
127

INTRODUCTION

A central component of many AIED systems is a “domain model,” that is, a representation of
knowledge of the domain of instruction. The system uses the model in many ways to provide
instruction that adapts to learners. Not all AIED systems have an elaborate domain model,
but in those that do, the domain model is central to the system’s functioning. In fact, domain
models fulfill so many important functions within AIED systems that entire classes of AIED
systems are defined in terms of the types of domain model they use (such as model-tracing
tutors, constraint-based tutors, example-tracing tutors, and issue-based approaches to build-
ing tutoring systems). Across AIED projects, systems, and paradigms, the types of domain
models used span the gamut of AI representations. AIED systems use their domain models
for many different purposes, chief among them assessing student work, which is foundational
for other functionality.

This chapter reviews major approaches to domain modeling used in AIED systems and
briefly touches on the corresponding student models and the way they are used to track an
individual student’s knowledge growth. (We do not discuss student models that target other
aspects, such as affect, motivation, self-regulation, or metacognition.) We discuss, in turn:
rule-based models, constraint-based models, Bayesian networks, machine-learned models,
text-based models, generalized examples, and knowledge spaces. These types of models have
been studied extensively in AIED research and have been the foundation for many AIED
systems that have been proven to be effective in enhancing student learning or other aspects
of the student experience. A number of these approaches are now used in AIED systems that
are used on a wide scale in educational practice. The chapter discusses how these approaches
support key aspects of an AIED system’s behavior and enable the system to adapt aspects of
its instruction to individual student variables. We also highlight challenges that occur when
applying the different approaches. We look at the use of machine learning and data-driven
methods to create or refine domain models, so they better account for learning data and sup-
port more effective adaptive instruction. As well, we make note of connections between a
system’s domain model and other key components, including the system’s student model. We
base this discussion on traditional views of intelligent tutoring systems (ITSs), which divide
the system’s architecture into four main components: a domain model, a student model, a
pedagogical model, and a problem-solving environment. We focus on systems that support
individual learning. Other types of AIED systems are covered in other chapters.

7. Domain modeling for AIED systems with
connections to modeling student knowledge:
a review
Vincent Aleven, Jonathan Rowe, Yun Huang and
Antonija Mitrovic

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

128 Handbook of artificial intelligence in education

Domain modeling for AIED systems

What Do We Mean by a Domain Model?

The domain model of an AIED system captures knowledge in the given task domain, includ-
ing concepts, skills, strategies, tactics, or constraints. In many cases, it captures the knowledge
that the system aims to help students learn. A domain model in an AIED system normally
contains the ideal knowledge that experts have. It may optionally contain representations of
incorrect knowledge that novices in the domain tend to exhibit, such as bugs, mal-rules, and
misconceptions. In addition, a domain model may capture prerequisite relations and other
relations between the knowledge components represented in the model, as well as relations
between knowledge components and practice problems or steps of practice problems, also
referred to as “items.” This definition is grounded in older definitions of the domain model but
is broader (see Burns & Capps, 1988; Holmes, Bialik, & Fadel, 2019; Pelánek, 2017; Sottilare
et al., 2016).

It may help to distinguish between a domain model and a student model, another central
component of many AIED systems, also known as a learner model. Whereas a domain model
captures general domain knowledge, a student model represents an individual student’s cur-
rent learning state. Exactly what state is captured, how it is represented, and how it is kept
up to date varies across AIED systems. A student model often captures a student’s current
level of mastery of the knowledge targeted in the instruction, and may capture other aspects
as well (e.g., a student’s affective or motivational state, their skill at self-regulation, etc.). To
model individual students’ knowledge state, the student model is often an “overlay” on the
domain model, in the sense that it records the student’s status with respect to key elements
in the domain model. In other cases, the student and domain model are components within a
single integrated model (see Bayesian networks and machine learning paradigms discussed
below).

Mainly for purposes of student modeling, it has turned out to be fruitful to view domain
models as “knowledge component models,” or “KC models” for short (Aleven & Koedinger,
2013; Koedinger et al., 2010). Knowledge components (KCs) are units of knowledge whose
existence can be inferred from student performance on a set of related tasks (Koedinger et al.,
2012). A KC model breaks up the overall knowledge to be learned into units that reflect stu-
dents’ psychological reality (as evidenced by the fact that they lead to accurate performance
predictions). A KC model also maps items (e.g., problem steps, problems) to KCs, indicating
which KCs are needed for correct performance on the item. In its simplest form, a KC model
is a KC-to-item mapping, or KC x item matrix (a Q-Matrix; Koedinger et al., 2010; Tatsuoka,
1983). This mapping enables a tutoring system to track students’ knowledge growth (namely
of specific KCs) based on their problem-solving performance. Increasingly, data-driven meth-
ods are being used to create and refine KC models (Huang et al., 2021). The KC-modeling
perspective is compatible with many of the domain modeling paradigms used in AIED (e.g.,
rules and constraints can be viewed as KCs learned by students, without considering their
specific representation). For more information about student modeling, the interested reader
may consult reviews by Desmarais and Baker (2012) and Pelánek (2017).

Although the domain models used in AIED systems are not fundamentally different from
those in many other AI systems, they do emphasize certain modeling issues over others.
For example, amid the great variety of AIED domain models, there is a premium on having
models that capture human ways of reasoning and that can accommodate different ways
of reasoning about the same problem. Moreover, it helps if models are interpretable and
explainable. An interpretable model is one that maps inputs to outputs in a manner that

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 129

naturally aligns with human ways of understanding or reasoning. An explainable model is
one for which we have external processes that align the model’s state and inferences with
human ways of reasoning (Adadi & Berrada, 2018). For example, deep neural networks
are not interpretable, but there is work (outside of AIED) on generating natural language
explanations that coincide with the classifications of deep neural networks, which bring
some transparency to the model (Park et al., 2018). Explainable models can support instruc-
tional functions that black box (i.e., non-interpretable) models cannot, such as explaining a
reasoning process to learners. Explainable models may also contribute to theory formation
more readily. The point that AIED systems both benefit from interpretable and explainable
representations of domain knowledge and can be a force driving technology design toward
greater explainability and interpretability goes back at least to Wenger’s (1987) book. It is
still true today.

Why Do AIED Systems Have Domain Models?

Before describing different domain modeling paradigms, we consider the many purposes for
which domain models are used in AIED systems, to guide later discussion. We look specifi-
cally at the adaptive instructional behaviors that they enable or for which they have an auxil-
iary role, corresponding to the columns in Table 7.1.

Assessing student work
In all the AIED domain modeling paradigms we surveyed, a key function of the domain
model is to assess student work, although there is substantial variability in how. We use the
term “student work” to denote attempted problem solutions, partial solutions, and attempts
at problem steps. An assessment may be a determination that the student work is correct,
accurate, or of high quality by the standards of the given domain, or it may be based on other,
richer classifications of student work’s desirable and undesirable qualities, or it may focus on
detecting specific qualities or issues. The assessment is often the foundation for other instruc-
tional behaviors of the AIED system. Assessment by AIED systems is typically formative in
nature; its main purpose is to enable and support instructional behavior that helps students
improve.

Assessing student knowledge
Domain models often have an auxiliary role in a system’s assessment of a student’s knowl-
edge growth over time, a central concern in the realm of student modeling. A domain model
often helps to analyze student work in terms of KCs. Specifically, given a piece of student
work, the domain model helps “diagnose” which KCs the student may have used, mis-used, or
mistakenly not used in generating that piece of work. This information is then used to update
estimates of the student’s knowledge state, using any of the many established student mod-
eling methods or models that have come out of AIED and Educational Data Mining (EDM)
research (Desmarais & Baker, 2012; Pavlik et al., 2013; Pelánek, 2017). As discussed, to this
end, the student model and domain model often break up the knowledge to be learned into
the same set of KCs, as one way in which domain modeling and student modeling tend to be
closely interrelated. The domain model and student model are often separate software com-
ponents, but it is also possible that the domain and student modeling components of an AIED
system are integrated together within a single model, as is the case for example in Bayesian
networks for stealth assessment (Shute et al., 2016).

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

130

Ta
bl

e
7.

1

 D
om

ai
n

m
od

el
 f

un
ct

io
ns

Pa
ra

di
gm

s
A

ss
es

s
an

d
m

od
el

st

ud
en

t w
or

k
G

en
er

at
e

fe
ed

ba
ck

on

 s
tu

de
nt

 w
or

k
D

em
on

st
ra

te
 h

ow
 to

so

lv
e

pr
ob

le
m

s
M

od
el

in
g

an
d

re
co

gn
iz

in
g

st
ud

en
t

er
ro

rs

A
ss

es
s

an
d

m
od

el

st
ud

en
t k

no
w

le
dg

e
Se

le
ct

 p
ro

bl
em

s

R
ul

es
Y

es
(A

nd
er

so
n,

 C
or

be
tt

,
K

oe
di

ng
er

, &

Pe
ll

et
ie

r,
19

95
)

Y
es

(A
nd

er
so

n,

C
or

be
tt

,
K

oe
di

ng
er

, &

Pe
ll

et
ie

r,
19

95
)

Y
es

(A
nd

er
so

n,
 C

or
be

tt
,

K
oe

di
ng

er
, &

Pe

ll
et

ie
r,

19
95

)

O
pt

io
na

l
(M

cK
en

dr
ee

, 1
99

0)
A

ux
il

ia
ry

(C
or

be
tt

 &

A
nd

er
so

n,
 1

99
5)

A
ux

il
ia

ry
(C

or
be

tt
,

M
cL

au
gh

li
n,

 &

Sc
ar

pi
na

tt
o,

 2
00

0)

C
on

st
ra

in
ts

Y
es

 (
M

it
ro

vi
c

&

O
hl

ss
on

, 1
99

9)
Y

es
 (

M
it

ro
vi

c
&

O

hl
ss

on
, 1

99
9)

N
o

C
on

tr
ar

y
to

fu

nd
am

en
ta

l
as

su
m

pt
io

ns

A
ux

il
ia

ry

(M
it

ro
vi

c
&

O

hl
ss

on
, 2

01
6)

