we can expand it using the eigenvectors of A to

v0 =

n∑
j=1

βjxj ,

where βj ∈ C for j = 1, . . . , n. Applying A to v0 yields

Av0 =

n∑
j=1

βjAxj =

n∑
j=1

βjλjxj .

Hence, the eigenvectors corresponding to eigenvalues of larger modulus are favored.
The above procedure can be repeated. In fact, for any k ∈ N, we have

Akv0 =

n∑
j=1

βjA
kxj =

n∑
j=1

βjλ
k
jxj .

In order for the following algorithm to converge, we need the following assumptions:
|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. Since we are interested in the eigenvalue of
maximum modulus, we need some distance to the remaining eigenvalues. λ1 is called
the dominant eigenvalue. We further need v0 to have a component in the direction
of the eigenvector corresponding to λ1, i.e., β1 6= 0. Note that this assumption
is less concerning in practice since rounding errors during the iteration typically
introduce components in the direction of x1. However, we need it for the following
theoretical study. Due to β1 6= 0, we can write

Akv0 = β1λ
k
1x1 +

n∑
j=2

βjλ
k
jxj = β1λ

k
1

x1 +

n∑
j=2

βj
β1

(
λj
λ1

)k
xj

 .

Since λ1 is a dominant eigenvalue, we get
(
λj

λ1

)k k→∞−→ 0 for all j = 2, . . . , n. Hence,

it can be shown (cf. [47, Theor. 4.1]) that Akv0, as well as the scaled version

vk = Akv0

‖Akv0‖2 which is used in practice to avoid overflow/underflow, converges

linearly to a multiple of x1 with a convergence rate proportional to |λ2|
|λ1| . A value
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of |λ2|
|λ1| ≈ 1 indicates a slow convergence behavior. Algorithm 3.1 shows the power

method. The approximated eigenvalue in step k

λ
(k)
1 = vTkAvk

is computed using the Rayleigh quotient ; see Definition 2.5. This is based on the

following: Given a vector x̂1 that approximates the eigenvector x1. Then, λ̂1 =
x̂T1Ax̂1 is the best eigenvalue approximation in the least-squares sense, i.e.,

(3.1) λ̂1 = arg min
µ
‖Ax̂1 − µx̂1‖22.

We can solve this minimization problem by solving the normal equation

x̂T1 x̂1 µ = x̂T1Ax̂1

⇔ µ =
x̂T1Ax̂1

x̂T1 x̂1
;

see, e.g., [46, Chap. 5.3.3]. Since we normalize the computed eigenvectors in the
power method, i.e., ‖x̂1‖2 = 1, we get the desired result. The cost for k iterations

Algorithm 3.1: Power method

1 Choose v0 = v
‖v‖2

2 for k = 1, 2, . . . , until termination do
3 ṽ = Avk−1

4 vk = ṽ
‖ṽ‖2

5 λ
(k)
1 = vTkAvk

6 end

is O(2kn2) floating point operations (flops).

The power method can be applied to large, sparse, or implicit matrices. It is simple
and basic but can be slow. We assumed for the convergence that A is nondefective.
For the case of a defective A, the power method can still be applied but converges
even more slowly; see, e.g., [28]. Moreover, we want to emphasize again that the
power method only works if the matrix under consideration has one dominant
eigenvalue. This excludes the case of, e.g., a dominant complex eigenvalue3 or
of dominant eigenvalues of opposite signs. The power method is rather used as
a building block for other, more robust and general algorithms. We refer to [66,
Chap. 10] for a detailed discussion of the power method. Next, we discuss a method
that overcomes the mentioned difficulties.

3.2. Inverse power method. We have seen that the power method is in
general slow. Moreover, it is good only for one well-separated dominant eigenvalue.
How can we accelerate it, and what about the more general case of looking for a non-
dominant eigenpair? The inverse power method uses shift and invert techniques to
overcome these limitations of the power method. It aims to compute the eigenvalue
of A that is closest to a certain scalar (shift) and a corresponding eigenvector. It
also enhances the convergence behavior. The price for these improvements is the

3As noted in Section 2.1, eigenvalues of real matrices always occur in complex conjugate
pairs.
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solution of a linear system in each iteration.

The idea is the following: Assume A ∈ Rn×n has eigenpairs (λj ,xj)j=1,...,n with
|λ1| ≥ . . . ≥ |λn|. Let α ∈ R with α 6= λj for j = 1, . . . , n. This will be the shift
in the inverse power method. In practice, we choose α ≈ λi for some i depending
on which (real) eigenvalue λi we want to find. Hence, in order for the method to
work, we need to know approximately the value of the eigenvalue we are interested
in. Then, A−αI has eigenpairs (λj−α,xj)j=1,...,n, and (A−αI)−1 has eigenpairs
(µj ,xj)j=1,...,n with µj = (λj − α)−1. Let λi and λj be the two eigenvalues that
are closest to α with |λi − α| < |λj − α|. Then, the two largest eigenvalues µ1 and
µ2 of (A− αI)−1 are

µ1 =
1

λi − α
, µ2 =

1

λj − α
.

Hence, the power method applied to (A−αI)−1 converges to µ1 and an eigenvector
of µ1 with convergence rate

|µ2|
|µ1|

=

1
|λj−α|

1
|λi−α|

=
|λi − α|
|λj − α|

.

We know from the previous section that we need a small value of |µ2|
|µ1| in order

to converge fast. Hence, we desire |λi − α| � |λj − α|, which requires a “good”
choice of the shift α. If we are interested for instance in the dominant eigenvalue,
estimations based on norms of A can be used; see, e.g., [22, Chap. 2.3.2].

Algorithm 3.2: Inverse power method

1 Choose v0 = v
‖v‖2

2 for k = 1, 2, . . . , until termination do
3 Solve (A− αI)ṽ = vk−1

4 vk = ṽ
‖ṽ‖2

5 λ(k) = vTkAvk
6 end

As already mentioned at the beginning of this section, the price for overcoming
difficulties of the power method by using a shift and invert approach is the solution
of a linear system in every iteration. If α is fixed, then we have to solve linear
systems with one matrix and many right-hand sides: If a direct method can be
applied, then we form an LU decomposition of A − αI once. The cost for solving
the two triangular systems arising from the LU decomposition is O(n2). For huge
problems, iterative methods have to be employed to solve the linear systems. This
pays off only if the inverse iteration converges very fast.

In summary, we have seen that we can apply the inverse power method to find
different eigenvalues using different shifts. During the whole iteration, the inverse
power method uses a fixed shift α. The next method involves a dynamic shift αk.

3.3. Rayleigh quotient iteration. The idea of the Rayleigh quotient itera-
tion is to learn the shift as the iteration proceeds using the calculated eigenvalue
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λ(k−1) from the previous step k− 1. Now, each iteration is potentially more expen-
sive since the linear systems involve different matrices in each step. However, the
new algorithm may converge in many fewer iterations. In the Hermitian case, we
potentially obtain a cubic convergence rate; see, e.g., [39].

Note that the matrix (A−λ(k−1)I) may be singular. This is the case when the shift
hits an eigenvalue of A. The cost for solving the linear system with (A− λ(k−1)I)
is O(n3) if A is full. For an upper Hessenberg matrix, it reduces to O(n2), and for
a tridiagonal matrix even to O(n).

Next, we discuss a technique that uses information of a computed dominant eigen-
pair for the approximation of a second-dominant eigenpair.

3.4. Deflation. Let A ∈ Rn×n have eigenvalues |λ1| > |λ2| ≥ . . . ≥ |λn|,
right eigenvectors x1, . . . ,xn, and left eigenvectors y1, . . . ,yn. Note that (λ1,x1)
is a dominant eigenpair. Suppose we have approximated the dominant eigenvector
x1 of A by x̂1 with ‖x̂1‖2 = 1. Now, we are interested in approximating the next
eigenvalue λ2.

Deflation is based on a simple rank-one modification of A, as follows: Compute
A1 = A − αx̂1w

T , where α ∈ R is an appropriate shift and w ∈ Rn an arbitrary
vector such that wT x̂1 = 1.

