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ABSTRACT
AI advice is becoming increasingly popular, e.g., in investment and
medical treatment decisions. As this advice is typically imperfect,
decision-makers have to exert discretion as to whether actually
follow that advice: they have to “appropriately” rely on correct
and turn down incorrect advice. However, current research on ap-
propriate reliance still lacks a common definition as well as an
operational measurement concept. Additionally, no in-depth be-
havioral experiments have been conducted that help understand
the factors influencing this behavior. In this paper, we propose
Appropriateness of Reliance (AoR) as an underlying, quantifiable
two-dimensional measurement concept. We develop a research
model that analyzes the effect of providing explanations for AI
advice. In an experiment with 200 participants, we demonstrate
how these explanations influence the AoR, and, thus, the effective-
ness of AI advice. Our work contributes fundamental concepts for
the analysis of reliance behavior and the purposeful design of AI
advisors.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies → Artificial intelligence.
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1 INTRODUCTION
Most important decisions are made by calling upon advisors. While
in the past advice was typically obtained from human experts,
nowadays advisors based on artificial intelligence (AI) are becoming
increasingly frequent in research and practice [33, 34]. For example,
AI advises medical professionals in breast cancer screening [48], or
in loan decisions[16].

In the past, research has predominantly focused on maximizing
the reliance [35], trust [66], utilization [2], compliance [37], or ac-
ceptance [65] of AI advice [34].With certain nuances, all these terms
basically describe a concept that aims at maximizing the amount
of AI advice that a human decision-maker eventually follows, i.e.
maximizing the AI reliance. Recently, a new line of research has
emerged that argues that maximising AI reliance does not fully
exploit the potential of state-of-the-art human-AI decision making
[6, 9, 62, 78]. We summarize the reasons for this line of thought in
three main categories:

Increasing usage of imperfect AI advisors. First, prior re-
search on AI advice often assumed “perfect” advice [34]. This makes
sense if one considers narrow application spaces, e.g. performing
deterministic algebra. But AI nowadays is used for more complex
tasks [19] which increases both the number and severity of AI er-
rors. Therefore, generally accepting AI advice would also include
the acceptance of incorrect AI advice: Assume that without an AI
advisor’s intervention, a physician would have diagnosed cancer,
yet in the setting with AI advice had been misled by an incorrect
AI advice and, thus, had failed to detect the cancer.

Increasing alignment of the objectives of human decision-
makers and AI advisors. Second, in previous research, the goal
of human or AI advisors was often inconsistent with the goal of the
decision-maker, e.g., financial advisors wanted to persuade a client
to purchase certain financial products that would yield the highest
financial benefit for their own bonus. In this situation, AI designers
do not want customers to differentiate good from bad advice but
simply increase acceptance of advice. Today, however, AI advisors
are often specifically designed to enhance human decision-making
[41]. The advice seekers can design the advisor based on individual
goals and with desired features such as “honest” explainability.
This honesty might be missing if the inherent goal of the advisor
is different from the advice seeker’s. If the AI is not designed in
alignment with human goals, it is often not in the AI designer’s
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interest to enable humans to critically question the advice they
receive.

Increasing potential for complementary team performance.
Third, as modern AI is not only more performant and offers more
application areas, but also complements humans [27, 28, 40], there
is an increasing potential to achieve complementary team perfor-
mance (CTP), i.e., a performance that exceeds both—individual AI
and human performance [6, 20, 28, 40, 50]. However, this level of
performance can only be achieved by exploiting complementary
capabilities. Even in the case of superior AI advice, it cannot be
achieved simply by accepting AI advice, as it is then tied to AI
performance without considering the potential additional strengths
of the human.

In conclusion, human decision-makers should not simply rely
on AI advice, but should be empowered to differentiate when to
rely on AI advice and when to rely on their own, i.e. they should
display appropriate reliance (AR) [6, 74, 75, 78]. Despite being a
necessary condition for the effective use of AI, current research on
AR on AI advice is still very ambiguous with regard to definition,
measurement, and impact factors.1

First, we deal with the ambiguous concept of AR: Current re-
search inconsistently uses the term both for a binary target state
(“appropriate reliance is either achieved or not”) and a metric indi-
cating a degree of appropriateness. To clarify this, we introduce a
two-dimensional metric—the appropriateness of reliance (AoR)—
to describe and measure reliance behavior. It is based on relative
frequencies of correctly overriding wrong AI suggestions ( self-
reliance) and following correct AI suggestions ( AI reliance), and
reflects a metric understanding of AR. This metric can then be
used to define different levels as target states of AR that mark the
achievement of particular objectives like certain legal, ethical and
performance requirements.

Second, we analyze how the provision of explanations influences
AoR and the achievement of AR states. Existing literature is am-
biguous with regard to effects of explanations [3, 6, 74]: While in
some experiments, explanations support AR [74, 75], in others they
cause “blind trust” [3, 6] in AI advice. To better understand and
reconcile conflicting results, we consider additional constructs that
may mediate the effect of explanations. More specifically, we hy-
pothesize that explanations do not only influence the information
available to the decision-maker, but also have an impact on trust
toward AI and on self-confidence.

To test our hypotheses, we conduct a behavioral experiment
with 200 participants. Our experiment underscores the advantages
of AoR as a metric to examine in detail the factors that lead to
changes in overall performance. Moreover, our results help explain
the relationship between explanations and AoR by assessing the
role of reliance and confidence as mediators, thus mitigating the
ambiguity of previous research.

Our work provides researchers with a theoretical foundation of
AR within human-AI decision-making research and provides guid-
ance on how to design AI advisors. More specifically, our research
contributes to research and practice by defining AR, developing
a measurement concept (AoR), and analyzing how explainable AI
1It is worth to mention that several studies have examined AR in automation and
robotics research [45, 72], but an agreed-upon definition of AR and a respective metric
are still missing [41, 72].

influences the AoR. Our definition should help researchers to more
accurately describe whether they have achieved AR in their experi-
ments. The AoR metric allows to precisely steer the development
towards AR. Lastly, our experimental insights can be seen as a start-
ing point for in-depth experimental evaluations of factors impacting
AoR.