A
ux

il
ia

ry
 (

M
it

ro
vi

c
&

 O
hl

ss
on

, 2
01

6)

G
en

er
al

iz
ed

E

xa
m

pl
es

 (
B

eh
av

io
r

G
ra

ph
s)

Y
es

(A
le

ve
n

et
 a

l.,
 2

01
6)

Y
es

(A
le

ve
n

et
 a

l.,

20
16

)

Y
es

(A
le

ve
n

et
 a

l.,
 2

01
6)

O
pt

io
na

l
(A

le
ve

n
et

 a
l.,

 2
01

6)
A

ux
il

ia
ry

(C
or

be
tt

 &

A
nd

er
so

n,
 1

99
5)

A
ux

il
ia

ry
(C

or
be

tt
,

M
cL

au
gh

li
n,

 &

Sc
ar

pi
na

tt
o,

 2
00

0)

B
ay

es
ia

n
N

et
w

or
ks

Y
es

(C
on

at
i e

t a
l.,

 2
00

2)
Y

es
(C

on
at

i e
t a

l.,

20
02

)

Y
es

(C
on

at
i e

t a
l.,

 2
00

2)
O

pt
io

na
l

(S
ta

ce
y

et
 a

l.,
 2

00
3)

Y
es

(M
il

lá
n

&
 P

ér
ez

-
de

-l
a

C
ru

z,
 2

00
2)

Y
es

(M
ay

o
&

 M
it

ro
vi

c,

20
01

)

Su
pe

rv
is

ed
 L

ea
rn

in
g

Y
es

(G
ob

er
t e

t a
l.,

 2
01

3)
Y

es
(L

i,
G

ob
er

t,
D

ic
kl

er
, &

M

ou
ss

av
i,

20
18

)

Y
es

(M
ac

L
el

la
n

&

K
oe

di
ng

er
, 2

02
0)

Y
es

(M
ic

ha
le

nk
o,

 L
an

,
&

 B
ar

an
iu

k,
 2

01
7)

Y
es

(M
in

 e
t a

l.,
 2

02
0)

O
pe

n
is

su
e

U
ns

up
er

vi
se

d
L

ea
rn

in
g

Y
es

(K
äs

er
 &

 S
ch

w
ar

tz
,

20
20

)

O
pe

n
is

su
e

O
pe

n
is

su
e

Y
es

(S
hi

 e
t a

l.,
 2

02
1)

O
pe

n
is

su
e

A
ux

il
ia

ry

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g
Y

es
(R

af
fe

rt
y

et
 a

l.,
 2

01
5)

Y
es

(R
af

fe
rt

y,
 J

an
se

n,

&
 G

ri
ffi

th
s,

 2
01

6)

Y
es

(B
ar

ne
s

&
 S

ta
m

pe
r,

20
08

)

A
ux

il
ia

ry
(B

ar
ne

s
&

 S
ta

m
pe

r,
20

08
)

Y
es

(R
af

fe
ry

 e
t a

l.,

20
15

)

Y
es

(B
ec

k,
 W

oo
lf

, &

B
ea

l,
20

00
)

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 131

Providing formative feedback to students
A key function of many AIED systems is to give students feedback on their work, for example
as part of a coaching strategy (Chapter 9 by Aleven et al.). The purpose of this feedback is
typically to help students learn; in this sense, the feedback is “formative” (Shute, 2008). The
notion of feedback is often divided into three main categories: correctness feedback, knowl-
edge of results, and elaborated feedback (Kluger & DeNisi, 1996; van der Kleij et al., 2015).
Correctness feedback indicates whether the work is correct or not, or it signals the degree of
correctness. Knowledge of results means providing a correct answer or solution. Elaborated
feedback provides further information regarding correct/incorrect aspects. The latter category
of feedback may state desirable and undesirable properties of the student’s work, or how it
might be improved. Generating feedback is facilitated by having an interpretable or explain-
able domain model, as discussed below.

Recognizing student errors
AIED systems sometimes provide error-specific feedback, a form of elaborated feedback that
comments on specific errors or misconceptions reflected in the student’s work. The feedback
might say, for example, how or why student work is wrong, or how an error might be fixed.
One way to generate error-specific feedback in an AIED system is to model common errone-
ous knowledge into the system’s domain model (e.g., bugs, mal-rules, and misconceptions).
The empirical evidence regarding the pedagogical value of error-specific feedback, however,
is not elaborate and is mixed (Lodder et al., 2021; McKendree, 1990; Sleeman et al., 1989;
VanLehn, 1990; VanLehn et al., 2021), which is perhaps a key reason that such feedback tends
to be treated as optional in AIED systems (see Table 7.1). Then again, error-specific feedback
is often viewed as an attractive feature of AIED systems. Thus, there is more to be learned in
the field of AIED about the topic of error-specific feedback.

Demonstrate how to solve problems to provide next-step hints
Some AIED systems can use their domain models to demonstrate problem solutions (i.e., the
domain model can solve problems), which enables them to generate next-step hints for stu-
dents. These hints suggest what the student might do next and may include information such
as how in general one might determine the next step and why that is a correct thing to do (e.g.,
in terms of domain-specific principles). Hints may be offered either at the student’s request
or proactively by the system. Their purpose is to help students better acquire the knowledge
to be learned and to help them avoid floundering (e.g., help them avoid a fruitless search for a
solution or step when they lack the knowledge). Next-step hints are different from feedback in
that they do not provide an assessment of student work.

Selecting individualized learning content
The domain model often plays an auxiliary role in another key function of AIED systems,
namely selecting or sequencing learning content (e.g., problems, tasks, textbook pages) for
students on an individualized basis. This choice is often based on variables in the student
model, in particular students’ mastery of knowledge components, sometimes in combination
with other variables (e.g., personal interest, affect). The content selection process or algorithm
is outside of the domain model per se; it is viewed as part of a pedagogical model. The domain
model helps in the first place by assessing student knowledge, as described above. As well,
some domain models represent prerequisite relations between knowledge components, so that
a selection algorithm can sequence learning materials in accordance with these relations.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

132 Handbook of artificial intelligence in education

Designing new learning content
A final important function of domain models is to guide the design and redesign of con-
tent for AIED systems. A domain model can help with many aspects of content including
inventing new tasks (Huang et al., 2021; Koedinger & McLaughlin, 2010; Koedinger et al.,
2013), new hint messages (Liu & Koedinger, 2017) or new contrasting cases (Roll et al.,
2010; Schwartz et al., 2011). An initial KC model (based, ideally, on empirical cognitive task
analysis) can guide designers in creating initial versions of these content elements. Iterations
may follow once cohorts of students have used the system and log data are available to feed
data-driven approaches to KC model refinement. As a simple example, the pool of problems
that an AIED system can assign to students must provide sufficient coverage of each KC, so
that students can get sufficient practice with each. Similarly, the system’s hints will likely be
designed to closely track the KCs (e.g., with hint templates attached to specific KCs). When
the KC model changes (e.g., when a process of data-driven model refinement discovers new
KCs), these aspects need to be revised and a refined model can provide much guidance (see
Huang et al., 2021).

DOMAIN MODELING PARADIGMS

We review four major paradigms for domain modeling in AIED systems: rules, constraints,
Bayesian networks, and machine learning. We also briefly describe several other paradigms:
labeled example solutions (including behavior graphs), knowledge spaces, and domain mod-
eling in textbooks.

Rules

Production rules remain a popular formalism for representing domain knowledge in AIED
systems. The use of rule-based models in AIED systems is grounded both in AI work on
production rule systems (Brownston et al., 1985; Davis & King, 1984) and in cognitive sci-
ence work that uses rules to represent aspects of human cognition and human problem solv-
ing (Anderson, 1993; Newell & Simon, 1972). In this knowledge representation paradigm,
domain knowledge is expressed as a set of IF-THEN rules. Each rule ties one or more (mental
or observable) problem-solving actions (the THEN-part) to the conditions under which they
are appropriate (the IF-part). Rule-based models, which may comprise hundreds of rules, are
executable and capable of solving problems in the given task domain. They can be viewed
as simulations of expert (and student) problem solving in the given task domain. Rule-based
models used in AIED systems typically represent the knowledge that the system is designed
to help students learn. For simple examples, see Koedinger and Corbett (2006) and Aleven
(2010). For a more elaborate example, see Aleven (2010).

Rule-based domain models have been used extensively in model-tracing tutors, a widely
used type of AIED system grounded in cognitive science and cognitive modeling (Anderson
et al., 1995). Model-tracing tutors guide students as they solve complex problems, that is,
problems that have multiple possible solution paths, each with multiple steps. Many model-
tracing tutors have been described in the AIED literature, including Cognitive Tutors for
middle-school and high-school mathematics (Koedinger & Corbett, 2006), the Genetics
Tutor (Corbett et al., 2010), Cognitive Tutors for Lisp, Pascal, and Prolog programming
(Anderson et al., 1989; Anderson et al., 1993), Lynnette (middle-school equation solving;

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 133

Long & Aleven, 2014), MATHia (middle- and high-school mathematics; Ritter et al.,
2007), Andes (physics; VanLehn et al., 2005), SlideTutor (skin pathology; Crowley &
Medvedeva, 2006), and MATHESIS (high-school algebra; Sklavakis & Refanidis, 2013).
Model-tracing tutors for mathematics learning are being used widely in American math-
ematics learning (Ritter et al., 2007). There is substantial evidence that model-tracing
tutors can help students learn very effectively (for an overview, see Koedinger & Aleven,
2007), including a large-scale study that found a doubling of the amount of learning within
a school year due to the Cognitive Tutor Algebra curriculum (Pane et al., 2014; but also
see Pane et al., 2010).