Theorem 3.1 (Wielandt; see [65].). In the case x̂1 = x1, the eigenvalues of A1

are λ1 − α, λ2, . . . , λn. Moreover, the right eigenvector x1 and the left eigenvectors
y2, . . . ,yn are preserved.

Proof. (
A− αx1w

T
)
x1 = Ax1 − αx1w

Tx1 = λ1x1 − αx1

since wTx1 = 1. For i = 2, . . . , n, we have

y∗i
(
A− αx1w

T
)

= y∗iA− αy∗i x1w
T = y∗iA = λiy

∗
i

since y∗i x1 = 0 for i = 2, . . . , n. �

Hence, a modification of A to A1 = A−αx̂1w
T displaces the dominant eigenvalue

of A. The rank-one modification should be chosen such that λ2 becomes the dom-
inant eigenvalue of A1. We can then proceed for instance with the power method
applied to A1 in order to obtain an approximation of λ2. This technique is called
Wielandt deflation.

There are many ways to choose w. A simple choice (due to Hotelling [29]) is to
choose w = y1 the first left eigenvector (or an approximation of it) or w = x1 or
rather its approximation w = x̂1. It can be shown (cf. [47, Chap. 4.2.2]) that if x1

is nearly orthogonal to x2 or if λ1−λ2

α � 1, the choice w = x1 is nearly optimal in
terms of eigenvalue conditioning.

Note that we never need to form the matrix A1 explicitly. This is important since
A1 is a dense matrix. For calculating the matrix-vector product y = A1x, we just
need to perform y ← Ax, β = αwTx, and y ← y − βx̂1. We can apply this
procedure recursively without difficulty. However, keep in mind that, for a long
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deflation process, errors accumulate.

So far, the discussed algorithms compute only one eigenpair at once, i.e., a one-
dimensional invariant subspace. Next, we consider another generalization of the
power and inverse power method that can be used to compute higher-dimensional
invariant subspaces.

3.5. Orthogonal iteration. Let A ∈ Rn×n have eigenpairs (λj ,xj)j=1,...,n

with |λ1| ≥ . . . ≥ |λn|. From the real Schur decomposition in Theorem 2.17, we
know there exists an orthogonal Q ∈ Rn×n such that

QTAQ = T ,

where the diagonal blocks of T correspond to the eigenvalues of A in real form.
Assume that the eigenvalues λi, represented in T in real form, are ordered from λ1

to λn. Let 1 ≤ r < n. Then, we can do the following partitioning:

Q = [Q(r),Q(n−r)], T =

[
T (r,r) T (r,n−r)

0 T (n−r,n−r)

]
,

where Q(r) ∈ Rr×r and T (r,r) ∈ Rr×r. Note that r should be chosen such that the
(r + 1, r) entry in T is zero, i.e., we do not split a complex conjugate eigenpair to
T (r,r) and T (n−r,n−r). Then,

AQ(r) = Q(r)T (r,r),

i.e., ran(Q(r)) is an A-invariant subspace corresponding to the r largest (in modu-
lus) eigenvalues. Due to this property, this subspace is also called dominant.

Now, we are interested in computing such a dominant r-dimensional invariant sub-
space. Hence, instead of dealing with a matrix-vector product as in the algorithms
before, we go over to a matrix-matrix product, i.e., we apply A to a few vectors
simultaneously. This can be achieved by the orthogonal iteration presented in Al-
gorithm 3.3.

Algorithm 3.3: Orthogonal iteration

1 Choose Q0 ∈ Rn×r with orthonormal columns

2 for k = 1, 2, . . . , until termination do
3 Zk = AQk−1

4 QkRk = Zk (QR factorization)

5 end

The QR factorization in Line 4 refers to the QR decomposition in Definition 2.20. It
can be computed by, e.g., the modified Gram–Schmidt algorithm in O

(
2nr2

)
flops

[22, Chap. 5.2.8], Householder reflections in O
(
2r2

(
n− r

3

))
flops [22, Chap. 5.2.2],

or Givens transformations in O
(
3r2

(
n− r

3

))
flops [22, Chap. 5.2.5]. Note that the

complexity can be reduced if the corresponding matrix is of upper Hessenberg form.
We will discuss this further below. Note that Line 3 and 4 yield

AQk−1 = QkRk,
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where Rk is upper triangular. Now, if |λr| > |λr+1| and Q0 has components in the
desired eigendirections, then we have

ran(Qk)
k→∞−→ ran(Q(r))

with a convergence rate proportional to |λr+1|
|λr| . For more details, we refer to [22,

Chap. 7.3.2].

Remark 3.2. By replacing the QR factorization in Line 4 of Algorithm 3.3 with
Qk = Zk, we obtain the subspace iteration, also called simultaneous iteration.
Under the same conditions as before, it holds

ran(Zk)
k→∞−→ ran(Q(r)).

However, the columns ofZk form an increasingly ill-conditioned basis forAkran(Q0)
since each column of Zk converges to a multiple of the dominant eigenvector. The
orthogonal iteration overcomes this difficulty by orthonormalizing the columns of
Zk at each step.

From the orthogonal iteration, we can derive the QR iteration, a method for finding
all eigenvalues of a matrix A.

3.6. QR iteration. We obtain the QR iteration from the orthogonal iteration
if we set r = n, i.e., we want to compute all eigenvalues, and Q0 = I.

Algorithm 3.4: Prelude to QR iteration

1 Choose Q0 = I (orthogonal)

2 for k = 1, 2, . . . , until termination do
3 Zk = AQk−1

4 QkRk = Zk (QR factorization)

5 Ak = QT
kAQk

6 end

We can rewrite Algorithm 3.4 by using the following equivalence:

Ak−1
Line 5

= QT
k−1AQk−1

Line 3
= QT

k−1Zk
Line 4

= QT
k−1QkRk =: Q̃kRk,(3.2)

Ak
Line 5

= QT
kAQk = QT

kAQk−1Q
T
k−1Qk

Line 3
= QT

kZkQ
T
k−1Qk

Line 4
= RkQ

T
k−1Qk

(3.2)
= RkQ̃k.

Note that the product of two orthogonal matrices is orthogonal. Hence, Q̃k is
orthogonal. Therefore, Ak is determined by a QR decomposition of Ak−1. This
form of the QR iteration is presented in Algorithm 3.5. Note that Q0 does not have
to be the identity matrix.
From Line 3 and 4 of Algorithm 3.5 we get

Ak = (Q0 · · ·Qk)TA(Q0 · · ·Qk) =: Q̂T
kAQ̂k,

where Q̂k is orthogonal. Hence, ran(Q̂k) is an A-invariant subspace and λ(A) =
λ(Ak). If |λ1| > . . . > |λn| and Q0 has components in the desired eigendirections,
then we have

ran(Q̂k(:, 1 : l))
k→∞−→ ran(Q(:, 1 : l)) ∀1 ≤ l ≤ n
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Algorithm 3.5: QR iteration

1 A0 = QT
0AQ0 (real Schur form, Q0 ∈ Rn×n orthogonal)

2 for k = 1, 2, . . . , until termination do
3 QkRk = Ak−1 (QR factorization)

4 Ak = RkQk

5 end

with a convergence rate proportional to |λl+1|
|λl| . Hence, Ak

k→∞−→ T , where QTAQ =

T is a real Schur decomposition ofA. For more details, we refer to [22, Chap. 7.3.3].

Overall, the QR iteration computes the Schur form of a matrix. As in the previous
section, we considered the real Schur form here. But note that if we allow complex
arithmetic, we get the same results with a (complex) Schur form. For further read-
ings on the QR iteration we refer to, e.g., [62, 55, 32].

As already mentioned in the previous section, in this form the cost of each step of
the QR iteration is O(n3). But we can reduce the complexity if we start with A0 in
upper Hessenberg form. Moreover, we can speed up the convergence using shifts.