The remainder of this article is structured as follows: In Section 2,
we first outline related work on AR in the context of human-AI
decision-making. In Section 3, we define AR and develop a mea-
surement concept, the AoR, to isolate different possible effects.
Subsequently, we derive impact factors on AoR in Section 4. In
Section 5, we describe the design of our behavioral experiment and
summarize the results in Section 6. In Section 7, we discuss our
results and provide ideas for future work. Section 8 concludes our
work.

2 RELATEDWORK
In the following, we introduce the related work of this article, struc-
tured along the topics of appropriate reliance in human advice,
automation, and human-AI decision-making as well as the role of
explainability.

Appropriate reliance in human advice. Historically, the use
of (human) advice is generally discussed in the so-called judge-
advisor system (JAS) research stream [26, 67, 76]. The term “judge”
refers to the decision-maker who receives the advice and must
decide what to do with it [8]. The judge is the person responsible for
making the final decision. The “advisor” is the source of the advice
[8]. The research stream mainly focuses on advice acceptance.2

Appropriate reliance in automation. In contrast, many re-
searchers have worked on AR with regard to automation [45] and
robotics [69]. In the following, we will provide an overview of the
most common definitions. Fundamental work in the context of AR
in automation has been laid by Lee and See [45]. The authors outline
the relationship between “appropriate trust” and AR in their work.
However, they do not define AR explicitly but provide examples of
inappropriate reliance, such as “misuse and disuse are two examples
of inappropriate reliance on automation that can compromise safety
and profitability” [45, p. 50]. Wang et al. [72] define appropriate
reliance as the impact of reliance on performance. For example,
they discuss the situation in which automation reaches a reliability
of 99%, and the human performance is 50%. In their opinion, it
would be appropriate to always rely on automation as this would
increase performance. Talone [69] follows the work by Wang et al.
[72] and defines AR as “the pattern of reliance behavior(s) that is
most likely to result in the best human-automation team perfor-
mance” [69, p. 13]. Both see AR as a function of human-automation
team performance.

Appropriate reliance in human-AI decision-making. Re-
cent work in human-AI decision-making has started to discuss
AR in the context of AI advice. Lai et al. [41] give an overview
of empirical studies that analyze AI advice considering AR. For
example, Chandrasekaran et al. [12] analyze whether humans can
learn to predict the AI’s behavior. This ability is associated with an
improved ability to appropriately rely on AI predictions. Moreover,

2In this article, we use the term advice acceptance as a generic term to describe the
behavior of following AI advice regardless of its quality.
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Gonzalez et al. [25] measure the acceptance of incorrect and correct
AI advice. Similarly, Poursabzi-Sangdeh et al. [57, p. 1] point out
the idea of AR in the form of “making people more closely follow
a model’s predictions when it is beneficial for them to do so or
enabling them to detect when a model has made a mistake”. How-
ever, the authors do not explicitly relate this idea to the concept
of AR. In this context, additional work uses the term “appropriate
trust” with a similar interpretation as the behavior to follow “the
fraction of tasks where participants used the model’s prediction
when the model was correct and did not use the model’s prediction
when the model was wrong” [74, p. 323]. Finally, also Yang et al. [75,
p. 190] define “appropriate trust is to [not] follow an [in]correct
recommendation”. All these articles have in common that they
consider AR or appropriate trust on a case-by-case basis. Bussone
et al. [10] assess how explanations impact trust and reliance on
clinical decision support systems. The authors divide reliance into
over- and self-reliance as part of their study. They use a qualitative
approach to answer their research questions. Chiang and Yin [13]
evaluate the impact of tutorials on AR and measure AR through
team performance.

The related work highlights that current research inconsistently
uses the term both for a binary target state (“AR is either achieved
or not”) and a metric indicating a degree of appropriateness. Addi-
tionally, previous research does not provide a unified measurement
concept that allows measuring the degree of appropriateness [41].

Explainable AI and appropriate reliance.Most researchers
that studied AR so far have proposed to use explanations of AI as a
means for AR [1, 43, 78]. We refer to AI that generates explanations
as explainable AI (XAI). Explanations can be differentiated in terms
of their scope, i.e., being global or local explanations [1]. Global XAI
techniques address holistic explanations of the models as a whole.
In contrast, local explanations work on an individual instance basis.
Besides the scope, XAI techniques can also be differentiated with
regard to being model specific or model agnostic, i.e., whether they
can be used with all kinds of models [1]. The most commonly used
model agnostic technique is feature importance [46, 47]. Feature
importance can be used to generate saliency maps for computer
vision tasks or highlight important words for text classification.

Several studies have evaluated whether different types of ex-
planations can support humans’ understanding of the AI model
with the goal of better relying on recommendations in the correct
cases [3, 9, 11, 71]. However, it has also been shown that some
types of explanations can lead people to rely too much on the AI’s
recommendation, especially in cases where the AI advice is wrong
[6, 57, 63]. In Table 1, we provide a comprehensive overview of the
results that were found in the current studies on AR in XAI-assisted
decision-making. Overall, we find mixed results regarding the effect
of explanations.

To sum it up, related work is missing a precise definition of AR,
a unified measurement concept, and a precise understanding of
when and why explanations of AI advisors influence AR.

3 CONCEPTUALIZATION OF APPROPRIATE
RELIANCE

Although several studies have examined AR in automation and
robotics research [45, 72], an agreed-upon definition of AR and a

respective metric are still missing [41, 72].We, therefore, initiate our
research by deriving a definition of AR and a corresponding metric.
To do so, we first discuss the terms reliance and appropriateness.
Following that, we derive our metric and lastly define AR.

3.1 Reliance and Appropriateness
Reliance itself is defined as a behavior [18, 45]. This means it is
neither a feeling nor an attitude but the actual action conducted.
This means reliance is directly observable. Scharowski et al. define
reliance in the AI advisor context as “user’s behavior that follows
from the advice of the system” [61, p. 3]. Defining reliance as behav-
ior also clarifies the role of trust in this context, which is defined as
“the attitude that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and vulnerability” [45,
p. 51]. In general, research has shown that trust in AI increases
reliance, but reliance can also take place without trust being present
[45]. For example, we might not trust the bank advisor but con-
sciously decide that following the advice is still the best possible
decision. The other way around, we could also generally trust an
advisor, but consciously decide that the given advice is not correct
in a particular situation. Finally, reliance is influenced beyond trust
by other attitudes such as perceived risk or self-confidence [59].