Model tracing tutors use their rule-based models for many of the functions described above:
assessing student work, providing hints and feedback, interpreting student problem solving
in terms of knowledge components, and guiding content design. To support these functions,
model-tracing tutors use their rule-based model to maintain a live, up-to-date, step-by-step
reconstruction of a student’s problem-solving process, in sync with the student’s solution (as
the student is working with the tutoring system). For this approach to work, the model must
capture all reasonable ways of solving problems that students might use, one way in which
rule-based models used in AIED systems differ from those used in many other AI applica-
tions. A model-tracing tutor can also use its domain model to generate next-step hints at any
point in a student’s problem-solving process. To do so, the tutor finds an applicable rule (i.e.,
one that could generate the next step from the current problem state) and generates an explana-
tion of that step (and why that is a correct or good step to take) using the rule’s hint template.
For this approach to yield understandable next-step advice, the rules must capture human
approaches to problem solving. In this sense, the rules must be explainable. From the perspec-
tive of Cognitive Tutors, rules are a key analytical tool for understanding student reasoning
and learning in a given task domain. They can be used to summarize results of cognitive task
analysis activities, which can be an important step in designing an intelligent tutoring system
(Baker et al., 2007; Lovett, 1998; Means & Gott, 1988; Tofel-Grehl & Feldon, 2013). The
model-tracing process as described feeds into the tutor’s long-term student modeling process.
Following any student step, it identifies which rule(s) a student applied or should have applied
but did not. This information enables the tutor to track the probability that the given student
masters each of the key rules in the model, for example using a model such as Bayesian
Knowledge Tracing (Corbett & Anderson, 1995).

We illustrate the main idea behind model tracing with a simple example provided by Ken
Koedinger. As mentioned, a key challenge in model tracing is that any given problem may be
solved in multiple ways, captured in the model. Of these many solution paths, the model must
follow the one that the given student is using for the given problem. It does so in a step-by-step
manner. For example, even basic equations (such as the one in Figure 7.1) can be solved in
different ways. Assume a model for basic equation solving with the three rules shown at the
top of Figure 7.1. Two of the rules represent correct student strategies, and one represents an
erroneous strategy. Note all three rules have the same IF-part, so they apply to the same set of
problem states. The letters a, b, c, and d represent variables that can match specific numbers
in the problem state. Whenever the student attempts the next problem step, the model tracer
searches the space of possible next steps generated by its rule model to see if the student
step is among the model-generated steps. In our example, in the given problem state (i.e.,
3(2x − 5) = 9), our three rules apply. The model tracer (searching through the set of applica-
ble rules) will find three possible next steps, namely two correct steps and an error, shown at

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

134 Handbook of artificial intelligence in education

the bottom of Figure 7.1. If the student’s input is one of the correct transformations, the tutor
accepts it as correct and applies the matching rule to move the state of the rule-based model
forward. By contrast, if the student’s input is the incorrect transformation (i.e., 6x − 5 = 9),
the tutoring system presents an error message based on the erroneous rule, generated using
a hint template attached to the rule. If the student’s input is anything else, the tutor flags it as
incorrect, without specific error feedback. This way, the model stays in sync with the student.
Finally, if the student requests a hint in the given situation, the tutor will recommend a step
generated by one of the rules (the one with highest priority), again using a template attached to
the rule. Incidentally, rules that represent incorrect problem-solving behavior are not strictly
required in model-tracing tutors. They enable the tutoring system to provide elaborated error-
specific feedback.

This example is a simplification in that the model has very few rules that apply to only a
narrow range of problem states. The rule-based models in model-tracing tutors, by contrast,
can have hundreds of rules that apply to a wide range of problem states. A second way in
which this example is a simplification is that each problem-solving step is modeled by a single
rule, whereas, in the more general case, a problem-solving step may result from a sequence
of rule applications—any number of them, in fact. In the general case, therefore, the model
tracer has more searching to do to find the possible model-generated next steps against which
to compare the student’s next step.

Over the years, rule-based models in AIED have been used for purposes other than mod-
eling domain knowledge to be learned. For example, rule-based models have been used to
capture—and provide tutoring regarding—strategy aspects of (algebra) problem solving
(Ritter, 1997), aspects of self-regulated learning, such as help seeking (Aleven et al., 2006a)
and error correction (Mathan & Koedinger, 2005), as well as collaboration skills (Walker
et al., 2014). Various projects have also used rules to model pedagogical knowledge (Aleven
et al., 2017; Heffernan et al., 2008; Roll et al., 2010), illustrating the versatility of rules as a
representational paradigm for AIED systems.

Figure 7.1 Model tracing in action

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 135

Challenges
A key challenge is that it is hard to create rule-based models of problem solving. This process
requires cognitive task analysis, cognitive modeling, and AI programming. To address this
challenge, a considerable amount of AIED work has focused on developing efficient author-
ing tools (see Chapter 12 by Blessing et al.), use of interactive machine learning to develop
rule-based models (see below), and non-programmer AIED paradigms that can achieve some
of the same tutoring behaviors with easier-to-create knowledge representations (e.g., example-
tracing tutors [Aleven et al., 2016]; see below). This work is still moving forward. A second
critique that is sometimes leveraged against tutoring systems with rule-based models is that
they might be limited to STEM domains or domains with clear correctness criteria. Although
many AIED projects with rule-based domain models have indeed focused on STEM domains,
other domains have been explored as well (e.g., medical diagnosis; Crowley & Medvedeva,
2006). As well, clear correctness criteria can sometimes be identified in domains not initially
thought to be amenable to rule-based modeling (Means & Gott, 1988; Tofel-Grehl & Feldon,
2013). It may be challenging, however, to create model-tracing tutors in ill-defined domains
(Lynch et al., 2009) or domains with natural language interactions (see Chapter 11 by Rus
et al.). A third critique has been that the pedagogical approach of model-tracing tutors (tutored
problem solving) tends to be limited. While this critique may not fully value the important role
of deliberate practice and learning to solve recurrent problems in many domains (Koedinger &
Aleven, 2021), it is important to note that rule-based tutors are often combined with other
instructional approaches, such as example-based learning, collaborative learning or standard
classroom instruction (e.g., Koedinger & Corbett, 2006; Olsen et al., 2019; Salden et al., 2010).

Constraints

Another popular formalism for representing domain knowledge in AIED systems is constraints
(Mitrovic, 2010; Mitrovic & Ohlsson, 2006; Ohlsson & Mitrovic, 2007). In Constraint-Based
Modeling (CBM), the domain model consists of a set of constraints on ideal solutions. In
comparison to rule-based cognitive models, which capture procedural knowledge, constraint-
based domain models capture the declarative knowledge of a specific instructional domain.
Constraints capture features of correct solutions; they specify what ought to be so.

Numerous constraint-based tutors have been developed, some of which are SQL-Tutor, an
ITS for the Structured Query Language (SQL) (Mitrovic, 1998; Mitrovic & Ohlsson, 1999),
and EER-Tutor, an ITS teaching conceptual database design using the Enhanced Entity-
Relationship model (EER)(Mitrovic, 2012). Constraints have not only been used to represent
domain principles, but also to model collaboration (Baghaei et al., 2007) and metacognitive
strategies such as self-explanation (Weerasinghe & Mitrovic, 2006), and have even been used
for rehabilitation of prospective memory of stroke patients (Mitrovic et al., 2016).

The theoretical foundation for CBM comes from Ohlsson’s Theory of Learning from
Performance Errors (Ohlsson, 1996). This theory says that both declarative and procedural
knowledge is necessary for good performance, but the theory focuses on declarative knowl-
edge, represented as a set of constraints on solutions. People make mistakes when they do
not have adequate procedural knowledge (either missing or incorrect). Constraints are used
to identify mistakes and to repair incorrect production rules. This theory explains how it is
possible for a person to know that he/she made a mistake even though they do not have correct
procedural knowledge. The role of conceptual knowledge is to identify mistakes.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

136 Handbook of artificial intelligence in education

A constraint consists of two conditions. The relevance condition consists of one or more
tests applied to students’ solutions to see whether a constraint is relevant or not. If a constraint
is relevant for a particular solution, its satisfaction condition specifies another list of tests
which the solution must meet to be correct. An example of a constraint is: if you are driving a
car in New Zealand, you should be on the left-hand side of the road. The relevance condition
specifies that this constraint is applicable to situations when a person is driving a car in New
Zealand; the satisfaction condition imposes a test on the side of the road the person is driving
on. Correct solutions violate no constraints. Constraint violation signals errors in the solution.

We provide some constraints from SQL-Tutor, which contains 700+ constraints related to
the use of the SQL Select statement. We present the constraints in the English form; the inter-
ested reader is referred to Mitrovic (1998), Mitrovic (2003) and Mitrovic and Ohlsson (1999)
to see how the constraints were implemented in Lisp.

 1) Every solution must contain the SELECT clause.
 2) Every solution must contain the FROM clause.
 3) If the solution contains the HAVING clause, the GROUP BY clause also needs to be

specified.
 4) If the solution contains the JOIN keyword, the FROM clause must specify the names of

tables to be joined.
 5) If the FROM clause of the student's solution contains a join condition, and the ideal

solution requires the join condition between the same two tables, the join condition the
student specified needs to use the correct join attributes.

 6) If the ideal solution contains a search condition using the Between predicate and two
constants, the student’s solution should also contain a matching condition or alternative
two conditions, using the same attribute and corresponding constants.

Some constraints are syntactic (such as constraints 1–4), meaning they check the syntax of the
submitted Select statement. Constraints 1 and 2 do not contain the “if” part; they are relevant
for all solutions, as the SELECT and FROM clauses are mandatory in SQL. On the other
hand, constraints 3 and 4 have relevance conditions that restrict the set of solutions for which
these constraints are relevant. If the relevance condition is met, the satisfaction condition is
evaluated against the solution.

SQL-Tutor also contains semantic constraints (see example constraints 5 and 6); these con-
straints check whether the submitted solution is a correct solution for the particular problem.
The semantics of the solution is captured by the ideal solution, which is defined by the teacher.
Although many problems in SQL have multiple correct solutions, only one ideal solution is
stored in SQL-Tutor per problem; the other correct solutions are recognized by the system
automatically as there are constraints that check for alternative ways of solving the same
problem (Mitrovic, 2003). This makes adding new problems very simple: the author needs to
provide the text of the problem and one correct solution only.