3.7. QR iteration with shifts. If we choose Q0 such that A0 is in upper
Hessenberg form, the cost of each step of the QR iteration reduces to O(n2). If A
is symmetric, then the cost per step is O(n). It can be shown that each Ak is upper
Hessenberg. This is the first modification. Second, shifts ζk ∈ R are introduced in
order to accelerate the deflation process (see Theorem 2.15). Deflation occurs every
time Ak is reduced, i.e., at least one of its subdiagonal entries is zero. In such a
case, we continue with two smaller subproblems. The matrices Ak−1 and Ak in

Algorithm 3.6: QR iteration with shifts

1 A0 = QT
0AQ0 upper Hessenberg form (Tridiagonal if A is symmetric)

2 for k = 1, 2, . . . , until termination do
3 QkRk = Ak−1 − ζkI (QR factorization)

4 Ak = RkQk + ζkI

5 end

Algorithm 3.6 are orthogonally similar since

Ak = RkQk + ζkI = QT
k (QkRk + ζkI)Qk = QT

kAk−1Qk,

and Qk from the QR decomposition is orthogonal.

Why does the shift strategy work? If ζk is an eigenvalue of the unreduced Hessen-
berg matrix Ak−1, then Ak−1− ζkI is singular. This implies Rk is singular, where
the (n, n) entry of Rk is zero. Then, the last row of the upper Hessenberg matrix
Ak = RkQk + ζkI consists of zeros except for the (n, n) entry which is ζk. So we
have converged to the form

Ak =

[
A′ a
0T ζk

]
,
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and can now work on a smaller matrix (deflate) and continue the QR iteration. We
can accept the (n, n) entry as ζk as it is presumably a good approximation to the
eigenvalue. In summary, we obtain deflation after one step in exact arithmetic if
we shift by an exact eigenvalue.

If ζ = ζk for all k = 1, 2, . . ., and we order the eigenvalues λi of A such that

|λ1 − ζ| ≥ . . . ≥ |λn − ζ|,

then the pth subdiagonal entry in Ak converges to zero with rate
|λp+1−ζ|
|λp−ζ| . Of

course, we need |λp+1 − ζ| < |λp − ζ| in order to get any convergence result.

In practice, deflation occurs whenever a subdiagonal entry a
(k)
p+1,p of Ak is small

enough, e.g., if

|a(k)
p+1,p| ≤ cεmachine(|a(k)

p,p|+ |a
(k)
p+1,p+1|)

for a small constant c > 0.

Let us quickly summarize some shift strategies: The single-shift strategy uses ζk =

a
(k−1)
n,n . It can be shown (cf. [22, Chap. 7.5.3]) that the convergence a

(k)
n,n−1

k→∞−→ 0

is even quadratic. When we deal with complex eigenvalues, then ζk = a
(k−1)
n,n tends

to be a poor approximation. Then, the double-shift strategy is preferred which
performs two single-shift steps in succession, i.e., Lines 3–4 in Algorithm 3.6 are
repeated a second time with a second shift. Using implicit QR factorizations, one
double-shift step can be implemented with O(n2) flops (O(n) flops in the symmet-
ric case); see e.g., [22, Chap. 7.5.5]. This technique was first described by Francis
[18, 19] and refers to a Francis QR step.

The overall QR algorithm requires O(n3) flops. For more details about the QR
iteration, we refer to, e.g., [42, 33, 35, 60, 63, 64]. Further readings concerning
shift strategies include [17, 15, 61].

We know that the Hessenberg reduction of a symmetric matrix leads to a tridiagonal
matrix. In the following, we review methods for this special case.

3.8. Algorithms for symmetric (tridiagonal) matrices. Before we con-
sider eigenvalue problems for the special case of symmetric tridiagonal matrices,
we review one of the oldest methods for symmetric matrices A — Jacobi’s method.
For general symmetric eigenvalue problems, we refer the reader to [11, Chap. 5] —
it contains important theoretic concepts, e.g., gaps of eigenvalues and the related
perturbation theory, and gives a nice overview of direct eigenvalue solvers.

3.8.1. Jacobi’s method. Jacobi’s method is one of the oldest algorithms [30] for
eigenvalue problems with a cost of O(cn3) flops with a large constant c. However,
it is still of current interest due to its parallelizability and accuracy [12].

The method is based on a sequence of orthogonal similarity transformations

(3.3) . . .QT
3Q

T
2Q

T
1AQ1Q2Q3 . . . ,
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such that each transformation becomes closer to diagonal form. We can write (3.3)
as

Ak+1 = QT
k+1AkQk+1, k = 0, 1, 2, . . .

with A0 = A. In particular, the orthogonal matrices Qi are chosen such that the
Frobenius norm of the off-diagonal elements

off(Ak) =

√√√√√ n∑
i=1

n∑
j=1
j 6=i

(
a

(k)
i,j

)2

is reduced with each transformation. This is done using Jacobi rotations (Givens
rotations)

J(p, q, θ) =



1
. . .

1
c 0 · · · 0 s
0 1 0
...

. . .
...

0 1 0
−s 0 · · · 0 c

1
. . .

1



p

q

p q

where 1 ≤ p < q ≤ n, c = cos(θ), and s = sin(θ). Givens rotations are orthogonal.
The application of J(p, q, θ)T to a vector rotates the vector counterclockwise in
the (p, q) coordinate plane by θ radians. In order to make Ak+1 iteratively more
diagonal, Qk+1 = J(p, q, θ) is chosen to make one pair of off-diagonal entries of
Ak+1 = QT

k+1AkQk+1 zero at a time. Thereby, θ is chosen such that the (p, q) and
(q, p) entry of Ak+1 become zero. To determine θ, we can consider the correspond-
ing 2× 2 system[

c s
−s c

]T [
a

(k)
p,p a

(k)
p,q

a
(k)
q,p a

(k)
q,q

] [
c s
−s c

]
=

[
a

(k+1)
p,p 0

0 a
(k+1)
q,q

]
,

where a
(k+1)
p,p and a

(k+1)
q,q are the eigenvalues of[

a
(k)
p,p a

(k)
p,q

a
(k)
q,p a

(k)
q,q

]
.

One can show (cf. [11, Chap. 5.3.5]) that tan(2θ) =
2a(k)

p,q

a
(k)
q,q−a(k)

p,p

and using this, we can

compute c and s. Using the fact that the Frobenius norm is preserved by orthogonal
transformations, we obtain (cf. [11, Lemma 5.4])

(3.4) off(Ak+1)2 = off(Ak)2 − 2
(
a(k)
p,q

)2

,
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i.e.,Ak+1 moves closer to diagonal form with each Jacobi step. In order to maximize

the reduction in (3.4), p and q should be chosen such that |a(k)
p,q | is maximal. With

this choice, we get after k Jacobi steps (cf. [11, Theor. 5.11])

off(Ak)2 ≤
(

1− 2

n(n− 1)

)k
off(A0)2,

i.e., convergence at a linear rate. This scheme is the original version from Jacobi
in 1846 and is referred to as classical Jacobi algorithm. It even can be shown that
the asymptotic convergence rate is quadratic (cf. [11, Theor. 5.12]); see [49, 58].
While the cost for an update is O(n) flops, the search for the optimal (p, q) costs
O(n2) flops. For a simpler method, we refer the reader to the cyclic Jacobi method ;
see e.g. [66, p. 270] or [22, Chap. 8.5.3]. In general, the cost of the cyclic Jacobi
method is considerably higher than the cost of the symmetric QR iteration. How-
ever, it is easily parallelizable.

Again we want to emphasize that we do not need to tridiagonalize in Jacobi’s
method. In the following, we discuss two methods that need to start by reduc-
ing a symmetric matrix A to tridiagonal form: bisection and divide-and-conquer.
Another method is MR3 or MRRR (Algorithm of Multiple Relatively Robust Repre-
sentations) [13] — a sophisticated variant of the inverse iteration, which is efficient
when eigenvalues are close to each other.

3.8.2. Bisection. For the rest of Section 3, we consider eigenvalue problems for
symmetric tridiagonal matrices of the form

(3.5) A =



a1 b1
b1 a2 b2

b2 a3
. . .

. . .
. . . bn−1

bn−1 an

 .