After establishing a common understanding of reliance, we pro-
ceed by defining “appropriateness”. Appropriateness depends on
different types of AI errors. Current AI is imperfect, i.e., it may
provide erroneous advice. This erroneous advice can be divided
into systematic errors and random errors [69]. While humans can
identify systematic errors, random errors have no identifiable pat-
terns and can not be distinguished. These different types of errors
allow differentiation between two cases. If all errors are random and
cannot be detected, then, from a performance perspective, humans
should always rely on the AI’s advice when the AI performs better
on average, and never when the AI performs worse on average[69].
However, suppose there are some systematic errors. In that case,
humans might be able to differentiate between correct and incorrect
advice, which may even result in superior performance , i.e. com-
plementary team performance (CTP) [29], compared to a scenario
in which AI and humans conduct the task independently of each
other.

This changes the overall discrimination to a case-by-case dis-
crimination. In the presence of systematic errors, humans should
evaluate each case individually. Since the solution approach in the
presence of just random errors is relatively simple, as pointed out
above, in this article, we focus on the more complicated setting
when a significant proportion of task instances exhibit systematic
errors. After having defined the terms reliance and appropriateness
in the following, we derive a metric.

3.2 Towards a Measurement
Concept—Appropriateness of Reliance

Appropriateness is often measured by the percentage in which
the decision-maker relies on correct AI advice and the percentage
in which the decision-maker does not rely on incorrect AI advice
[6, 25]. The major disadvantage of this measurement is that we
cannot know whether the reliance on correct AI advice stems from
a correct discrimination or simply an overlap of the human and
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Table 1: Related work on explainable AI (XAI) and Appropriate Reliance (AR).

Study AR Metric Independent variable Effect of XAI on AR

[6] Accuracy on correct or incorrect AI advice Local feature importance Negative
Adaptive explanations Positive
based on AI confidence

[9] Ratio of reliance on incorrect AI advice Local feature importance Negative
[32] Ratio of reliance on correct Local feature importance No effect

or incorrect AI advice Predictive outcomes Negative
[74] Accuracy on correct or incorrect AI advice Global feature importance No effect

Local feature importance Positive
Examples No effect
Counterfactuals No effect

[75] Ratio of reliance on correct Local feature importance Positive
or incorrect AI advice

the AI’s decision, i.e. instances where the AI advisor just confirms
the human [70]. Especially from an ethical point of view, it makes
a major difference whether the final decision is incorrect because
an AI advisor “convinced” a human decision-maker to accept an
incorrect AI advice or whether the human decision-maker would
also not have been competent to solve it alone.

Therefore, to measure the degree of appropriateness in a more
narrow sense, we follow the approach of the judge-advisor system
(JAS) paradigm and include an initial human decision [67]. This
approach requires participants to make a decision, receive advice,
and then make a second, potentially revised decision. In general, if
we do not consider the initial human decision, information about
the human discrimination ability, including the consequent action,
gets lost—it is not traceable how the human would have decided
without the AI advice. Nevertheless, especially this interaction
needs to be documented to research AR holistically.

We use a simple discrete decision case to highlight the different
possible outcomes of reliance. Note that for simplicity, we refer to
classification problems. However, the measurement concept can be
extended to regression problems as well (see for example Petropou-
los et al. [56]). We focus on a single task instance perspective and
consider a sequential decision process which can be described as
follows: First, the human makes a decision, then receives AI advice.
Second, the human is asked to update the initial decision, i.e., either
adopt or overwrite the AI advice. This allows measuring appro-
priateness in a fine-granular way. Figure 1 highlights the different
combinations. Four of the eight combinations are cases where the
human’s initial decision and the AI’s advice are the same, i.e. the
AI confirms the human’s decision. In our reliance measure, we ex-
clude these confirmation cases for two reasons: First, if the same
decision is made in all three steps, it is impossible to objectively
measure whether AI or self-reliance was present. Second, if the
final decision differs from the advice and the initial human decision,
it is questionable whether we can speak of a reliance outcome. For
example, if both the human and the AI are initially incorrect, then
arriving at a correct final decision is less a matter of reliance than
of human-AI collaboration. While these cases of collaboration are
relevant to CTP, they are beyond the scope of our work. Therefore,

we arrive at four different reliance outcomes, which we present
below.

On a high level, we can cluster those four outcomes into either
AI or self-reliance. AI reliance refers to cases in which the initial
decision-maker’s decision is different from the AI advisor and the
decision-maker relies on the AI’s advice. Likewise, self-reliance
refers to cases in which the decision-maker is different from the AI
advisor but finally relies on themselves. On a more detailed level,
we can further differentiate whether the final decision is correct or
incorrect which leaves us with the following four reliance outcomes:
First, correct AI reliance (CAIR), which describes the case when the
human is initially incorrect, receives correct advice, and relies on
that advice. Second, the case in which the human relies on the initial
incorrect decision and neglects correct AI advice. This is denoted
as incorrect self-reliance or under-reliance. Third, if the human is
initially correct and receives incorrect advice, this can either result
in correct self-reliance (CSR), i.e., neglecting the incorrect AI advice,
or relying on it, which is denoted as incorrect AI reliance or over-
reliance.3 Based on these cases, we propose a two-dimensional
metric that transfers the instance perspective on a measurement
for multiple task instances.

Let us consider a prediction task 𝑇 = {𝑋𝑖 , 𝑦𝑖 }𝑁𝑖 as a set of 𝑁
instances 𝑥𝑖 ∈ 𝑋 with a corresponding ground truth label 𝑦𝑖 ∈ 𝑌 .
On the first dimension, we calculate the ratio of the number of
cases in which humans rely on correct AI advice and the decision
was initially not correct, i.e., in which humans rightfully change
their mind to follow the correct advice.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝐼 𝑟𝑒𝑙𝑖𝑎𝑛𝑐𝑒 (𝑅𝐴𝐼𝑅) =
∑𝑁
𝑖=0𝐶𝐴𝐼𝑅𝑖∑𝑁
𝑖=0𝐶𝐴𝑖

(1)

𝐶𝐴𝐼𝑅𝑖 is one if, in this particular case, the original human de-
cision was wrong, the AI recommendation was correct and the
human decision after receiving the AI recommendation is correct,
and zero otherwise. 𝐶𝐴𝑖 is one if the original human decision was
wrong and the AI advice was correct, regardless of the final human