Semantic constraints check whether the student’s solution is correct by matching it to the
constraints and the ideal solution. For example, constraint 5 checks that the student has used
the correct attributes to join two tables which are also used in the ideal solution. Constraint
6, on the other hand, is relevant for those problems that require a search condition checking
that the value of an attribute is between two specified values; for example, a range search like
“Year between 2000 and 2022.” For the student’s solution to be correct, it should also contain

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 137

a matching range search; alternative correct solutions need to contain two comparison condi-
tions using the correct constants (e.g., “Year > 1999 and Year < 2023”).

The space of correct knowledge can be big, but the space of incorrect knowledge is huge.
CBM does not model incorrect knowledge; on the contrary, constraints only capture features
of correct solutions. The abstraction used is the sets of equivalent states of the problem space.
Each equivalence set corresponds to one constraint, which specifies one aspect of a domain
principle; basically, an equivalence set of problem states is the set of solutions which all use
the same domain principle. The whole set of states is represented via a single constraint. All
solutions that require that constraint must satisfy it to be correct. Otherwise, there is a mis-
take in the student’s solution. This makes CBM applicable to ill-defined tasks, such as design
(Mitrovic & Weerasinghe, 2009). The domain model in such cases captures what is known
about good solutions; the aspects which are not crucial are not checked. We refer to CBM
as the “innocent until proven guilty” approach; if the student’s solution does not violate any
constraints, it is deemed correct.

In constraint-based tutors, the student model is represented as an overlay on the constraint
set. The short-term student model is the result of diagnosing the solution the student submitted
and consists of the set of satisfied and potentially violated constraints. The long-term model
of the student’s knowledge is represented in terms of the student's knowledge of individual
constraints. There have also been extensions of the long-term model using Bayesian networks
(Mayo & Mitrovic, 2001).

Constraints are evaluative in nature, as opposed to production rules which are generative
(i.e., each rule generates an action to be performed to solve the problem). Constraints are mod-
ular and can be applied in parallel to diagnose the student’s solution. This diagnosis consists
of matching the student’s solution to the constraint set and the ideal solution. The result is the
set of matched constraints and, if the solution contains mistakes, a set of violated constraints.
Each violated constraint represents a tiny part of the domain and is used to generate feedback
for the student. In constraint-based tutors, each constraint typically has one or more feedback
messages. These messages can be used to provide negative feedback (i.e., feedback on errors),
with a gradually increasing level of detail. Messages attached to constraints can also be used
to provide positive feedback, which are given to the student when the student masters a new
piece of knowledge (e.g., using the constraint correctly for the first time), when the student
overcomes impasses (e.g., satisfying a constraint after making a series of mistakes), or when
the student solves a challenging problem (Mitrovic et al., 2013).

All constraint-based tutors match the student’s solution to the constraints and the ideal
solution. Depending on the instructional domain, the ideal solution may need to be stored
(in the case of design tasks, where there is no problem solver), or it can be generated on the
fly (for procedural tasks). When developing constraints, the level of granularity is crucial;
constraints need to be very specific, so that feedback messages can be useful. If constraints
are written on a very abstract level, the feedback messages would not be useful to students.
Our general advice for writing constraints is to think about what a human teacher would say
to the student if the constraint is violated. In addition to writing constraints manually, there
is also ASPIRE, an authoring system (Mitrovic et al., 2009; Suraweera et al., 2010). ASPIRE
requires the teacher to specify a simple domain ontology, the structure of solutions in terms
of ontology concepts, and to provide examples of solved problems. Based on that informa-
tion, ASPIRE induces a set of constraints for evaluating students’ answers (see Chapter 12 by
Blessing et al.).

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

138 Handbook of artificial intelligence in education

Challenges
Like rule-based AIED systems, the key challenge for constraint-based tutors is the develop-
ment of the constraint set. This process requires domain knowledge, pedagogical expertise
(for specifying the hint messages attached to constraints) and AI programming. The ASPIRE
authoring system (Mitrovic et al., 2009) automates a lot of the functionality for generating a
constraint set, but pedagogical expertise is still necessary.

Bayesian Networks

Bayesian Networks (BNs) are a powerful AI formalism for reasoning with uncertainty, com-
bining principles from graph theory and probability theory (Pearl, 1988; Russell & Norvig,
2020). BNs have been used in a broad range of task domains (e.g., medical diagnosis), and
became actively used in the AIED field for domain modeling and student modeling in the
early 1990s. A BN is a probabilistic model, often depicted as a directed graph, where nodes
represent random variables and directed edges between the nodes represent dependencies
between the variables. Central to BNs is the notion of conditional independence, which allows
the joint probability of variables to be computed by multiplying the conditional probabilities
of each variable given its parents. An attractive property of BNs is that they allow for two
kinds of reasoning with uncertainty within a single integrated framework: diagnosis (i.e.,
identifying likely causes, given effect observations), and prediction (i.e., predicting the likely
effect, given the current beliefs of the causes). In AIED systems, diagnosis typically involves
inferring a student’s knowledge of KCs (or other latent states, such as goals or plans) targeted
in the instruction, given the student’s performance. Diagnosis is instrumental to assessment
and student modeling. Prediction involves predicting a student’s performance based on the
current estimates of the student’s knowledge levels, which could be used to realize functions
such as adaptive content selection or hint selection. In both forms of reasoning, uncertainty
arises due to noise in student behaviors (e.g., guessing without knowing the KC) and noise in
domain model specifications (e.g., a KC not being identified).

BNs used in AIED support a range of functionality, including knowledge assessment or stu-
dent modeling (Millán & Pérez-de-la Cruz, 2002), modeling students’ misconceptions (Stacey
et al., 2003), solution plan recognition (Conati et al., 2002), error or hint message selection
(Conati et al., 2002; Mayo & Mitrovic, 2001) and problem selection (Ganeshan et al., 2000;
Huang, 2018; Mayo & Mitrovic, 2001). The BN paradigm is a good choice for domain mod-
eling and student modeling for several reasons. First, BNs handle reasoning with uncertainty
based on sound mathematical theories. Second, BNs afford high expressiveness. They can be
used to create models that integrate domain knowledge with other kinds of student variables
(e.g., metacognitive skills and affective states). Third, BNs naturally integrate domain mod-
eling, student modeling, and aspects of pedagogical modeling in a single framework. Finally,
BNs provide a principled way to utilize prior domain knowledge and integrate new data with
prior knowledge. A more thorough introduction can be found elsewhere (Millán et al., 2010).

There have been many successful cases of utilizing BNs in domain modeling for AIED sys-
tems. One prominent example is the Andes tutoring system for physics (Conati et al., 2002).
In Andes, a BN that integrates domain modeling and student modeling enables step-by-step
problem-solving support tailored to each student’s knowledge and strategy choices. As shown
in Figure 7.2, Andes’ BN consists of a domain-general component that models students’ long-
term knowledge shared across problems, and a task-specific component that models possible
correct solution paths specific to each problem. In the domain-general component, Rule nodes

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 139

represent knowledge in a general form (e.g., being able to apply F=ma in all possible con-
texts) while Context Rule nodes represent knowledge in context-specific forms (e.g., being
able to apply F=ma in a specific context). In the task-specific component of the BN, a Rule
Application node represents an application of a specific rule (KC) in a problem (e.g., the
application of F=ma in the current problem). A Proposition node represents a goal (e.g., try
F=ma to solve the problem) or a fact (e.g., block A is selected as the body). Strategy nodes,
finally, can be used to model different, mutually exclusive, correct solutions. Rule Application
nodes connect Context Rule nodes, Proposition nodes, and Strategy nodes to newly derived
Proposition nodes. All nodes can have true or false values. Depending on the node type, the
probability of a node taking on a true value represents a student’s knowledge level or the like-
lihood that the given student will either infer a goal/fact or choose a strategy. Uncertainty is
handled by assuming a small probability of slipping or guessing in the conditional probabili-
ties for Rule Application or Proposition nodes. Once the structure and parameters of Andes’
BN have been specified (expert engineered), the BN is used to estimate how likely it is that
a student can derive a goal/fact, will choose a specific strategy, or will apply a specific rule
(KC). The BN updates these estimations after each observed student action. These estimations
drive tutorial interventions such as selecting a hint topic, providing mini lessons for weakly
mastered KCs, and selecting problems with desirable difficulties. For example, when a student
requests a hint, Andes figures out what goal the student is likely trying to achieve (i.e., plan
recognition) by comparing the probabilities of related goals for the most recent student action.
It then looks for a related rule application with a low probability and finally makes the relevant
knowledge the focus of the hint.

Classroom evaluations of Andes demonstrated that students who used Andes for their
homework significantly improved their learning compared with students who used pencil and
paper for their homework, reaching effect sizes of 1.2 (conceptual components) and 0.7 (alge-
braic components) on experimenter-designed tests and 0.3 on standardized tests (VanLehn
et al., 2005). VanLehn et al. (2005) pointed out that Andes’ key feature appears to be the
grain-size of interaction (i.e., on a step level rather than on a problem level). Other examples
of the use of BNs in AIED systems include the CAPIT tutor for English capitalization and

Figure 7.2 The basic structure of Andes’ BN-based domain and student model

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

140 Handbook of artificial intelligence in education

punctuation (Mayo & Mitrovic, 2001) and Cognitive Tutors for algebra (Ritter et al., 2007),
where classroom evaluations demonstrated that systems using BN-based domain modeling
(and student modeling) yielded greater student learning outcomes or efficiency compared with
systems that used alternative modeling or traditional classroom instruction.

We classify existing cases of utilizing BNs in AIED systems into four types, based on sev-
eral past reviews (Desmarais & Baker, 2012; Millán et al., 2010; Pelánek, 2017): Prerequisite,
Granularity, Solution, and Independence. In Prerequisite BNs, the edges between nodes
denote prerequisite relations between KCs. Such networks can help better sequence learning
materials and increase the efficiency and accuracy of knowledge assessment (Carmona et al.,
2005; Käser et al., 2014; Reye, 1996). In Granularity BNs, nodes and edges are organized in
a hierarchy to decompose domain knowledge into different levels of detail (e.g., a topic and
a subtopic). They allow for knowledge assessment at different levels. Granularity BNs have
been investigated in several prior projects (Collins et al., 1996; Millán & Pérez-de-la Cruz,
2002; Mislevy & Gitomer, 1995). Another type is Solution BNs, which represent problem
solution paths in conjunction with knowledge levels. For example, Andes' task-specific part of
the BN corresponds to a solution graph composed of goals, facts, rule applications, context
rules, and strategies, allowing for knowledge assessment and plan recognition for generat-
ing hints and instructions (Conati et al., 2002). In Independence BNs, independence among
KCs is assumed. An example is Bayesian Knowledge Tracing (BKT; Corbett & Anderson,
1995) where knowledge estimation of a KC is independent of that of other KCs. BKT models
knowledge dynamically with a dynamic Bayesian network (DBN) with key structure repeated
at each time slice and with additional edges connecting the same types of knowledge nodes
across time slices. Another kind of Independence BN uses a flat structure in which there is
only one layer of KCs and there are no edges among KCs (Huang et al., 2017).