We begin with bisection, a method that can be used to find a subset of eigenvalues,
e.g., the largest/smallest eigenvalue or eigenvalues within an interval. Let A(k) =
A(1 : k, 1 : k) be the leading k × k principal submatrix of A with characteristic
polynomial

p(k)(x) = det(A(k) − xI)

for k = 1, . . . , n. If bi 6= 0 for i = 1, . . . , n− 1, then

det(A(k)) = akdet(A(k−1))− b2k−1det(A(k−2)),

which yields

p(k)(x) = (ak − x)p(k−1)(x)− b2k−1p
(k−2)(x)

with p(−1)(x) = 0 and p(0)(x) = 1. Hence, p(n)(x) can be evaluated in O(n) flops.
Given y < z ∈ R with p(n)(y)p(n)(z) < 0 (Hence, there exists a w ∈ (y, z) with
p(n)(w) = 0.), we can use the method of bisection (see, e.g., [22, Chap. 8.4.1]) to
find an approximate root of p(n)(x) and hence an approximate eigenvalue ofA. The
method of bisection converges linearly in the sense that the error is approximately
halved at each step.
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Assume that the eigenvalues λj(A
(k)) of A(k) are ordered as

λ1(A(k)) ≥ . . . ≥ λk(A(k)).

For computing, e.g., λk(A) for a given k or the largest eigenvalue that is smaller
than a given µ ∈ R, then we need the following theorem:

Theorem 3.3 (Sturm Sequence Property; see [22, Theor. 8.4.1].). If A is unre-
duced, i.e., bi 6= 0 for i = 1, . . . , n − 1, then the eigenvalues of A(k−1) strictly
separate the eigenvalues of A(k):

λk(A(k)) < λk−1(A(k−1)) < λk−1(A(k))

< λk−2(A(k−1)) < λk−2(A(k)) < . . .

< λ2(A(k)) < λ1(A(k−1)) < λ1(A(k)).

Moreover, if a(µ) denotes the number of sign changes in the sequence

{p(0)(µ), p(1)(µ), . . . , p(n)(µ)},

where p(k)(µ) has the opposite sign from p(k−1)(µ) if p(k)(µ) = 0, then a(µ) equals
the number of A’s eigenvalues that are less than µ.

In order to find an initial interval for the method of bisection, we make use of the
following simplified version of the Gershgorin theorem:

Theorem 3.4 (Gershgorin). If A ∈ Rn×n is symmetric, then

λ(A) ⊆ ∪ni=1[ai,i − ri, ai,i + ri],

where ri =
∑n
j=1
j 6=i
|ai,j |.

The more general version of the Gershgorin theorem can be found, e.g., in [22,
Theor. 8.1.3]. Suppose we want to compute λk(A), where A is symmetric tridiag-
onal as in (3.5). Then, from Theorem 3.4, we get λk(A) ∈ [y, z] with

y = min
1≤i≤n

ai − |bi| − |bi−1|, z = max
1≤i≤n

ai + |bi|+ |bi−1|

and b0 = bn = 0. Hence, with this choice of y and z, we can reformulate the method
of bisection to converge to λk(A); see, e.g., [22, Chap. 8.4.2]. Another version of
this scheme can be used to compute subsets of eigenvalues of A; see [3]. For a
variant that computes specific eigenvalues, we refer to [39, p. 46].

The cost of bisection is O(nk) flops, where k is the number of desired eigenvalues.
Hence, it can be much faster than the QR iteration if k � n. Once the desired
eigenvalues are found, we can use the inverse power method (Section 3.2) to find
the corresponding eigenvectors. The inverse power method costs in the best case
(well-separated eigenvalues) O(nk) flops. In the worst case (many clustered eigen-
values), the cost is O(nk2) flops and the accuracy of the computed eigenvectors is
not guaranteed. Next, we review a method that is better suited for finding all (or
most) eigenvalues and eigenvectors, especially when the eigenvalues may be clus-
tered.
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3.8.3. Divide-and-conquer. The idea of divide-and-conquer is to recursively di-
vide the eigenvalue problem into smaller subproblems until we reach matrices of
dimension one, for which the eigenvalue problem is trivial. The method was first
introduced in 1981 [9] while its parallel version was developed in 1987 [14].

The starting point is to write the symmetric tridiagonal matrix A in (3.5) as a sum
of a block diagonal matrix of two tridiagonal matrices T1 and T2, plus a rank-1
correction:

A =

[
T1 0
0 T2

]
+ bmvv

T ,

where v ∈ Rn is a column vector whose mth and (m + 1)st entry is equal to one
(1 ≤ m ≤ n−1) and all remaining entries are zero. Suppose we have the real Schur
decompositions of T1 and T2, i.e., Ti = QiDiQ

T
i for i = 1, 2 with Q1 ∈ Rm×m and

Q2 ∈ R(n−m)×(n−m) orthogonal.

A =

[
Q1 0
0 Q2

]([
D1 0
0 D2

]
+ bmuu

T

)[
QT

1 0
0 QT

2

]
,

where

u =

[
QT

1 0
0 QT

2

]
v =

[
last column of QT

1

first column of QT
2

]
.

Hence, λ(A) = λ(D + bmuu
T ) where D =

[
D1 0
0 D2

]
= diag(di)i=1,...,n is a

diagonal matrix. Hence, the problem now reduces to finding the eigenvalues of a
diagonal plus a rank-1 matrix. This can be further simplified to finding the eigen-
values of the identity matrix plus a rank-1 matrix, using simply the characteristic
polynomial: In particular, under the assumption that D − λI is nonsingular, and
using

det(D + bmuu
T − λI) = det(D − λI)det

(
I + bm (D − λI)

−1
uuT

)
,

we obtain

λ ∈ λ(A)⇔ det
(
I + bm (D − λI)

−1
uuT

)
= 0.

The matrix I+ bm (D − λI)
−1
uuT is of special structure, and its determinant can

be computed using the following lemma:

Lemma 3.5 (See [11, Lemma 5.1].). Let x,y ∈ Rn. Then

det
(
I + xyT

)
= 1 + yTx.

In our case, we get

det
(
I + bm (D − λI)

−1
uuT

)
= 1 + bm

n∑
i=1

u2
i

di − λ
≡ f(λ),

and the eigenvalues of A are the roots of the secular equation f(λ) = 0. This can be
solved, e.g., by Newton’s method, which converges in practice in a bounded number
of steps per eigenvalue. Note that solving the secular equation needs caution due
to possible deflations (di = di+1 or ui = 0) or small values of ui. For more details
on the function f and on solving the secular equation, we refer to [11, Chap. 5.3.3].
The cost for computing all eigenvalues is O(n2 log(n)) flops by using the above
strategy of recursively dividing the eigenvalue problem into smaller subproblems.
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Hence, the pure eigenvalue computation (without eigenvectors) is more expensive
than in the QR iteration. However, the eigenvectors can be computed more cheaply:

Lemma 3.6 (See [11, Lemma 5.2].). If λ ∈ λ(D + bmuu
T ), then (D − λI)−1u is

a corresponding eigenvector.

The cost for computing all eigenvectors is O(n2) flops. However, the eigenvector
computation from Lemma 3.6 is not numerically stable. If λ is too close to a di-
agonal entry di, we obtain large roundoff errors since we divide by di − λ. If two
eigenvalues λi and λj are very close, the orthogonality of the computed eigenvectors
can get lost. For a numerical stable computation, we refer to [24], which requires
in practice O(cn3) flops where c� 1.

Here, we finish the discussion of eigenvalue problems for small to moderate-sized
matrices. We now move to discuss problems where the matrix is large and sparse.

4. Large and sparse matrices

In this section, A ∈ Rn×n is considered to be large and sparse. Sparse matrices
are matrices with very few nonzero entries. Sparse often means that there are O(1)
nonzero entries per row. We note that matrices that are not necessarily sparse
but give rise to very fast matrix-vector products (for example, via the Fast Fourier
Transform) often also allow for applying the methods discussed in this section.

The meaning of “large matrices” is relative. Let us say we consider matrices of size
millions. In order to take advantage of the large number of zero entries, special
storage schemes are required; see, e.g., [47, Chap. 2]. We will assume that it is not
easy to form a matrix decomposition such as the QR factorization. In particular,
similarity transformations would destroy the sparsity. Hence, we will mainly rely on
matrix-vector products, which are often computable in O(n) flops instead of O(n2).