3This also clarifies our definition of over- and under-reliance. Both are errors on a task
instance level, when humans do not rely appropriately.
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AI adviceInitial human 
decision

Human decision 
after receiving 

AI advice

Incorrect self-reliance 
(Under-reliance)

Incorrect AI reliance 
(Over-reliance)

Correct AI reliance (CAIR)

Correct self-reliance (CSR)

Correct AI advice (CA)

Incorrect AI advice (IA)

Figure 1: Combinatorics of initial human decisions, AI advice
and human reliance for a single task instance in a sequential
task setting.

decision, and zero otherwise. On the second dimension, we pro-
pose to measure the relative amount of correct self-reliance in the
presence of incorrect AI advice.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑙 𝑓 -𝑟𝑒𝑙𝑖𝑎𝑛𝑐𝑒 (𝑅𝑆𝑅) =
∑𝑁
𝑖=0𝐶𝑆𝑅𝑖∑𝑁
𝑖=0 𝐼𝐴𝑖

(2)

𝐶𝑆𝑅𝑖 is one if on this particular instance the initial human de-
cision was correct, the AI advice was incorrect and the human
decision after receiving AI advice is correct. 𝐼𝐴𝑖 is one, if the initial
human decision for a task instance 𝑖 was correct and the AI advice
was incorrect.

Figure 2 highlights both dimensions. On the x-axis, we depict
the relative AI reliance (𝑅𝐴𝐼𝑅), and on the y-axis, the relative self-
reliance (𝑅𝑆𝑅). The figure highlights the properties of the measure-
ment concept. It ranges between 0 and 1 along both dimensions. We
call the tuple of 𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅 Appropriateness of Reliance (AoR).

𝐴𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒𝑛𝑒𝑠𝑠 𝑜 𝑓 𝑅𝑒𝑙𝑖𝑎𝑛𝑐𝑒 (𝐴𝑜𝑅) = (𝑅𝑆𝑅;𝑅𝐴𝐼𝑅) (3)

We refer to the theoretical goal of having a 𝑅𝑆𝑅 and a 𝑅𝐴𝐼𝑅

metric of “1” as optimal AoR. Most likely, this theoretical goal will
not be reached in any practical context as humans will not always
be able to perfectly discriminate on a case-by-case basis whether
they should rely on AI advice. Furthermore, random errors will
reduce AoR as they cannot be discriminated against. Therefore,
optimal AoR will most likely be a theoretical goal.

3.3 Definition of Appropriate Reliance
So far, we have discussed how to measure AoR and the theoretical
upper boundaries of AoR. The challenge, however, is to define
the level of 𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅 that constitutes AR. In our work, we
take an objective-oriented perspective and propose to define AR
individually in the context of the task. Dependent on the task,
different levels of 𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅 might be appropriate. In this work,

Relative AI reliance (RAIR)

R
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e 
se

lf-
re

lia
nc

e 
(R

SR
)

1.0

1.0

0.0
0.0

Optimal Appropriateness of Reliance (AoR)

Figure 2: Two-dimensional depiction of the Appropriateness
of Reliance (AoR).

we focus on AR with respect to performance (𝑃 ) following Talone
[69], Wang and Yin [74].4 Thus, we define AR with regard to CTP:

𝐴𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑅𝑒𝑙𝑖𝑎𝑛𝑐𝑒 (𝐴𝑅) =
{
1, if 𝑃𝐻&𝐴𝐼 > 𝑚𝑎𝑥 (𝑃𝐻 , 𝑃𝐴𝐼 )
0, otherwise

(4)
With 𝑃𝐻&𝐴𝐼 being the performance after receiving AI advice,

𝑃𝐻 the individual human performance and 𝑃𝐴𝐼 the individual AI
performance. Essentially, this means any tuple of 𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅

that leads to CTP is considered AR.
In summary, we derived a metric (AoR) and defined AR. In the

next section, we will use this foundation to derive a research model
to analyze the impact of AI recommendation explanations on AoR.

4 THEORY DEVELOPMENT AND
HYPOTHESES

With the measurement concept (AoR) at hand, we now develop
hypotheses on the effect of explanations on AoR. Research has
already investigated in-depth the effect of explanations on AI ad-
vice acceptance [65]. However, research is missing theoretical and
empirical evidence on how explanations influence AoR [5]. Thus,
our work contributes a research model that is evaluated applying
the AoR concept.

As a dependent variable, we use the before-defined two dimen-
sions of AoR— namely 𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅. We believe that both dimen-
sions need to be treated differently as there are inherent differences
between the 𝑅𝐴𝐼𝑅 and the 𝑅𝑆𝑅. The 𝑅𝐴𝐼𝑅 essentially deals with
cases where the human is initially incorrect, gets correct advice,
and relies on this advice. In contrast, 𝑅𝑆𝑅 focuses on cases where
4Note that besides this performance perspective, appropriateness could also be dis-
cussed from an ethical perspective. Since in high-stake decision-making humans have
an oversight responsibility [64].
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the human is initially correct and receives incorrect advice, which
is then rightfully ignored. Thus, we formulate different hypotheses
for the 𝑅𝐴𝐼𝑅 and the 𝑅𝑆𝑅.

The most central impact factor in the assessment of the AI ad-
visor might be the explanations of its recommendations. These
explanations should provide insights into the AI’s thought process.
In the presence of incorrect advice, explanations might enable the
human to detect whether the advice is incorrect, for example, by
validating if the AI advisor violates some universal axioms of the
task. Similarly, [6] hypothesize that if explanations do not “make
sense”, humans will reject the AI advice. However, on the other
hand, sometimes explanations are rather interpreted as a general
sign of competence and thereby increase over-reliance [9]. Which
effect exceeds the other is unclear. Therefore, we hypothesize, with-
out specifying a direction of the effect, that the explanations have
a general effect on the 𝑅𝑆𝑅:

H1a: Providing explanations of the AI advisor influences the rela-
tive self-reliance (𝑅𝑆𝑅).
The second effect of explanations on AoR is through the 𝑅𝐴𝐼𝑅.
Essentially, the 𝑅𝐴𝐼𝑅 measures the percentage of times decision-
makers follow the correct advice after initially being wrong about
the task instance. This means they do not have enough domain
knowledge to solve the task on their own. Thus, to increase the
𝑅𝐴𝐼𝑅, human decision-makers need to extend their knowledge and
simultaneously validate whether this knowledge extension makes
sense. Here, explanations are needed to first get inspired to derive
new knowledge and second to validate the knowledge. Figure 3
shows an illustrative example based on an animal classification task.
Imagine that a child has just seen big dogs and then sees a very
small dog. It might think that this animal is something else, like a
rat. Next, the child receives AI advice that says the animal it sees
is a dog, and provides additional justification by highlighting the
part of the image that led to the AI’s decision. Now, the child’s first
task is to figure out whether this advice makes sense in general,
while building the knowledge base. In this illustrative case, it might
understand that the animal has characteristics of a dog, but is only
smaller and therefore relies on the AI, thereby increasing the 𝑅𝐴𝐼𝑅.
In the presence of correct advice, explanations might point humans
towards new patterns they have not seen before and help discrimi-
nate these knowledge extensions. In the presence of correct advice,
the convincing element of explanations would not have a negative
effect as a higher overall reliance on the AI advice would simply
increase the 𝑅𝐴𝐼𝑅. We therefore hypothesize:

H1b: Providing explanations of the AI advisor increases the relative
AI reliance (𝑅𝐴𝐼𝑅).

Beyond the provisioning of additional information, explanations
might change the attitude toward the AI advisor. In 1992, Lee and
Moray [44], already discussed the influence of self-confidence and
trust as predominant attitudes for reliance decisions in the context
of automation. Therefore, in the following, we discuss potential
impacts on trust and the change in self-confidence induced through
explanations and their impact on AoR.

Confidence is defined as a person’s degree of belief that their own
decision is correct [55, 77]. Confidence in one’s own decision is a
key mechanism underlying advice acceptance [14, 73]. So far, most
research has discussed the influence of static human self-confidence
on AoR, i.e. a confidence in doing the task instance without any

Human: 
This is a rat.

AI: 
That's a dog. Look
into the highlighted
area of the picture.

Human: 
It could be that there exist very 
small dogs and the face still looks 
like a dog.

Therefore, I change my decision and 
decide this is a dog.

Figure 3: Illustrative example of how humans can increase 
their relative AI reliance (𝑅𝐴𝐼𝑅) based on explanations of the 
AI advice.

advisor [14]. However, we hypothesize that the absolute level of 
human confidence actually plays a  minor role in comparison to 
the change of confidence after seeing the AI advice as it essentially 
reflects the combination of a self-assessment and the AI advisor’s 
assessment. Explanations should not influence the initial human 
self-confidence but the confidence level after seeing the AI advice. 
Thus, we hypothesize:

H2 Providing explanations of the AI advisors increases the change 
in self-confidence.
We hypothesize that this change in self-confidence positively cor-
relates with the discrimination capability and thus should increase 
the 𝑅𝑆𝑅 and 𝑅𝐴𝐼𝑅.

H3a An increased change in human self-confidence increases the 
relative self-reliance (RSR).

H3b: An increased change in human self-confidence increases the 
relative AI reliance (RAIR).

We hypothesize that also trust in the AI advisor influences AoR. 
There are different levels of trust, e.g. trust in AI in general, trust 
in a specific AI advisor [31] and some researchers even refer to the 
case-by-case discrimination as trust on a task instance level [74]. 
In this work, we focus on the specific trust in our developed AI 
advisor. In general, trust is a complex, multidisciplinary construct 
with roots in diverse fields such as psychology, management and 
information systems [51]. In our study, we define trust as a belief 
in the integrity, benevolence, trustworthiness, and predictability of 
the AI advisor following [15, 17, 21, 49]. Understanding is crucial 
in building trust [23]. Psychological research shows that in general 
explanations of humans increase trust [36]. Thus, we hypothesize:

H4 Providing explanations of the AI advisor increases trust in the 
AI advisor.
Trust influences reliance, but does not fully determine it [45]. When 
people show a high level of trust in the advisor, they consider 
the advice to be high-quality advice from an advisor with good 
intentions, and they will give more weight to that advice [73]. In 
general, this should increase the acceptance of AI consulting. For 
systems’ most effective use, however, users must appropriately 
trust AI advisors [45]. Trust should be calibrated and match the 
AI’s capabilities [45]. Insufficient trust is called distrust and when 
trust exceeds capability it is called over-trust [45]. Research on 
automation has shown that over-trust can result in over-reliance
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RAIR

Trust RSR

Explanations of AI Appropriateness of Reliance

Change in self-
confidence

H4 (+)
H5a (-)

H2 (+)
H3b (+)

H3a (+)

H1b (+)

H1a (+)

H5b (+)

Figure 4: Research model on the effect of explanations on Appropriateness of Reliance (AoR).

on automation [4, 24, 54] and, therefore, should decrease the 𝑅𝑆𝑅.
Thus, we hypothesize:

H5a: Trust decreases the relative self-reliance (RSR).
Since trust increases reliance it should also increase the 𝑅𝐴𝐼𝑅.
Therefore, we hypothesize:

H5b: Trust increases the relative AI reliance (RAIR).
Figure 4 highlights all our hypotheses and combines them into one
integrated research model.

5 EXPERIMENTAL DESIGN
In this section, we present our study task, the AI model, and the
corresponding explanations. We then explain the study procedure
and measurements.

5.1 Task, Model, and Explanations
As an experimental task, we have chosen a deceptive hotel review
classification. Humans have to differentiate whether a given hotel
review is deceptive or genuine. Ott et al. [52, 53] provide the re-
search community with a data set of 400 deceptive and 400 genuine
hotel reviews. The deceptive ones were created by crowd-workers,
resulting in corresponding ground truth labels.

The implemented AI advisor is based on a Support Vector Ma-
chine with an accuracy of 86%, which is a performance that is
similar to the performance in related literature [42]. For the ex-
planations, we use a state-of-the-art explanation technique, LIME
feature importance explanations [58], as it is the most common
one for textual data. Feature importance aims to explain the influ-
ence of an independent variable on the AI’s decision in the form
of a numerical value. Since we deal with textual data, a common
technique to display the values is to highlight the respective words
according to their computed influence on the AI’s decision [42].
We additionally provide information on the direction of the effect
and differentiate the values into three effect sizes following the
implementation of Lai et al. [42] (see step 2 in Figure 5).