To reduce the number of parameters for ease of BN construction and inference, logic gates
(Noisy-AND or Leaky-OR) can be used (Conati et al., 2002; Huang et al., 2017). There are
other variations, such as integration with decision theory (Mayo & Mitrovic, 2001; Murray
et al., 2004), complex dynamic BNs in narrative-centered learning environments (Rowe &
Lester, 2010), logistic regression models for efficient modeling of subskills (González-Brenes
et al., 2014; Xu & Mostow, 2012), and modeling integrative KCs that integrate or must be
integrated with other KCs to produce behaviors (Huang et al., 2017).

There are three main approaches for creating or refining a BN-based domain (and student)
model: expert-engineered, automated, or mixed approaches. (Mayo and Mitrovic (2001) use
the terms expert-centric, data-centric, and efficiency-centric approaches, respectively.) Most
of the work in AIED falls into the category of expert-engineered approaches where an expert
specifies directly or indirectly the structure and parameters of the BN (Conati et al., 2002;
Mislevy & Gitomer, 1995). Some research took an automated approach where the BN struc-
ture and parameters are learned primarily from data (Chen et al., 2016; Mayo & Mitrovic,
2001). Other research applied a mixed approach, where several BNs are specified first based
on domain knowledge and then compared in terms of predictive accuracy on collected data
(Pardos, Heffernan, Anderson, & Heffernan, 2006), or a BN is partially learned from data and
then refined by experts (Vomlel, 2004). To evaluate a BN for domain modeling, data-driven
evaluations on simulated datasets (Conati et al., 2002; Mayo & Mitrovic, 2001; Millán &
Pérez-de-la Cruz, 2002) or real-world datasets (Huang, 2018; Pardos et al., 2006), as well
as classroom studies (Conati et al., 2002; Huang, 2018; Mayo & Mitrovic, 2001), have been
conducted.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 141

Challenges
There are several concerns or challenges regarding the use of the BN paradigm for domain
modeling in AIED systems. In cases where BNs are constructed by expert engineering, the
process can be time-consuming and error-prone. Although many data-driven approaches
have been devised to address this issue, fully automated methods for learning BNs (structure
or parameters) in many cases are still computationally expensive and require a substantial
amount of data to reach acceptable accuracy (Millán et al., 2010). Several issues that are rel-
evant to many machine learning models also apply here. One is the model degeneracy issue
where parameters learned from data conflict with the model’s conceptual meaning, such as
a student being more likely to get a correct answer if they do not know a skill than if they do
(Baker et al., 2008; Huang, 2018; Huang et al., 2015). Another is the identifiability issue where
the same data can be fit equally well by different parameters, resulting in different system
behaviors (Beck & Chang, 2007; Huang et al., 2015), or different interpretations of effects
of system features (Huang et al., 2015). To address this, constraints or prior distribution of
parameters could be imposed when fitting parameters (Beck & Chang, 2007; Huang, 2018).
More elaboration of these issues can be found in Challenges in the next machine learning
section.

Machine Learning

Machine learning (ML) techniques are widely used in AIED systems, and they play an impor-
tant role in domain modeling (Koedinger et al., 2013). Machine learning and domain repre-
sentations intersect in two primary ways. First, domain knowledge is often encoded in the
input representations used by machine learning models in AIED systems. These representa-
tions of domain knowledge are used to enhance the models’ predictive effectiveness across
a range of AIED tasks, such as assessing student knowledge (González-Brenes et al., 2014;
Min et al., 2020), recognizing student affect (Jiang et al., 2018) or making pedagogical deci-
sions (Rowe & Lester, 2015; Shen, Mostafavi et al., 2018), among others. In many cases,
these applications are distinct from the task of modeling knowledge in a given domain itself.
When data are provided to a machine learning algorithm, they are typically encoded using
a factored representation known as a feature vector (Russell & Norvig, 2020). The attributes
in this feature vector representation may indirectly encode information about knowledge in
the domain, such as the current problem-solving context or characteristics of expert problem-
solving behavior (Geden et al., 2021; Gobert et al., Baker, 2013; Rowe & Lester, 2015). The
input feature representations utilized by machine learning models can be either manually
engineered or learned automatically as typified by applications of deep neural networks (Jiang
et al., 2018; Min et al., 2016).

The second way in which ML and domain representations intersect is in using ML to cre-
ate or refine a model of domain knowledge itself. This latter approach encompasses a range
of different modeling tasks within AIED systems. For example, ML techniques have been
used to model effective inquiry strategies (Gobert et al., 2013; Käser & Schwartz, 2020), dis-
cover or refine skill models (Boros et al., 2013; Cen et al., 2006; Desmarais & Naceur, 2013;
Lindsey et al., 2014; Huang et al., 2021), detect student misconceptions (Michalenko et al.,
2017; Shi et al., 2021), and generate automated next-step hints based upon prior students’
learning behaviors (Barnes & Stamper, 2008).

Several families of ML algorithms have been examined for domain modeling in AIED
systems, including supervised learning, unsupervised learning, and reinforcement learning

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

142 Handbook of artificial intelligence in education

techniques. We briefly discuss each of these families and provide examples showing how they
have been used for domain modeling in AIED. An issue that merits acknowledgment is the
relationship between ML approaches for domain modeling and student modeling. These tasks
are often closely related. In some cases, they may coexist within a single model, as we already
saw with Bayesian Networks, described in the previous section. In the current section, we
focus on work that applies ML to capture data-driven models of target knowledge, skills, and
strategies in a particular task domain and/or learning environment. As discussed previously,
we distinguish this from work investigating models that capture students’ current learning
states, which we regard as student modeling.

Supervised learning
Supervised learning is a family of ML techniques that involve training a model on labeled
data in order to classify or predict the outcome associated with a new, as yet unseen input
(Bishop, 2006; Russell & Norvig, 2020). Supervised learning encompasses a range of algo-
rithmic techniques, including linear models, decision trees, kernel machines, probabilistic
graphical models, deep neural networks, and ensemble techniques. A related paradigm is
semi-supervised learning, which augments the supervised learning process by combining a
small amount of labeled data with a large amount of unlabeled data during training in order to
improve model predictions (Van Engelen & Hoos, 2020). Semi-supervised learning has been
used to identify learning outcomes and prerequisites from educational texts (Labutov et al.,
2017) and predict student performance on assessments (Livieris et al., 2019).

An important domain modeling task is automated model discovery (Cen et al., 2006;
Chaplot et al., 2018; Koedinger et al., 2012). Automated model discovery is a form of cogni-
tive model optimization that applies data-driven techniques to refine computational repre-
sentations of knowledge and skills targeted for learning in a particular domain. For example,
Learning Factors Analysis (LFA) is a semi-automated method for refining a cognitive domain
model that combines multiple logistic regression and combinatorial search (Cen et al., 2006).
The fit of a multiple logistic regression model to students’ problem-solving data serves as a
heuristic to guide a search for an improved domain representation. The search involves itera-
tively decomposing problem-solving skills (KCs) based on expert-defined difficulty factors
to obtain a refined domain model that better fits the student data. In LFA, supervised learn-
ing supports a procedure for discovering (or refining) what the KCs in a domain model are.
Supervised learning is not used to directly infer relations between KCs and/or student actions,
but rather to guide a search process that reveals them. LFA and related techniques have been
investigated with a range of algorithmic variations and AIED systems (Koedinger et al., 2012;
Huang et al., 2021).

Supervised learning has also been used to model domain-specific strategies by training
models with annotated datasets consisting of student learning interactions. Gobert and col-
leagues used supervised learning to devise models of students’ inquiry processes in the Inq-
ITS intelligent tutoring system (Gobert et al., 2013). Specifically, they utilized a combination
of text replay tagging and decision tree classifiers to create ML-based detectors for automati-
cally recognizing when students demonstrate the skill of designing controlled experiments
within science microworlds. Similar techniques have also been used to model other facets of
student interaction with AIED systems, such as detecting student affect (Jiang et al., 2018)
and gaming the system (Baker et al., 2010; Paquette & Baker, 2019), which highlight the close
connection between ML approaches to domain modeling and student modeling.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 143

Work by Gobert et al. (2013) offers an example of how supervised learning can be used to
create a domain model to assess student inquiry processes. (Their Inq-ITS system, on which
this example is based, is mentioned briefly in the section “Exploratory Learning” of Chapter 9
(Aleven et al.).) Figure 7.3 provides a high-level illustration of the major steps involved. The
first step is collecting log data from student interactions with an AIED system. Gobert and
colleagues use data from 148 eighth-grade students collected during a classroom implementa-
tion of the Inq-ITS web-based tutor. In Inq-ITS’s phase change microworld, students are given
the task of determining which variables (e.g., container size, heat level, substance amount)
affect different properties of a substance’s phase change. Students proceed through a series
of inquiry phases—exploring the simulation, using built-in tools to generate hypotheses, con-
ducting simulated experiments, analyzing data—to complete the task. Students’ interactions
with Inq-ITS are time-stamped and logged to produce a low-level, sequential record of stu-
dents’ inquiry behaviors in the science microworld. Next, students’ logs are segmented into
meaningful sets of student actions, called clips, to be annotated by human coders. Each clip
is tagged with one of ten possible inquiry skill labels, capturing productive inquiry behaviors
such as “Designed Controlled Experiments,” “Tested Stated Hypothesis,” and “Used Data
Table to Plan,” as well as undesirable inquiry behaviors such as “Never Changed Variables”
and “No Activity” (Sao Pedro et al., 2013). Two coders each assign a single label to each clip
for a subset of clips. The subset of clips is used to establish interrater agreement, and, after
establishing close agreement, the coders split up the remaining clips to be coded separately.