In this chapter, we review methods for computing a few eigenpairs of A. In fact,
in practice, one often needs the k smallest/largest eigenvalues or the k eigenvalues
closest to µ ∈ C for a small k and their corresponding eigenvectors. In the following,
we introduce orthogonal projection methods, from which we can derive the state-
of-the-art Krylov methods, which make use of cheap matrix-vector products. Note
that projection methods even play a role for the methods discussed in Section 3.

4.1. Orthogonal projection methods. Suppose we want to find an approx-

imation (λ̂, x̂) of an eigenpair (λ,x) of A ∈ Rn×n. The idea of projection techniques
is to extract x̂ from some subspace K. This is called the subspace of approximants
or the right subspace. The uniqueness of x̂ is typically realized via the imposition
of orthogonality conditions. We denote by

r = Ax̂− λ̂x̂

the residual vector. It is a measure for the quality of the approximate eigenpair

(λ̂, x̂). The orthogonality conditions consist of constraining the residual r to be
orthogonal to some subspace L, i.e.,

r ⊥ L.
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L is called the left subspace. This framework is commonly known as the Petrov-
Galerkin conditions in diverse areas of mathematics, e.g., the finite element method.
The case L = K leads to the Galerkin conditions and gives an orthogonal projec-
tion, which we discuss next. The case where L is different from K is called oblique
projection, and we quickly have a look into this framework at the end of this section.

Let us assume that A is symmetric. Let K be a k-dimensional subspace of Rn. An

orthogonal projection technique onto K seeks an approximate eigenpair (λ̂, x̂) such
that x̂ ∈ K and

Ax̂− λ̂x̂ ⊥ K,
or equivalently

(4.1)
(
Ax̂− λ̂x̂,v

)
= 0 ∀v ∈ K.

Let {q1, . . . , qk} be an orthonormal basis of K and Qk = [q1| . . . |qk] ∈ Rn×k. Then,
(4.1) becomes (

Ax̂− λ̂x̂, qi
)

= 0 ∀i = 1, . . . , k.

If we express x̂ in terms of the basis of K, i.e., x̂ = Qky, we get(
AQky − λ̂Qky, qi

)
= 0 ∀i = 1, . . . , k,

and due to QT
kQk = I, we obtain

QT
kAQky = λ̂y.

This is the basis for Krylov subspace methods, which we discuss in the next section.
The matrix QT

kAQk ∈ Rk×k will often be smaller than A and is either upper
Hessenberg (nonsymmetric case) or tridiagonal (symmetric case). The Rayleigh–
Ritz procedure presented in Algorithm 4.1 computes such a Galerkin approximation.
The θi are called Ritz values and x̂i are the Ritz vectors. We will see that the Ritz

Algorithm 4.1: Rayleigh–Ritz procedure

1 Compute an orthonormal basis {q1, . . . , qk} of the subspace K. Set

Qk = [q1| . . . |qk].

2 Compute Tk = QT
kAQk.

3 Compute j eigenvalues of Tk, say θ1, . . . , θj .

4 Compute the corresponding eigenvectors vj of Tk. Then, the

corresponding approximate eigenvectors of A are x̂j = Qkvj .

values and Ritz vectors are the best approximate eigenpairs in the least-squares
sense. But first, let us put the presented framework into a similarity transformation
of A: Suppose Q = [Qk,Qu] ∈ Rn×n is an orthogonal matrix with Qk ∈ Rn×k
being the matrix above that spans the subspace K. We introduce

T := QTAQ =

[
QT
kAQk QT

kAQu

QT
uAQk QT

uAQu

]
=:

[
Tk Tuk
Tku Tu

]
.

Let Tk = VΘV T be the eigendecomposition of Tk. Note that for k = 1, T1 is just
the Rayleigh quotient (see Definition 2.5).
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Now, we can answer the question on the ”best” approximation to an eigenvector in
K. Similar to the observation in Section 3.1 that the Rayleigh quotient is the best
eigenvalue approximation in the least-squares sense, we have the following useful
result.

Theorem 4.1 (See [11, Theor. 7.1].). The minimum of ‖AQk − QkR‖2 over
all k × k symmetric matrices R is attained by R = Tk, in which case ‖AQk −
QkR‖2 = ‖Tku‖2. Let Tk = VΘV T be the eigendecomposition of Tk. The mini-
mum of ‖APk −PkD‖2 over all n× k orthogonal matrices Pk (P T

k Pk = I) where
span(Pk) = span(Qk) and over diagonal matrices D is also ‖Tku‖2 and is attained
by Pk = QkV and D = Λ.

In practice, the columns of Qk will be computed by, e.g., the Lanczos algorithm or
Arnoldi algorithm, which we discuss in Section 4.3 and 4.4.

Now, let us have a quick look at the oblique projection technique in which L is
different from K. Let K and L be k-dimensional subspaces of Rn. An oblique

projection technique onto K seeks an approximate eigenpair (λ̂, x̂) such that x̂ ∈ K
and

Ax̂− λ̂x̂ ⊥ L,
or equivalently

(4.2)
(
Ax̂− λ̂x̂,v

)
= 0 ∀v ∈ L.

Let {q1, . . . , qk} be an orthonormal basis of K, {p1, . . . ,pk} an orthonormal basis
of L, Qk = [q1| . . . |qk] ∈ Rn×k, and Pk = [p1| . . . |pk] ∈ Rn×k. Further, we assume
biorthogonality, i.e., P T

k Qk = I. Then, (4.2) becomes(
Ax̂− λ̂x̂,pi

)
= 0 ∀i = 1, . . . , k.

If we express x̂ in terms of the basis of K, i.e., x̂ = Qky, we get(
AQky − λ̂Qky,pi

)
= 0 ∀i = 1, . . . , k,

and due to P T
k Qk = I, we obtain

P T
k AQky = λ̂y.

Oblique projection techniques form the basis for the non-Hermitian Lanczos pro-
cess [25, 26, 41], which belongs to the class of Krylov subspace solvers. Krylov
subspace solvers form the topic of the next section. For a further discussion on the
oblique projection technique, we refer to, e.g., [47, Chap. 4.3.3].

4.2. Krylov subspace methods. Let A ∈ Rn×n. Krylov subspace methods
are used to solve linear systems or eigenvalue problems of sparse matrices. They
only require that A be accessible via a “black-box” subroutine which describes the
application of A to a vector. A k-dimensional Krylov subspace associated with a
matrix A and a vector v is the subspace given by

Kk(A;v) = span{v,Av,A2v, . . . ,Ak−1v}.
The corresponding Krylov matrix is denoted by

Kk(A;v) = [v|Av|A2v| . . . |Ak−1v].
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Using a Krylov subspace as right subspace K in projection methods has proven to
be efficient. Various Krylov subspace methods arose from different choices of the
left subspaces L. The Krylov subspace Kk(A;v) arises naturally if we refer to it
as the subspace generated by k − 1 steps of the power iteration (see Section 3.1)
with initial guess v. Similarly, for the inverse power iteration (see Section 3.2), we
obtain the subspace

Kk
(
(A− αI)−1;v

)
.

Both iterations produce a sequence of vectors v1, . . . ,vk that span a Krylov sub-
space and take vk as the approximate eigenvector. Now, rather than taking vk, it
is natural to use the whole sequence v1, . . . ,vk in searching for the eigenvector. In
fact, we saw in the previous section (Theorem 4.1 for the symmetric case) that we
can even use Kk to compute the k best approximate eigenvalues and eigenvectors.
There are three basic algorithms for generating a basis for the Krylov subspace: the
Lanczos process for symmetric matrices, which we discuss next, the Arnoldi process
for nonsymmetric matrices (Section 4.4), and the nonsymmetric Lanczos process.
The latter computes matrices Q and P with P TQ = I such that P TAQ is tridi-
agonal; see, e.g., [25, 26, 41]. Moreover, there exist block versions of the Arnoldi
and Lanczos process; see, e.g., [8, 48], which may exploit the block structure of
a matrix in some situations. They are basically an acceleration technique of the
subspace iteration, similar to the way the subspace iteration generalizes the power
methods.

4.3. The Lanczos process. Let A ∈ Rn×n be symmetric. The Lanczos pro-
cess computes an orthogonal basis for the Krylov subspace Kk(A;v) for some initial
vector v, and approximates the eigenvalues of A by the Ritz values.