5.2 Study Design and Procedure
The researchmodel is tested in an online experimentwith a between-
subject design. We tested two different conditions. First, a control
condition in which the human receives AI advice without feature
importance explanations and second, a feature importance condi-
tion.

In each condition, participants are provided with 16 reviews. We
incorporate an advanced sampling strategy to isolate the effects
of discriminating AI advice. We have a test set of 32 reviews to
which we apply stratified sampling and select four reviews of each
class of a confusion matrix (True Positive, False Positive, True
Negative, False Negative), two with a positive sentiment and two
with a negative sentiment. This approach allows us to ensure a
high-performing AI that should provide good explanations but also
the potential for incorrect AI advice.

Task flow. The online experiment is initiated with an attention
control question that asks participants to state the color of grass.
To control for internal validity, participants are randomly assigned
to the condition groups. Then, both condition groups receive an
introduction to the task and either AI alone or AI including feature
importance. We provide the participants with a general intuition of
the AI but not with specific performance information. Then, the par-
ticipants conduct two training tasks, to familiarize the participants
with the task and the AI and, depending on the condition, with
its explanations. Additionally, the participants receive feedback on
the training tasks. After the two training reviews, the participants
are provided with the 16 main tasks. For the AoR measurement
concept, sequential task processing is essential. In our study, this
means the human first receives a review without any AI advice,
i.e., just plain text, and classifies whether the review is deceptive
or genuine (see step 1 in Figure 5). Then the participant is asked
to classify the review and provide a confidence rating. Following
that, the human either receives a simple AI advice statement, e.g.
“the AI predicts that the review is fake” or the AI advice and ad-
ditional explanations (see step 2 in Figure 5). After receiving the
AI advice the participant is able to change the initial decision and
provide a new self-confidence assessment. This sequential two-
step decision-making allows us to measure AoR. During the main
tasks, the participants do not receive feedback on their performance.
After classifying the hotel reviews, we collect data on trust and
demographic variables.

Reward. To incentivize the participants, they were informed
that for every correct decision, they get an additional 12 Cents in
addition to a base payment of 5.83 Euro. Hereby, the two training
classifications do not count for the final evaluation.

Participant information. The participants are recruited using
the platform “Prolific.co”. We note that crowd workers might limit
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Step 1 Step 2

Figure 5: Online experiment graphical user interface for the feature importance condition. The ground truth of the exemplarily
shown hotel review is “fake”. The design of the interface is adapted from Lai et al. [42].

Table 2: Summary of Participants’ Characteristics.

Number per condition Control = 100
Feature importance = 99

Age 𝜇 = 27.5, 𝜎 = 8.5

Gender 46 % Male
54 % Female

Education 32 % High school
38 % Bachelor
14 % Master
16 % Other

the generalizability of our results. However, deception detection
of digital information is often done in online communities. Future
work could analyze the effects in professional deception detection
screening services. In total, we conducted the experiment with 200
participants. We excluded one participant in the feature importance
condition because of a failed manipulation check. Table 2 shows
the age, gender, and education distribution of the participants.

5.3 Evaluation Measures
To measure AoR, we use the upfront derived measurements 𝑅𝐴𝐼𝑅
and 𝑅𝑆𝑅. We measure the change in self-confidence for all task
instances per participant:

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑒𝑙 𝑓 -𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 =
16∑︁
𝑖=1

𝐶𝑜𝑛𝑓𝐻2, 𝑖 −𝐶𝑜𝑛𝑓𝐻 , 𝑖 (5)

𝐶𝑜𝑛𝑓𝐻 refers to the human self-confidence when doing the task
instance alone and 𝐶𝑜𝑛𝑓𝐻2 to the human self-confidence after re-
ceiving AI advice. Both are measured with a 7-point Likert scale
(“How confident do you feel in your decision?”). We measure the
trust in the AI advisor as a subjective latent construct with a 7-
point Likert scale. We use four items based on [15, 17, 21, 22]. The
items were: “I think I can trust the AI.”, “The AI can be trusted to
provide reliable support.”, “I trust the AI to keep my best interests
in mind.” and “In my opinion, the AI is trustworthy.”. Cronbach’s

Alpha was 0.89 (high). The original scales were validated. As both
classes are equally distributed, task performance was measured
by the percentage of correctly classified images, i.e., accuracy. To
measure the human accuracy, we calculated this measure for both
conditions based on the initial human decision across all 16 task
instances. Furthermore, we calculate the AI-assisted accuracy based
on the revised human decision after receiving AI advice.

6 RESULTS
In the following, we present the results of our behavioral experi-
ment. We start by presenting descriptive results, followed by the
results with respect to AoR and AR. Following that, we analyze our
full research model, including mediations, by applying Structural
Equation Modelling (SEM).

6.1 Descriptive analysis
Descriptive results of our study can be found in Table 3. They
are split according to the experimental condition. We evaluate
the significance of the results using t-tests after controlling for
normality. The participants’ 𝑅𝐴𝐼𝑅 is significantly higher in the
explanation group compared to the control group (𝑡 = −1.95, 𝑝 =

0.05). The change in confidence is statistically significant (𝑡 =

−2.33, 𝑝 = 0.02) which means that on average people feel more
confident after receiving AI advice including explanations. Neither
AI-assisted nor human accuracy is significantly different between
conditions. However, the difference between the human and AI-
assisted performance is significant (feature importance condition
= 2.45 pp; control condition = -1.56 pp ; 𝑡 = 2.29, 𝑝 = 0.02) which
means that explanations not only improve the 𝑅𝐴𝐼𝑅 but also as a
consequence the overall performance.

6.2 Appropriateness of Reliance & Appropriate
Reliance

We depict our AoR results of the experiment in Figure 6. They
highlight in the control condition a high 𝑅𝑆𝑅 of 71.87% (±3𝑝𝑝) and
a relatively low 𝑅𝐴𝐼𝑅 of 29.59% (±3𝑝𝑝). This indicates that humans
in the setting were able to differentiate between wrong AI advice
and self-rely to a high degree. The 𝑅𝐴𝐼𝑅 of 29.59% shows that we
can observe a severe share of under-reliance on AI.
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Table 3: Descriptive outcomes.