Next, the student log data is processed to distill features that will serve as input for machine
learning. Gobert et al. (2013) distilled 12 predictor features from the student log data for each
tagged clip: all actions count, complete trials count, total trials count, and so forth. For each
tagged clip, the predictor features are combined into a vector with the “ground truth labels”
from human coders appended. The set of feature vectors and their associated labels serve as
the dataset for creating the machine learning model to detect student design of controlled
experiments.

The dataset is then split into separate training, validation, and test sets. A widely used
approach for model evaluation in supervised learning is called cross-validation, which involves
repeatedly splitting a dataset into separate subsets for training and validation and alternately
using each data point as either training data or validation data (Russell & Norvig, 2020). In
cross-validation, training sets are used to tune the machine learning model’s parameters, and

Source: Adapted from Gobert et al. (2013)

Figure 7.3 Steps for creating a domain model to detect the skill of designing controlled
experiments using supervised learning

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

144 Handbook of artificial intelligence in education

validation sets are used to test the model’s predictive performance on data not used in train-
ing. In the work of Gobert and colleagues (Gobert et al., 2013), the training data was provided
as input to a J48 decision tree algorithm (Quinlan, 1993). In this algorithm, a decision tree is
created by repeatedly dividing the data based on the values of different input features and by
inducing a set of decision rules to predict clip labels based on the input features’ values. The
result is a tree-like data structure that has both internal nodes and leaf nodes, each associated
with a decision rule, that collectively make up the decision criteria for classifying an input
clip. As a final step during model creation, Gobert et al. (2013) reduced the set of input fea-
tures by applying a standard feature selection technique called backward elimination search
(Chandrashekar & Sahin, 2014).

The best-performing decision tree model that emerged from this process had, at its root, a deci-
sion rule about the number of adjacent controlled trials with repeats; if a student never ran two con-
trolled experiments in a row, the model produced a high confidence prediction that the student did
not know how to design a controlled experiment. If the student ran at least two controlled experi-
ments in a row, the model utilized several additional features to determine how to classify knowl-
edge of this skill. An example decision tree rule from Gobert et al. (2013) is shown in Box 7.1.

BOX 7.1: EXAMPLE DECISION RULE IN J48 DECISION TREE
FOR DETECTING THE SKILL OF DESIGNING CONTROLLED
EXPERIMENTS IN THE INQ-ITS TUTORING SYSTEM

IF count of adjacent controlled experiments (with repeats) = 1 AND

count of simulation variable changes ≤ 2 AND

count of pairwise controlled experiments (with repeats) > 1 AND

complete trials count > 2

THEN predict that the clip is a demonstration of designing controlled experiments with
74% confidence.

Source: Reproduced from Gobert et al. (2013)

After creating a domain model using supervised learning, as described above, the resulting
model can be integrated back into the run-time AIED system. Specifically, the AIED system
is extended to include support for distilling the predictor features utilized as input by the
machine learning model (e.g., J48 decision tree) in real-time as students perform learning
actions. The distilled features are assembled and provided as input to the trained model, which
then produces a prediction, such as whether the student has demonstrated knowledge of how
to design controlled experiments. These predictions can be used to drive decisions about adap-
tive support, problem selection, or other pedagogical functions of student modeling.

Another application of supervised learning for domain modeling in AIED systems is auto-
mated goal recognition, which is the task of inferring an agent’s higher-order goal (or goals)
based upon a series of observations of their lower-level actions in a learning environment
(Sukthankar et al., 2014). A broad range of ML techniques have been used for automated
goal recognition in AIED systems, including probabilistic models (Mott et al., 2006), deep-
learning techniques (Min et al., 2016), and statistical relational learning methods that combine

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 145

ML with logic-based representations (Ha et al. 2011). Like the work by Gobert et al. (2013),
ML-based goal recognition provides a framework for devising models that encode the rela-
tionships between low-level actions and higher-order cognitive processes, such as goal setting
or strategy use.

Unsupervised learning
Unsupervised learning techniques are widely used to analyze student data in AIED systems.
Unsupervised learning is a family of ML techniques for capturing generalizable patterns or
groups in unlabeled datasets (Bishop, 2006). A key application of unsupervised learning is
discovering patterns in student strategy use, an application that blends elements of domain
modeling and student modeling. For example, Käser and Schwartz (2020) clustered students
into different groups based on their inquiry strategies in an open-ended learning environment
for middle-school physics education called TugLet. Although Käser and Schwartz (2020) used
a rule-based model of knowledge of motion and forces in TugLet, they utilized clustering
analysis to model inquiry strategies. Clustering analysis revealed several patterns of student
behavior that could be interpreted in terms of effective and ineffective inquiry strategies in
TugLet. For example, one cluster was associated with efficient, systematic testing behavior
using TugLet’s simulation-based exploration mode. Another cluster was associated with an
inefficient trial-and-error process, which included little use of TugLet’s exploration mode. In
total, seven clusters were identified, and they were validated using a separate validation data-
set collected from a different public middle school. Findings showed a high level of cluster
agreement between the two datasets, although the distribution of clusters was different (Käser
& Schwartz, 2020). Notably, the analysis also revealed a new, positive inquiry strategy—keep
it simple to isolate equivalence of units—which had not yet been described in the literature.

Clustering analysis has also been used to identify student error patterns and misconceptions
in specific domains. Shi and colleagues (2021) used student program code data from an intro-
ductory computing course to train a neural embedding-based representation of student code
called code2vec. This representation was then used to identify clusters of student mistakes
using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al.,
1996). The resulting clusters were interpreted by domain experts to identify common miscon-
ceptions exemplified in students’ unsuccessful code. A case study of three clusters suggested
that the approach revealed novel and meaningful misconceptions that would not have been
easily discovered using traditional clustering methods (Shi et al., 2021).

Unsupervised learning techniques also play a role in acquiring domain knowledge rep-
resentations for use by simulated students. For example, the SimStudent teachable agent,
which is integrated with the APLUS learning by teaching platform, leverages a combination
of inductive logic programming and learning by demonstration to learn rule-based domain
model representations from demonstrations (e.g., feedback and hints) provided by ITS authors
and students (Matsuda et al., 2020; Matsuda et al., 2013). SimStudent engages in a hybrid
machine learning process that combines elements of both supervised and unsupervised learn-
ing. Demonstrations provided by students (a form of supervision) are used to generate pro-
duction rules, each representing a skill, that together constitute SimStudent’s model of the
domain. Unsupervised representation learning algorithms that encode “deep features” in
algebra equation solving have also been integrated with SimStudent, reducing the knowledge
engineering requirements associated with constructing these types of agents (Li et al., 2015).
Work on SimStudent has also been extended toward the creation of the Apprentice Learner

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

146 Handbook of artificial intelligence in education

Architecture, which enables interactive machine-learning-based authoring paradigms for the
creation of AIED systems across a range of knowledge types and domains (MacLellan &
Koedinger, 2020; Weitekamp et al., 2020).

An important property of student behavior in many AIED systems is its sequential nature.
Sequence mining has been found to be effective for detecting patterns in learner behavior
that unfold over time within open-ended learning environments. Kinnebrew et al. (2013)
developed a differential sequence mining framework to distinguish between productive and
unproductive learning behaviors in Betty’s Brain, a learning-by-teaching platform for middle-
school mathematics and science education. They identified sequential patterns in students’
metacognitive activities, such as taking quizzes or reading relevant resources to monitor
aspects of their solutions, that were distinct between high- and low-performing groups of
students, or between productive and unproductive phases of learning. Taub et al. (2018) used a
similar approach to extract patterns in students’ scientific reasoning processes (e.g., sequences
of relevant and irrelevant testing behaviors) during inquiry-based learning in a game-based
learning environment. A key use case for these patterns is to refine the design of metacogni-
tive strategy feedback that is specific to a particular domain and learning environment. Other
work has utilized principal component analysis (PCA) to filter students’ problem-solving
sequences to devise time series representations of learner behavior in open-ended learning
environments (Reilly & Dede, 2019; Sawyer et al., 2018). Using PCA-based representations of
expert problem solving, this approach enables entire trajectories of student problem-solving
behaviors to be efficiently compared with expert problem-solving trajectories. The distance
between student trajectories and expert trajectories has been found to be predictive of student
learning gains (Sawyer et al., 2018). Again, these examples are illustrative of the close rela-
tionship between domain modeling and student modeling in many applications of ML (and
data mining) within AIED.

Reinforcement learning
Recent years have seen growing interest in leveraging reinforcement learning to model
and support students’ learning processes (Doroudi et al., 2019). Reinforcement learning
is a family of ML techniques that focus on sequential decision making under uncertainty
(Sutton & Barto, 2018). Rather than being trained upon a set of labeled data, reinforce-
ment learning typically involves a process of learning by experience where an ML agent
explores alternative courses of action with the goal of maximizing the accumulated reward
over time. Much of the work on reinforcement learning in AIED has focused on pedagogi-
cal models (Ausin et al., 2020; Beck et al., 2000; Rowe & Lester, 2015), but reinforcement
learning techniques have also been used to model structured domains, such as logic proofs
and algebra equation solving. Barnes and Stamper (2008) leveraged a Markov decision
process (MDP) formalism to model logic proof solving in the DeepThought intelligent
tutoring system. By mining data from previous students’ interactions, their MDP-based
domain representation could be used to automatically generate contextual hints by match-
ing the current state of a student’s proof attempt and selecting the next action that is optimal
with respect to the MDP’s reward function. The result was a system that would recommend
solution paths (i.e., proof steps) that were taken in successful proofs by previous students.
An additional benefit of this approach is that the hint generation model can continue to
improve as new student data is collected; the domain model is enriched as more students
interact with the system.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 147

Rafferty and Griffiths (2015) utilized inverse reinforcement learning to interpret students’
freeform algebra equation-solving steps to assess student knowledge. Their approach, which
is based upon Bayesian inverse planning, enables the interpretation of students’ equation-
solving processes regardless of whether a structured or freeform interface is used by the
learning environment. Rafferty and Griffiths (2015) modeled equation transformations as a
Markov decision process, and they utilized inverse planning to approximate a posterior dis-
tribution over the space of hypotheses representing possible learner understandings in the
algebra equation- solving domain. In related work, Rafferty et al. (2016) used inverse planning
to provide automated feedback on students’ equation-solving choices. Results from a study
indicated that the feedback yielded pre-performance to post-performance improvements, and
learners who received feedback on skills that were far from mastery showed greater improve-
ment than students who received feedback on already-mastered skills.