Recall that the Hessenberg reduction of a symmetric matrix A reduces to a tridi-
agonal matrix, i.e., there exists an orthogonal Q ∈ Rn×n such that

(4.3) T = QTAQ =



α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βn−1

βn−1 αn

 .

The connection between the tridiagonalization of A and the QR factorization of
Kk(A; q1), where q1 = Qe1 is given as follows:

Theorem 4.2 (See [22, Theor. 8.3.1].). Let (4.3) be the tridiagonal decomposition
of a symmetric matrix A ∈ Rn×n with q1 = Qe1. Then:

(1) QTKn(A; q1) = R is upper triangular.
(2) If R is nonsingular, then T is unreduced.
(3) If k = arg minj=1,...,n {rj,j = 0}, then k − 1 = arg minj=1,...,n−1 {βj = 0}.

It follows from (1) in Theorem 4.2 thatQR is the QR factorization ofKn(A; q1). In
order to preserve the sparsity, we need an alternative to similarity transformations in
order to compute the tridiagonalization. Let us write Q = [q1| . . . |qn]. Considering
the kth column of AQ = QT , we obtain the following three-term recurrence:

(4.4) Aqk = βk−1qk−1 + αkqk + βkqk+1.
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Since the columns ofQ are orthonormal, multiplying (4.4) from the left by qk yields

αk = qTkAqk.

This leads to the method in Algorithm 4.2 developed by Lanczos in 1950 [34].

Algorithm 4.2: Lanczos process

1 Given q0 = 0, q1 = v
‖v‖2 , β0 = 0

2 for k = 1, 2, . . . do
3 zk = Aqk
4 αk = qTk zk
5 zk = zk − βk−1qk−1 − αkqk
6 βk = ‖zk‖2
7 if βk = 0 then
8 quit

9 end

10 qk+1 = zk

βk

11 end

The vectors qk computed by the Lanczos algorithm are called Lanczos vectors. The
Lanczos process stops before the complete tridiagonalization if q1 is contained in
an exact A-invariant subspace:

Theorem 4.3 (See [22, Theor. 10.1.1].). The Lanczos Algorithm 4.2 runs until
k = m, where

m = rank(Kn(A, q1)).

Moreover, for k = 1, . . . ,m, we have

(4.5) AQk = QkTk + βkqk+1e
T
k ,

where Tk = T (1 : k, 1 : k), Qk = [q1| . . . |qk] has orthonormal columns with

span{q1, . . . , qk} = Kk(A, q1).

In particular, βm = 0, and hence

AQm = QmTm.

The eigenvalues of the tridiagonal Tm can then be computed via, e.g., the QR it-
eration. A corresponding eigenvector can be obtained by using the inverse power
iteration with the approximated eigenvalue as shift.

We can show that the quality of the approximation after k Lanczos steps depends
on βk and on parts of the eigenvectors of Tk (cf. [22, Chap. 10.1.4]): Therefore, let
(θ,y) be an eigenpair of Tk. Applying (4.5) to y yields

AQky = QkTky + βkqk+1e
T
k y

= θQky + βkqk+1e
T
k y

and hence the following error estimation (cf. Theorem 4.1)

‖AQky − θQky‖2 = |βk| |eTk y|.
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Hence, we want to accomplish βk = 0 fast. Regarding the convergence theory, we
refer to [31, 38, 43] and [22, Chap. 10.1.5]. In summary, the Ritz values con-
verge fast to the extreme eigenvalues. Using shift and invert strategies (as in the
inverse power method in Section 3.2), we can obtain convergence to interior eigen-
values. In practice, rounding errors have a significant effect on the behavior of the
Lanczos iteration. If the computed βk are close to zero, then the Lanczos vectors
lose their orthogonality. Reorthogonalization strategies provide a remedy; see, e.g.,
[38, 21, 40, 50, 6, 67]. Nevertheless, we know from the last section that the Ritz
values and vectors are good approximations.

So far, we have assumed that A is symmetric. Next, we consider the nonsymmetric
case.

4.4. The Arnoldi process. For a nonsymmetric A ∈ Rn×n, we know that
there exists a Hessenberg decomposition, i.e., there exists an orthogonal Q ∈ Rn×n
such that

(4.6) H = QTAQ =



h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3
. . .

...
...

. . .
. . .

. . . hn−1,n

0 · · · 0 hn,n−1 hn,n

 .

The connection between the Hessenberg reduction of A and the QR factorization of
Kk(A; q1), where q1 = Qe1 is given as follows (cf. the symmetric case in Theorem
4.2)

Theorem 4.4 (See [22, Theor. 7.4.3].). Suppose Q ∈ Rn×n is orthogonal and let
q1 = Qe1 and A ∈ Rn×n. Then, QTAQ = H is an unreduced upper Hessenberg
matrix if and only if QTKn(A; q1) = R is nonsingular and upper triangular.

It follows from Theorem 4.4 that QR is the QR factorization of Kn(A; q1). As
before, in order to preserve the sparsity, we need an alternative to similarity trans-
formations in order to compute the Hessenberg reduction. Let us write Q =
[q1| . . . |qn]. Considering the kth column of AQ = QH, we obtain the following
recurrence:

(4.7) Aqk =

k+1∑
i=1

hi,kqi.

Since the columns of Q are orthonormal, multiplying (4.7) from the left by qi yields

hi,k = qTi Aqk

for i = 1, . . . , k. This leads to the method in Algorithm 4.3 developed by Arnoldi in
1951 [1]. It can be viewed as an extension of the Lanczos process to nonsymmetric
matrices. Note that, in contrast to the symmetric case, we have no three-term
recurrence anymore. Hence, we have to store all computed vectors qk. These
vectors are called Arnoldi vectors. The Arnoldi process can be seen as a modified
Gram-Schmidt orthogonalization process (cf. [22, Chap. 5.2.8]) since in each step
k we orthogonalize Aqk against all previous qi — this requires O(kn) flops. Hence,
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Algorithm 4.3: Arnoldi process

1 Given q1 = v
‖v‖2

2 for k = 1, 2, . . . do
3 zk = Aqk
4 for i = 1, . . . , k do
5 hi,k = qTi zk
6 zk = zk − hi,kqi
7 end

8 hk+1,k = ‖zk‖2
9 if hk+1,k = 0 then

10 quit

11 end

12 qk+1 = zk

hk+1,k

13 end

the computational cost grows rapidly with the number of steps. After k steps of
the Arnoldi Algorithm 4.3, we have

(4.8) AQk = QkHk + hk+1,kqk+1e
T
k ,

where Hk = H(1 : k, 1 : k) and

(4.9) span{q1, . . . , qk} = Kk(A, q1).

We can show that the quality of the approximation depends on the magnitude of
hk+1,k and on parts of the eigenvectors of Hk (cf. [22, Chap. 10.5.1]): Therefore,
let (θ,y) be an eigenpair of Hk. Applying (4.8) to y yields

AQky = QkHky + hk+1,kqk+1e
T
k y

= θQky + hk+1,kqk+1e
T
k y

and hence the following error estimation (cf. Theorem 4.1)

‖AQky − θQky‖2 = |hk+1,k| |eTk y|.

Hence, we want hk+1,k = 0 fast. As the Lanczos process, the Arnoldi process has a
(lucky) breakdown at step k = m if hm+1,m = 0 since Km(A, q1) is an A-invariant
subspace in this case. In the following, we discuss accelerating techniques for the
Arnoldi and Lanczos process.

4.5. Restarted Arnoldi and Lanczos. Note that with each Arnoldi step
we have to store one additional Arnoldi vector. A remedy is restarting the Arnoldi
process with carefully chosen restarts after a certain maximum of steps is reached.
Acceleration techniques (mainly of a polynomial nature) generate an initial guess
with small components in the unwanted parts of the spectrum. The strategies we
present are called polynomial acceleration or filtering techniques. They exploit the
powers of a matrix similar as the power method in the sense that they generate
iterations of the form

zr = pr(A)z0,
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where pr is a polynomial of degree r. In the case of the power method, we have
pr(t) = tr. Filtering methods have been successfully combined with the subspace
iteration. When combined with the Arnoldi process, they are often called implicitly
restarted methods, which we discuss next. Selecting a good polynomial often relies
on some knowledge of the eigenvalues or related quantities (e.g., Ritz values).