Condition 𝑅𝐴𝐼𝑅 𝑅𝑆𝑅 Trust (SD) Change in Self- AI-assisted Human
Confidence (SD) Accuracy Accuracy

Control 29.59 % 71.87% 4.45 (1.17) 0.19 (0.42) 53.94 % 55.50 %

Feature 38.87% 69.45 % 4.4 (1.18) 0.06 (0.35) 56.30 % 53.85 %
Importance

In the XAI condition, we can observe a significant increase (𝑡 =
−1.95, 𝑝 = 0.05) in 𝑅𝐴𝐼𝑅 from 29.59% (±3𝑝𝑝) to 38.87% (±3𝑝𝑝) while
the 𝑅𝑆𝑅 does not change significantly (71.87%± 3𝑝𝑝 for the control
condition and 69.45% ± 3𝑝𝑝 for the feature importance condition,
𝑡 = 0.61, 𝑝 = 0.54). This means explanations of AI decisions can
reduce the share of under-reliance. It is important to highlight that
𝑅𝐴𝐼𝑅 is not increased simply by relying more often on AI advice,
as this would have also reduced the 𝑅𝑆𝑅 significantly. Thus, our
experiment indicates that feature importance on textual data can
have a positive effect on human-AI decision-making.

Following our AR definition, to evaluate whether the partici-
pants display AR, we need to calculate whether we reached CTP.
Therefore, we compare the individual human and AI performance
with the human-AI team performance. The down-sampled AI per-
formance is 50 % for both conditions. The human accuracy varies
depending on the condition. The human-AI team performance is
not significantly different from the human accuracy which means
we do not reach CTP and therefore AR is not displayed. Further
means would be necessary to reach AR.

Figure 6: Illustration of Appropriateness of Reliance (AoR)
including standard errors. Explanations increase the 𝑅𝐴𝐼𝑅

significantly. Differences in 𝑅𝑆𝑅 are not significant.

6.3 Structural Equation Model
In addition to analyzing the direct effect of explanations on the
𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅, we use SEM analysis to test our hypothesized re-
search model. Before fitting our SEM, we conducted missing data
analysis, outlier detection, a test for normality, and the selection
of an appropriate estimator. We observe no missing data and no
outliers. However, one participant failed our attention check leav-
ing us with a final sample size of 199 for both conditions. Shapiro’s
test for normality indicates that several variables of interest deviate
significantly from normal distributions. As a result, we conducted
the analysis with an estimator that allows for robust standard errors
and scaled test statistics [38]. Therefore, we use the MLR estimator
[39].

Our dependent variables are the 𝑅𝐴𝐼𝑅 and 𝑅𝑆𝑅. Since these de-
pendent variables are between 0 and 1, we employed a logistic model
in the Lavaan package, version 0.6-9, in R [60]. This model has an
excellent overall fit (see Table 4). The results for each independent
variable are discussed below and visualized in Figure 7.

We do not find any significant relationship between providing
explanations of the AI advisor and the 𝑅𝑆𝑅 (H1a). However, also
in the SEM the effect of explanations on the 𝑅𝐴𝐼𝑅 is significant
(H1b). Additionally, we find a significant positive relationship be-
tween providing explanations of the AI advisor and the change
in self-confidence which confirms H2. We also observe a positive
correlation between the change in self-confidence and the 𝑅𝐴𝐼𝑅
(H3b). Since the absolute strength of the relationship also decreased
with including the change in confidence, we can conclude that the
positive effect of explanations on the 𝑅𝐴𝐼𝑅 is partially mediated
by the change in confidence. Interestingly, we do not find a rela-
tionship between the change in self-confidence and the 𝑅𝑆𝑅 (H3a).
Additionally, we find no effect of our explanations on trust (H4).
However, both H5a and H5b are confirmed, i.e. increasing trust in-
creases 𝑅𝐴𝐼𝑅 but also decreases 𝑅𝑆𝑅. We display a summary of the
hypotheses results in Table 5. In the following Section, we discuss
our results.

7 DISCUSSION
In this article, we first defined AR and conceptualized a measure-
ment concept (AoR). Following that, we derived a research model
regarding the impact of explanations on AoR which we subse-
quently tested on a deception detection task. Though conducted in
a limited scope, our findings should help to guide future work on
AR.

Theoretical foundation of appropriate reliance. The main
contribution of our work is the theoretical development of AR.
So far, terms like “appropriate trust”, “calibrated trust” and AR
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Table 4: Structural equationmodel fitting index using a chi-squared test (𝜒2), root mean square error of approximation (RMSEA),
Comparative Fit Index (CFI), Tucker-Lewis Index (TLI) and Standardized Root Mean Squared Residual (SRMR).

𝜒2 RMSEA CFI TLI SRMR

Measurement criteria > 0.05 [7] < 0.05 [30] > 0.96 [30] > 0.95 [30] < 0.08 [30]
Value 0.083 0 1 1.02 0.02

RAIR

Trust RSR

Explanations of AI Appropriateness of Reliance

Change in self-
confidence

(-)***

(+)*
(+)*

(+)*

(+)***

Figure 7: Structural equation modeling results. Significance: ★★★ p < 0.01, ★★ p <0.05, ★ p < 0.1.

Table 5: Analysis results of the structural equation model (★★★ p < .01, ★★ p <.05, ★ p < 0.1)

X Y z-value Standardized regression coefficient Result

H1a: Explanations –> 𝑅𝑆𝑅 0.04 -0.03 not supported
H1b: Explanations –> 𝑅𝐴𝐼𝑅 1.73 0.08 ★ supported
H2: Explanations –> Change in self- confidence 2.30 0.13 ★ supported
H3a: Change in confidence –> 𝑅𝑆𝑅 0.02 0.00 not supported
H3b: Change in confidence –> 𝑅𝐴𝐼𝑅 1.84 0.11 ★ supported
H4: Explanations –> Trust -0.21 -0.04 not supported
H5a: Trust –> 𝑅𝑆𝑅 -3.08 -0.05 ★★★ supported
H5b: Trust –> 𝑅𝐴𝐼𝑅 3.19 0.06 ★★★ supported

were often used interchangeably in prior research. We provide
clarity by defining AR and putting the terms in perspective. Sec-
ond, we derive a granular, two-dimensional measurement concept—
Appropriateness of Reliance (AoR). Most prior work neglected the
initial human decision that would have been made without any AI
advice.5 Taking this initial human decision into account allows to
differentiate between the effects of advice (correct and incorrect)
and confirmation. Without the human initial decision, we cannot
say for sure whether a final wrong human decision is due to over-
reliance on a wrong AI advice or due to the human and the AI being
wrong.