How to create domain models using machine learning
There are software toolkits that are freely available to facilitate the creation of ML-based
domain models, but current tools are not specific to domain model creation for use in AIED
systems. Several popular tools provide graphical user interfaces for training, validating, and
testing ML algorithms, such as RapidMiner (Kotu & Deshpande, 2014) and Weka (Hall et al.,
2009). Similarly, research on deep learning applications has been accelerated by the avail-
ability of popular software packages for R (e.g., caret) and Python (e.g., TensorFlow, Keras,
PyTorch, and ScikitLearn). A prerequisite for the application of ML techniques is the avail-
ability of cleaned, formatted data to train and validate models. Given the widespread avail-
ability of free ML toolkits, much of the work in creating ML-based models in AIED systems
is in the acquisition and formatting of data, formulation of the ML task, and engineering of
feature representations. Shared data repositories, such as DataShop and LearnSphere, provide
datasets, analysis tools, and visualizations that can serve to reduce the burden of data acqui-
sition and formatting (Koedinger et al., 2010; Koedinger et al., 2017). Furthermore, many
ML toolkits provide implementations of common feature selection algorithms, which further
reduce the burden of manually creating effective feature representations in ML-based domain
models. Although these resources are useful, the development of authoring tools that specifi-
cally focus on the creation of ML-based domain models is a promising direction for future
research.

Challenges
Machine learning provides a useful means for automatically modeling domain knowledge
in AIED systems, but it also raises several important challenges. First, ML assumes the
availability of significant data for training and validation. Sufficient data to produce a high-
quality model may not always be available, or the available data may not be ideally dis-
tributed (e.g., a non-randomized problem order), especially early in the development of an
AIED system or in domains that are not conducive to formalization using ML techniques.
Second, ML approaches to domain modeling raise important questions related to fairness
and transparency. Recent years have seen growing attention to the issue of encoded bias
in ML (Gardner et al., 2019). In domain modeling, a biased model has the potential to
cause harm to students if they are improperly judged to be engaged in “incorrect” learning
behaviors because those behavior patterns were not included in the data used to train the
model.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

148 Handbook of artificial intelligence in education

A related issue is transparency. Machine learning often produces models that are effectively
a “black box” consisting of many thousands (or more) parameters that are difficult to interpret
or explain. Lack of transparency, including weak interpretability and/or explainability, in a
domain model is likely to reduce the level of trust that is imparted upon it, reduce what scien-
tific insights can be gained from the model, and perhaps even reduce its utility for instruction.
This issue points toward the opportunity for developing explanatory models within AIED
systems, which provide insights about learners and the learning process that are interpretable
and actionable in addition to being accurate (Rosé et al., 2019).

A third challenge is the issue of semantic model degeneracy, which refers to situations
where the parameters induced for an ML-based domain model conflict with theoretical or
conceptual understandings of the domain (Baker et al., 2008; Doroudi & Brunskill, 2017).
This issue is closely related to concerns of model plausibility, identifiability, and consistency
(Huang et al., 2015). An example occurs in work by Gobert et al. (2013), described above,
in which they initially observed that ML-based detectors of students’ inquiry skills (e.g.,
designing controlled experiments) omitted key features considered theoretically important
to the behavior, such as the number of controlled comparisons that a student made in his/her
data set. This observation resulted in the adoption of a modified approach to their text replay
tagging procedure and the use of different datasets for training, refining, and testing their
machine learning model to improve its construct validity. This form of model degeneracy
may reflect an issue in the distribution of the training data, or some other source of bias rather
than properties of an ML model or an optimization algorithm. In general, however, ML-based
models are more prone to degeneracy issues than the other major paradigms discussed in
this chapter where domain experts are more heavily involved in the creation or refinement of
domain models.

Despite these limitations, machine learning provides a range of useful tools and techniques
for domain modeling in AIED systems. Furthermore, applications of ML intersect with many
of the other paradigms outlined in this chapter, giving rise to hybrid systems that draw upon
multiple paradigms to devise computational models of domain knowledge that inform the
adaptive pedagogical functionalities of AIED systems.

Domain Modeling for Intelligent Textbooks

Domain modeling has supported a wide range of intelligent or adaptive online textbooks, which
have a long history in personalized web-based learning (Brusilovsky & Pesin, 1998; Henze
& Nejdl, 1999; Kavcic, 2004; Melis et al., 2001; Weber & Brusilovsky, 2001). Intelligent or
adaptive textbooks can guide students to the most relevant content based on student modeling
(Huang et al., 2016; Thaker et al., 2018), content recommendation (Kavcic, 2004; Sosnovsky
et al., 2012), knowledge-adapted content presentation (Melis et al. 2001), and adaptive naviga-
tion support (Brusilovsky & Eklund, 1998; Brusilovsky & Pesin 1998; Henze & Nejdl, 1999;
Weber & Brusilovsky, 2001), such as a “traffic light” approach to annotate links as content
for which the student is deemed ready or not ready (Brusilovsky et al., 1996, 1998). A domain
model in an intelligent textbook typically consists of a KC-to-item mapping which specifies
domain concepts presented on a page or a section (i.e., an item), and sometimes also specifies
the prerequisite concepts required to understand the current page or section. Domain models
in intelligent textbooks are used mainly to assess student knowledge (Huang et al., 2016) and
guide students to the right content (Brusilovsky & Eklund, 1998; Brusilovsky & Pesin 1998;
Henze & Nejdl, 1999); a few also assess student work and provide problem-solving support

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 149

(Weber & Brusilovsky 2001). Many studies have confirmed the effectiveness of personali-
zation approaches based on domain and student modeling for student learning with online
textbooks (Brusilovsky & Eklund, 1998; Davidovic et al., 2003; Weber & Brusilovsky, 2001).

Domain modeling in intelligent textbooks has evolved from manual indexing by domain
experts to the more recent automatic extraction using ML and text mining (i.e., natural lan-
guage processing) techniques. Several studies demonstrated the effectiveness of personaliza-
tion approaches built based on manually-indexed domain models in early adaptive textbooks
(Brusilovsky & Eklund 1998; Davidovic et al., 2003; Weber & Brusilovsky 2001). To reduce
the cost of expert labeling, a research stream focused on open corpus adaptive educational
hypermedia (Brusilovsky & Henze, 2007) has explored automatic methods that borrow from
information retrieval and semantic web models (Dolog & Nejdl, 2003; Sosnovsky & Dicheva,
2010) to build various kinds of models of educational documents. More recently, automatic
methods have been developed for identifying prerequisite concepts (Agrawal et al., 2014;
Labutov et al., 2017), building prerequisite structures (Chaplot et al., 2016), and building con-
cept hierarchies (Wang et al., 2015). Chau et al. (2020) provide a comprehensive, offline evalu-
ation of various automatic concept extraction methods and a review of domain modeling for
adaptive textbooks.

A notable challenge is the evaluation of domain models used in intelligent textbooks. Early
empirical evaluations in this field typically compared an adaptive system with a non-adaptive
system, demonstrating benefits of a whole adaptivity “package” such as a combination of the
domain model, student model, and adaptive navigation support (Brusilovsky & Eklund, 1998;
Weber & Brusilovsky, 2001). There is still a lack of empirical or data-driven evaluations that
isolate the contribution of domain models. Another challenge is a lack of high-quality labeled
data to train and evaluate domain models for intelligent textbooks. Most automatic methods in
this field rely on labeled data provided by domain experts for supervised or semi-supervised
learning tasks, yet labeling domain concepts is a very time-consuming and difficult task.

Examples and Generalized Examples

Several types of AIED systems use problem-solving examples or generalized versions of such
examples as their main representation of domain knowledge. These systems typically assess
student work by comparing them against stored examples. To this end, they employ a flex-
ible matching process for finding a relevant example and mapping it to the student solution.
Given that there may be great variability in student solutions, matching literally against stored
examples might not be effective.

Example-tracing tutors, a widely-used paradigm for creating AIED tutoring systems, use
“behavior graphs” as their representation of domain knowledge (Aleven et al., 2016). Behavior
graphs are generalized examples of step-by-step solution processes within a given problem.
The nodes in these graphs represent problem states, the links represent problem-solving steps.
Different paths in a behavior graph capture different ways of solving a given problem. (Thus,
behavior graphs can handle problems with multiple different solution paths, although if the
number of such paths is very large in a problem, they become unwieldy.) An example-tracing
algorithm flexibly matches a student’s problem-solving steps, one-by-one, against the graph,
to track which path(s) the student might be following. The process of example tracing is anal-
ogous to model tracing, described in the current chapter, above. Just as the model-tracing
algorithm tracks which solution path the student is following from among the many solutions
paths the rule model could generate, the example-tracing algorithm tracks which solution

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

150 Handbook of artificial intelligence in education

path the student is on from among the multiple possible solution paths captured in the given
behavior graph. With dedicated authoring tools, an author can create behavior graphs through
programming by demonstration, without having to write code. With the same tools, the author
can also indicate how a graph generalizes, so it can be used to recognize, as correct, a wide
range of student problem-solving behavior. Many example-tracing tutors have been built and
found to be effective in helping students learn in real educational settings (Aleven et al., 2016).
Interestingly, behavior graphs have a long history in cognitive science (Newell & Simon, 1972)
that predates their use in AIED systems, another way in which the fields of AIED and cogni-
tive science are connected.