Suppose A ∈ Rn×n is diagonalizable and has eigenpairs {(λi,xi)}i=1,...,n with λ1 ≥
. . . ≥ λn. Let

q1 =

n∑
i=1

αixi

be an initial guess for the Arnoldi process. After running r steps of the Arnoldi
process, we do a restart. We may seek a new initial vector from the span of the
Arnoldi vectors q1, . . . , qr, which has, due to (4.9), the form

q+ =

r∑
j=1

βjA
j−1q1 =

r∑
j=1

βj

n∑
i=1

αiA
j−1xi =

r∑
j=1

βj

n∑
i=1

αiλ
j−1
i xi

=

n∑
i=1

αipr−1(λi)xi.

Suppose we are interested in the eigenvalue λj . If |αjpr−1(λj)| � |αlpr−1(λl)|
for all l 6= j, then q+ has large components in the eigendirection xj . Note that
the αi are unknown. Hence, with an appropriate constructed polynomial, we can
amplify the components in the desired parts of the spectrum. For instance, we
are seeking for a polynomial that satisfies pr−1(λj) = 1 and |pr−1(λl)| � 1 for
all l 6= j. However, the eigenvalues λi are unknown as well. Hence we need some
approximation. Let Ω be a domain (e.g., an ellipse) that contains λ(A) \ {λj}, and
suppose we have an estimate of λj . Then, we can aim to solve

min
pr−1∈Pr−1,
pr−1(λj)=1

max
t∈Ω
|pr−1(t)|.

Suitable polynomials include the shifted and scaled Chebyshev polynomials, and in
the symmetric case, we can exploit the three-term recurrence for fast computation;
see, e.g., [45].

An alternative to Chebyshev polynomials is the following: Given {θi}i=1,...,r−1,
then one natural idea is to set

(4.10) pr−1(t) = (t− θ1)(t− θ2) · · · (t− θr−1);

see [22, Chap. 10.5.2]. If λi ≈ θl for some l, then q+ has small components in the
eigendirection xi. Hence, the θi are all unwanted values. For θi we can use the Ritz
values, which presumably approximate the eigenvalues of A. For further heuristics,
we refer to [44].

The above strategies are explicit restarting techniques, which use only one vector
for the restart. The following implicit restarting strategy uses k vectors from the
previous Arnoldi process for the new restarted Arnoldi process and throws away
the remaining r − k =: p vectors. The procedure was developed in 1992 [53]. It
implicitly determines a polynomial of the form (4.10) using the QR iteration with
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shifts. Suppose we have performed r steps of the Arnoldi iteration with starting
vector q1. Due to (4.8), we have

(4.11) AQr = QrHr + hr+1,rqr+1e
T
r ,

where Hr ∈ Rr×r is upper Hessenberg, Qr ∈ Rn×r has orthonormal columns,
and Qre1 = q1. Next, we apply p steps of the QR iteration with shifts θ1, . . . , θp
(Algorithm 3.6), i.e., in step i we compute

ViRi = H(i−1) − θiI,(4.12)

H(i) = RiVi + θiI,(4.13)

where H(0) = Hr. After p steps, we have

H(p) = RpVp + θpI = V T
p (VpRp + θpI)Vp = V T

p H
(p−1)Vp = . . . = V TH(0)V

with V = V1 · · ·Vp. We use the notation

(4.14) H+ := H(p) = V TH(0)V = V THrV .

The relationship to a polynomial of the form (4.10) is the following:

Theorem 4.5 (See [22, Theor. 10.5.1].). If V = V1 · · ·Vp and R = Rp · · ·R1 are
defined by (4.12)–(4.13), then

V R = (Hr − θ1I) · · · (Hr − θpI).

Using (4.14), we get in (4.11)

(4.15) AQr = QrV H+V
T + hr+1,rqr+1e

T
r .

Multiplying (4.15) from the right by V yields

(4.16) AQ+ = Q+H+ + hr+1,rqr+1e
T
r V

with Q+ = QrV . It can be shown that V1, . . . ,Vp from the shifted QR iteration
are upper Hessenberg. Hence, V (r, 1 : r − p − 1) = 0T and therefore eTr V =
[0 · · · 0α ∗ · · · ∗] is a row vector of length r whose first r − p − 1 entries are zero.

Now, using the notation Q+ = [Q̂r−p, Q̂p] with Q̂r−p ∈ Rn×(r−p) we can write
(4.16) as

(4.17) A[Q̂r−p, Q̂p] = [Q̂r−p, Q̂p]

[
Ĥr−p ∗
βe1e

T
r−p ∗

]
+hr+1,rqr+1[0 · · · 0︸ ︷︷ ︸

r−p−1

α ∗ · · · ∗].

Now, we throw away the last p columns in (4.17) and obtain an (r−p)-step Arnoldi
decomposition

AQ̂r−p = Q̂r−pĤr−p + βQ̂pe1e
T
r−p + hr+1,rqr+1[0 · · · 0︸ ︷︷ ︸

r−p−1

α]

= Q̂r−pĤr−p +
(
βQ̂pe1 + αhr+1,rqr+1

)
eTr−p

=: Q̂r−pĤr−p + v̂r+1e
T
r−p.

This is the Arnoldi recursion we would have obtained by restarting the Arnoldi
process with the starting vector q+ = Q+e1. Hence, we do not need to restart the
Arnoldi process from step one but rather from step r − p + 1. For further details,
we refer to [22, Chap. 10.5.3] and the references therein.
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Remark 4.6. It can be shown (cf. [22, Chap. 10.5.3]) that

q+ = c (A− θ1I) · · · (A− θpI)Qre1

for some scalar c and is hence of the form (4.10).

For further reading on the Arnoldi process we refer to, e.g., [54, 47, 62, 55].

Next we present another acceleration technique which is very popular for solving
linear systems.

4.6. Preconditioning. In the following, we quickly review the precondition-
ing concept for solving large and sparse systems of linear equations of the general
form

(4.18) Az = b.

Here, A ∈ Rn×n is the given coefficient matrix, z ∈ Rn is the unknown solution
vector, and b ∈ Rn is the given right-hand side vector. In order for the Equation
(4.18) to have a unique solution, we assume that A is nonsingular. Systems of the
form (4.18) arise after the discretization of a continuous problem like partial differ-
ential equations such as the time-harmonic Maxwell equations. Other applications
arise in incompressible magnetohydrodynamics as well as constrained optimization.
As already mentioned in Section 4.2, Krylov subspace solvers are also used for solv-
ing linear systems. In fact, they are state-of-the-art iterative solvers. However,
they are usually only efficient in combination with an accelerator, which is called
a preconditioner. The aim of a preconditioner is to enhance the convergence of
the iterative solver. In our case, we want to accelerate the speed of convergence
of Krylov subspace solvers. The basic idea is to construct a nonsingular matrix
P ∈ Rn×n and solve

(4.19) P−1Az = P−1b

instead of Az = b. In order for P to be efficient, it should approximate A, and
at the same time, the action of P−1 should require little work. The construction
process of P should incorporate the goal of eigenvalue clustering. That means,
P−1A is aimed to have a few number of eigenvalues or eigenvalue clusters. This
is bases on the following: In a nutshell, for linear systems the residual of a Krylov
subspace solver rk = b −Azk satisfies rk = pk(A)r0, and one approach would be
to minimize the norm of the residual, which amounts to requiring that ‖pk(λi)vi‖2
be as small as possible for all i = 1, . . . , n. Here, {(λi,vi)}i=1,...,n are the eigen-
pairs of A. Therefore, replacing A by P−1A such that P−1A has more clustered
eigenvalues is one way to go. This typically results in outstanding performances of
Krylov subspace solvers. For an overview of iterative solvers and preconditioning
techniques, we refer to [20, 23, 46, 16, 5, 2, 4, 59].