Implications for appropriate reliance and explainable AI.
We further have investigated the effect of AI explanations on AoR.
We confirm the results of prior research [6, 25, 74] by finding an
effect of explanations on the 𝑅𝐴𝐼𝑅. We believe that the reason for
this could be that the AI’s explanations increase people’s knowledge
of the task [25, 68]. Maybe in such cases, the human should be seen
less as a “judge” but instead more as a student of the AI. On the

5The one exception is the work of [9] who measure over-reliance in the same way
that we do but do not consider under-reliance.

other hand, our results show that explanations do not influence the
𝑅𝑆𝑅. While this may sound disappointing at first, it also shows that
the claim that explanations would reduce overreliance [6, 9] does
not seem to hold for all kinds of tasks.6 It further suggests that new
techniques must be developed to distinguish incorrect AI advice.
Moreover, our study is the first one that analyzed mediators of the
effect of explanations on AR. Interestingly, in our study, we find no
effect of explanations on trust. However, prior research has shown
that it depends on a lot of confounding factors. We find significant
effects of trust on 𝑅𝐴𝐼𝑅 as well as 𝑅𝑆𝑅. Additionally, we show that
the effect of explanations on 𝑅𝐴𝐼𝑅 partially depends on the change
in confidence after receiving AI advice.

Appropriate reliance and complementary team perfor-
mance (CTP). Lastly, we want to elaborate on the relationship
between AoR and CTP. To reach CTP, the task needs to have in-
stances where the AI is better than the human and vice versa, i.e. a
certain amount of complementarity potential needs to be present

6An earlier study by this research team [63] found initial signs of a reduced 𝑅𝑆𝑅 in
a pretest. However, this study with more participants shows that the effect is not
significant in a larger sample.
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[28]. CTP essentially depends on the relationship between 𝑅𝑆𝑅 and
𝑅𝐴𝐼𝑅 and this complementarity potential.

The human impact on CTP is given by multiplying the 𝑅𝑆𝑅

and the share of incorrect AI advice. However, simultaneously
involving a human might reduce the AI performance (1 − 𝑅𝐴𝐼𝑅

multiplied by the share of correct advice). That means to reach CTP,
the gain through human involvement needs to be larger than the
loss through discounting correct AI advice or more formally7:

𝐶𝑇𝑃 =

{
1, if 𝑅𝑆𝑅 ∗ 𝐼𝐴 > (1 − 𝑅𝐴𝐼𝑅) ∗𝐶𝐴
0, otherwise

(6)

Here 𝐼𝐴 is the total number of task instances in a test set where
the human is initially correct and receives incorrect advice. 𝐶𝐴
refers to the number of task instances where the human is ini-
tially incorrect and receives correct advice. If this condition is not
fulfilled, AR depends on the relationship between human and AI
performance. If the human performs worse than the AI advisor and
has a low 𝑅𝑆𝑅 and 𝑅𝐴𝐼𝑅, one should always favor AI advice. If the
human decision-maker performs better on average than the AI, one
can argue that from a performance perspective the AI should not
be used.

Limitations. No research is without limitations. We would like
to emphasize that deception detection is a difficult task for hu-
mans [42, 43]. Humans on average just perform slightly better than
by chance on this particular hotel review task [42]. This makes
AR difficult as the task of discrimination requires human domain
knowledge. Additionally, the generalizability of our experimental
findings is limited due to the choice of explanations. However, we
have deliberately chosen the most modern form of explanation to
maximize the impact of our results. Our concept is limited to classi-
fication tasks but will be extended in future work. First approaches
can be found in the work of Petropoulos et al. [56].

Furthermore, the sequential task setup necessary for our mea-
surement concept has some disadvantages as it changes the task
itself. Since conducting the same task initially alone before receiv-
ing AI advice, the human is already mentally prepared and might
react differently than after directly receiving AI advice. More specif-
ically, research has shown that letting humans conduct the task
alone before receiving AI advice might reduce over-reliance [9].
The sequential task setup could induce an anchoring effect which
prevents the human to more actively take the AI into account [9].
This could have led to the overall low 𝑅𝐴𝐼𝑅 in our experiment.
Moreover, sequentially conducted tasks with AI advice might not
always be possible or desired in real-world settings. Therefore, the
measurement should be seen as an approximation of real human
behavior. Instead of having a sequential task setup, one alterna-
tive option could be to simulate a human model based on a data
set of task instances solved by humans without AI advice. This
simulation model could approximate the initial human decision
within a non-sequential task setting. However, this approach is
also an approximation of real human behavior. In other work, a
latent construct has been derived to measure reliance behaviour
[70]. Future work should compare the approaches.

7Provided that nothing changes in the cases where the initial decision of the human
and the AI advice are the same.

Future Work. Essentially, the improvement in 𝑅𝐴𝐼𝑅 depends
on the knowledge gain of the human. Future work could therefore
extend our research model by adding newly learned knowledge as
a mediator. Empirically, this could be measured by asking humans
before collaborating with AI to do a couple of task instances on
their own and afterwards [68]. The performance improvement can
be interpreted as learned knowledge.

Most importantly, future research needs to investigate the im-
pact of different design features of AR. We initiate our research
with state-of-the art feature importance but many other ones can
be thought of, e.g. counterfactuals, global explanations. Future re-
search should evaluate these potential design features to provide
practitioners with a toolkit for effective use of AI.

8 CONCLUSION
Appropriate reliance in AI advice is the next milestone after a
decade of research focused on AI adoption and acceptance. Nowa-
days, many AI applications are deployed and used on a daily basis.
While adoption and acceptance remain important, we argue that a
perspective shift is necessary. In the use phase of AI, researchers
need to find ways to ensure appropriate reliance and, thus, effective
use of AI. In this article, we provide guidance for future research
on appropriate reliance by providing a definition and a measure-
ment concept—Appropriateness of Reliance (AoR). Furthermore,
we generate initial insights how explanations influence the Ap-
propriateness of Reliance. We hope that our research will inspire
researchers and practitioners for future research on appropriate
reliance, resulting in effective human-AI collaboration.
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