Preconditioning plays an important role in eigenvalue problems as well. Taken in
the same spirit as seeking an operator that improves the spectrum, we can think
of the inverse power iteration (see Section 3.2) as a preconditioning approach: The
operator (A−θI)−1 has a much better spectrum than A for a suitable chosen shift
θ. So, we can run Arnoldi on (A − θI)−1 rather than A since the eigenvectors
of A and (A − θI)−1 are identical. Another idea is to incorporate polynomial
preconditioning, i.e., replace A by pk(A). As a guideline, we want to transform
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the k wanted eigenvalues of A to k eigenvalues of pk(A) that are much larger than
the other eigenvalues, so as to accelerate convergence. Preconditioning also plays a
role in solving generalized eigenvalue problems

Ax = λBx.

They can be solved, e.g., by the Jacobi–Davidson method, whose idea we briefly
discuss in Section 4.8 for solving the standard algebraic eigenvalue problem Ax =
λx. The discussion of generalized eigenproblems is out of the scope of this survey.
We refer the reader to [56, 57, 62] for a background to these problems.

4.7. Davidson method. Davidson’s method is basically a preconditioned
version of the Lanczos process, but the amount of work increases similarly to
Arnoldi, due to increased orthogonalization requirements. Let A ∈ Rn×n and Kk =
Kk(A;v) be a Krylov subspace with respect to some vector v. Let {q1, . . . , qk} be
an orthonormal basis of Kk. In the orthogonal projection technique, we are seeking
for an x̂ ∈ Kk such that(

Ax̂− λ̂x̂, qi
)

= 0 ∀i = 1, . . . , k,

Suppose, we have a Ritz pair (θi,ui). Then, the residual is given by

ri = Aui − θiui = (A− θiI)ui.

Now, we can improve the eigenpair approximation by precondition the residual,
i.e., by solving

(P − θiI) t = ri,

and define t as a new search direction, enriching the subspace. That is, t is orthog-
onalized against all basis vectors q1, . . . , qk, and the resulting vector qk+1 enriches
Kk to Kk+1.

Davidson [10] originally proposed to precondition with the diagonal matrix of A,
i.e., P = diag(A), since he dealt with a diagonal dominant matrix A. Additionally,
diagonal preconditioning offers a computationally cheap iteration. For the use of
other preconditioners, we refer to [7]. Further references on Davidson’s method
include [54, 55, 36].

Next, we consider an extension of Davidson’s method, which has the potential of
working better for matrices that are not diagonally dominant.

4.8. Jacobi–Davidson method. The idea is to extend the strategy of pre-

conditioning the residual. If (λ̂, x̂) with ‖x̂‖2 = 1 is an approximate eigenpair of

A, then the residual is r = Ax̂− λ̂x̂. Now, we look for (λ̂+ δλ̂, x̂+ δx̂) to improve
the eigenpair. We write

A(x̂+ δx̂) = (λ̂+ δλ̂)(x̂+ δx̂),

which is equivalent to

(A− λ̂I)δx̂− δλ̂x̂ = −r + δλ̂δx̂.

By neglecting the second-order term, we obtain

(A− λ̂I)δx̂− δλ̂x̂ = −r.
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This is an underdetermined system and a constraint must be added, e.g., ‖x̂ +
δx̂‖2 = 1. With ‖x̂‖2 = 1 and neglecting the second-order term, this condition
becomes

x̂T δx̂ = 0.

If λ̂ = x̂TAx̂, then we obtain δx̂ by solving the projected system(
I − x̂x̂T

)
(A− λ̂I)

(
I − x̂x̂T

)
δx̂ = −

(
I − x̂x̂T

)
(r − δλ̂x̂)

= −
(
I − x̂x̂T

)
r

= −
(
I − x̂x̂T

)
(Ax̂− λ̂x̂)

= −
(
I − x̂x̂T

)
Ax̂

= −(Ax̂− λ̂x̂) = −r

subject to the constraint x̂T δx̂ = 0. As in the previous section, we replace A by a
preconditioner P , such that we have to solve an approximate projected system(

I − x̂x̂T
)

(P − λ̂I)
(
I − x̂x̂T

)
δx̂ = −r

subject to the constraint x̂T δx̂ = 0.

The connection of the described method to Jacobi is given in Remark 4.7.

Remark 4.7. Given an approximate eigenpair (λ̂, x̂) of A, Jacobi [30] proposed to
solve an eigenvalue problem Ax = λx by finding a correction t such that

A(x̂+ t) = λ(x̂+ t), x̂ ⊥ t.
This is called the Jacobi Orthogonal Component Correction (JOCC).

The Jacobi–Davidson framework can also be connected with Newton’s method; see,
e.g., [47, Chap. 8.4].

The debate over the advantaged and disadvantages of Jacobi–Davidson versus other
approaches such as the Arnoldi process (with shift and invert) is delicate. Sleijpen
and van der Vorst [51] relate it to whether the new direction has a strong component
in previous directions. It is a fairly technical argument, and not much theory
is available. For more details about the Jacobi–Davidson method, we refer to
[51, 52, 54].

5. Conclusions

The numerical solution of eigenvalue problems is an extremely active area of re-
search. Eigenvalues are very important in many areas of applications, and chal-
lenges keep arising. The survey covers only some basic principles, which have es-
tablished themselves as the fundamental building blocks of eigenvalue solvers. We
have left out some important recent advances, which are extremely important but
also rather technical. Generalized eigenvalue problems are also very important, but
there is not enough room to cover them in this survey.

One of the main messages of this survey is the distinction between important mathe-
matical observations about eigenvalues, and practical computational considerations.
Objects such as the Jordan Canonical Form or determinants are classical mathe-
matical tools, but they cannot be easily utilized in practical computations. On the
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other hand, sparsity of the matrix and the availability of matrix decompositions
are often overlooked when a pure mathematical discussion of the problem ensues,
but they are absolutely essential in the design of numerical methods.

Altogether, this topic is satisfyingly rich and challenging. Efficiently and accurately
computing eigenvalues and eigenvectors of matrices continues to be one of the most
important problems in mathematical sciences.

References

1. W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math. 9 (1951), 17–29.

2. O. Axelsson, A survey of preconditioned iterative methods for linear systems of algebraic

equations, BIT 25 (1985), no. 1, 165–187.
3. W. Barth, R. S. Martin, and J. H. Wilkinson, Handbook Series Linear Algebra: Calculation of

the eigenvalues of a symmetric tridiagonal matrix by the method of bisection, Numer. Math.

9 (1967), no. 5, 386–393.
4. M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.

182 (2002), no. 2, 418–477.

5. M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer. 14 (2005), 1–137.

6. D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for large

symmetric eigenvalue problems, Electron. Trans. Numer. Anal. 2 (1994), no. 1, 1–21.
7. M. Crouzeix, B. Philippe, and M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15

(1994), no. 1, 62–76.
8. J. Cullum and W. E. Donath, A block Lanczos algorithm for computing the q algebraically

largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices,

1974 IEEE Conference on Decision and Control, 1974, pp. 505–509.
9. J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem,

Numer. Math. 36 (1981), no. 2, 177–195.

10. E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, J. Comput. Phys. 17 (1975), no. 1, 87–94.

11. J. Demmel, Applied numerical linear algebra, SIAM, 1997.
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Z̆. Vyčisl. Mat. i Mat. Fiz. 1 (1961), 555–570.

34. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differ-

ential and integral operators, J. Res. Nat. Bur. Stand. 45 (1950), 255–282.
35. R. S. Martin, G. Peters, and J. H. Wilkinson, Handbook Series Linear Algebra: The QR

algorithm for real Hessenberg matrices, Numer. Math. 14 (1970), no. 3, 219–231.

36. R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing eigenval-
ues of sparse symmetric matrices, SIAM J. Sci. Stat. Comp. 7 (1986), no. 3, 817–825.

37. M. Overton, Numerical computing with IEEE floating point arithmetic, SIAM, 2001.
38. C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices,

PhD thesis, Univ. London, 1971.

39. B. Parlett, The symmetric eigenvalue problem, SIAM, 1998.
40. B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonalization, Math.

Comp. 33 (1979), no. 145, 217–238.

41. B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lánczos algorithm for unsymmetric
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