Other AIED systems use examples of solutions (rather than solution paths) as a key store
of domain knowledge. We have already encountered one instance: constraint-based tutors use
stored examples of solutions in order to help students learn. As another instance, a program-
ming tutor by Rivers and Koedinger (2017) uses a large store of student Python programs to
interpret student work and provide hints for how to fix or complete programs. Much emphasis
in this work is on creating a process for converting students’ program code to an abstract,
canonical representation. Doing so decreases the number of examples that need to be stored
and increases the probability of finding a match for any given student program.

In a different way of using examples, several AIED systems support students in studying
worked examples as part of their instructional approaches, often eliciting self-explanations
from students, with feedback from the system (see Conati & VanLehn, 2000; Adams et al.,
2014, MacLaren et al., 2016; Zhi et al., 2019; Chen et al., 2020; also Chapter 9 by Aleven
et al.). Some systems are capable of adaptively selecting or fading worked examples (i.e.,
gradually transitioning to problem solving), based on measures of students’ knowledge or
knowledge growth (Goguadze et al., 2011; Salden et al., 2010). In these methods for selecting
or fading examples on an individualized basis, the domain model, student model, and peda-
gogical model all work together.

Knowledge Spaces

Another paradigm in domain modeling and student modeling is based on the theory of knowl-
edge spaces (Doignon & Falmagne, 1985, 2012). In this paradigm, domain knowledge is
represented by a network of interconnected items. These items correspond to the problem
types in the given educational domain. The relations between items are precedence relations
between problem types, which may be due to the prerequisite structure of the domain or the
order in which problem types are taught (Falmagne et al., 2006). A student’s knowledge state
is represented as a subset of these items, namely, the items that the student is assumed to have
mastered. The knowledge spaces paradigm could be viewed as overlapping with the Bayesian
network paradigm in that a knowledge structure in knowledge spaces theory can be described
as a Bayesian network without hidden nodes, where each of the nodes maps to a concrete class
of problems (Desmarais & Pu, 2005). This paradigm emphasizes tailoring and selecting the
right learning content based on estimated student competence.

Systems based on the knowledge spaces theory include the widely used ALEKS math-
ematics tutor (Falmagne et al., 2006) and the Catalyst or MCWeb system for chemistry
(Arasasingham et al., 2011, 2005). A recent meta-analysis (Fang et al., 2019) revealed that
ALEKS was as effective as, but not better than, traditional classroom teaching. Also, a study
by Arasasingham et al. (2005) found that the MCWeb system improved learning outcomes in
chemistry. Students who used MCWeb for their homework performed significantly better in

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 151

subsequent assessments, compared with students who carried out homework from their text-
books. However, it’s unclear whether the improvement was from the multiple representation
mechanism used in the system, or the knowledge spaces model itself.

Knowledge spaces are often human engineered, but they need to be refined with data to
enhance accuracy (Falmagne et al., 2006; Pavlik et al., 2013). Typically, a large amount of data
is needed to infer a complete set of precedence relations. Partial Order Knowledge Structures
(POKS) have been developed to address challenges of inferring the AND/OR precedence
relations from data alone (Desmarais et al., 2006; Desmarais & Pu, 2005). Another issue is
that this paradigm does not model domain knowledge in terms of cognitive structures (e.g.,
concepts, skills). Without such information, it is hard to differentiate problems that share some
knowledge demands but differ in other knowledge demands, which would seem to hamper
accurate knowledge estimation or recommendations. There is some work to extend the frame-
work to include skills as well (Heller et al., 2006). For a more thorough review of this para-
digm, readers can refer to reviews by Desmarais and Baker (2012) or by Pavlik et al. (2013).

Other Types of Domain Models

We briefly discuss several other types of domain models that have been demonstrated to be
effective in AIED systems, even if they have not quite seen the same amount of research or
widespread use as the paradigms discussed above: domain ontologies, concept maps, case-
based models, qualitative models of physical systems, models of inquiry processes, and issue-
based models

First, a substantial amount of work within the field of AIED has focused on using domain
ontologies within AIED systems (see Lenat & Durlach, 2014). These ontologies provide a
hierarchical ordering of domain concepts. For example, the SlideTutor system uses domain
knowledge represented as an ontology. This representation is used for visual classification
problem solving in surgical pathology, in combination with a rule-based model (Crowley et al.,
2003; Crowley & Medvedeva, 2006). Separating declarative knowledge (represented in the
system’s ontology) and procedural knowledge (represented as rules) facilitates system exten-
sions (e.g., modeling additional medical visual classification tasks) and reusability of knowl-
edge representations. Ontologies have also been used for domain model alignment between
various AIED systems to enable the exchange of student models. For example, Sosnovsky
et al. (2009) discuss how AIED systems based on different formalisms can exchange assess-
ments of student work using ontology mapping. The ontology served as a mediator between
the set of constraints in SQL-Tutor and SQL-Guide, an adaptive hypermedia system in which
the student model is represented as an overlay on the ontology.

Second, a number of AIED systems use concept maps (Novak, 1996) and conceptual graphs
(Sowa, 1994) as domain models. Concept maps are graphs that represent domain concepts and
relations between them, with domain-specific labels, to capture conceptual and propositional
knowledge of a domain (Martínez-Maldonado et al., 2010). In a number of AIED systems, the
students’ main learning activity is to construct a concept map as a representation of his/her
domain knowledge. They may receive assistance from the system (e.g., the Betty’s Brain sys-
tem from Biswas et al., 2005) or from a teacher, in turn supported by an analytics system (e.g.,
Martinez-Maldonado et al., 2014). Another approach involves the student in building a stu-
dent model, represented as a conceptual graph, collaboratively with the STyLE-OLM system
(Dimitrova, 2003; Dimitrova & Brna, 2016), to improve the accuracy of the student model,
and at the same time promote metacognitive skills such as reflection and self-assessment.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

152 Handbook of artificial intelligence in education

Concept maps have also been used to provide some guidance to students during inquiry activi-
ties (Hagemans et al., 2013). All these approaches capitalize on the idea that concept maps or
conceptual graphs are highly interpretable ways of organizing domain knowledge. The system
often assesses the student’s work by comparing the student’s evolving model against a stored
expert model but may also assess student work in terms of whether their process of building
and testing the model, given resources, is sound and coherent.

Third, some AIED systems have case-based domain models, which capture processes of
reasoning with cases. Some AIED systems support students in domains where experts natu-
rally reason with cases. In such domains, rules may be “weak” or too abstract to give much
direct guidance (i.e., these may be ill-defined domains); therefore, reasoning with cases is a
natural supplement or even a substitute for reasoning with rules (Lynch et al., 2009). Examples
of such systems are CATO (Aleven, 2003) and LARGO (Pinkwart et al., 2009) in the domain
of legal reasoning. Some systems use case-based reasoning processes as part of their peda-
gogical approach (Gauthier et al., 2007; Schank, 1990), although that is outside the scope of
the current chapter.

Fourth, some AIED work has focused on systems that use various types of “qualitative
models” as domain models (Bredeweg & Forbus, 2016; Bredeweg et al., 2013; Joyner et al.,
2013). Betty’s Brain, mentioned above, could also be viewed as falling into this category
(Biswas et al., 2016). Typically, these models capture phenomena in the natural world (e.g.,
models of biological or ecological systems, models of how physical devices work, or other
forms of causal models). They are networks that capture causal influences among variables;
unlike concept maps or conceptual graphs, discussed above, these networks can support infer-
ence generation. Oftentimes, they are used in AIED systems in which the student’s task is to
build a model (e.g., of a natural phenomenon), with guidance from the system. In some sys-
tems, the qualitative models are executable, so that students can test their models against data
(e.g., to see if they account for data about the model phenomenon).

Fifth, relatedly, some AIED systems use models of inquiry processes to support students
as they carry out such processes, such as the Inq-ITS system from Gobert et al. (2013)
and Käser & Schwartz’s (2020) work with the TugLet game. These models capture how to
gather evidence and design experiments and are used to assess student work and knowledge
of inquiry skills; the models used in Inq-ITS are described above, in the section in this
chapter on machine learning. In some instances, models of inquiry processes have been
found to generalize across different science topics (Gobert et al., 2013). More information
about the nature of these systems and their domain models can be found in Chapter 9 by
Aleven et al.

Finally, some systems use an issue-based approach. They use a domain model that cap-
tures specific “issues'' within the given task domain, which include both desirable aspects and
shortcomings of work that are common among novices. Having a representation of issues
enables the system to provide useful adaptive feedback on student work, without the need for
a complete domain model. Systems of this kind are often characterized by a coaching style
that minimizes the amount of intervention (Burton & Brown, 1982). An issue-based approach
may be particularly appropriate in domains where AI models have limited scope or are not
sophisticated enough to fully evaluate students’ work. The LARGO system of Pinkwart
et al. (2009) illustrates this approach. Using LARGO, students diagram out oral argument
exchanges before the US Supreme Court. The LARGO system provides feedback based on a
representation of argument issues that were not themselves meant to be a complete model of

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 153

the kind of legal argumentation being analyzed. As an additional example, some analytics-
based tools that provide alerts regarding student work to teachers (e.g., VanLehn et al., 2021)
can also be viewed as falling under this category.

New Trends

We briefly review two lines of research related to domain modeling that have come to
the foreground since 2015: the application of text mining techniques for discovering and
refining domain models from text and the use of crowdsourcing for building domain
models.

A new trend in AIED research is discovering and refining domain models from text utiliz-
ing text mining techniques. The availability of large amounts of digital text-based learning
content and advances in computational linguistics create numerous opportunities for auto-
mated discovery or improvement of domain models (for example, a Q-matrix or prerequisite
structures) based on text mining. This trend goes beyond the textbook context mentioned
in our previous section and involves broader contexts such as Wikipedia (Gasparetti et al.,
2015), MOOC lecture transcripts (Alsaad et al., 2018), and conversational interactions with
learners (see Chapter 11 by Rus et al. for text-based domain modeling in AutoTutor systems).
Some of the approaches used only textual content (Alsaad et al., 2018; Gasparetti et al.,
2015; Pardos & Dadu, 2017), while others used a combination of textual and student perfor-
mance data (Chaplot et al., 2016; Chen et al., 2018; Matsuda et al., 2015). Various text min-
ing techniques have been shown to be effective, as evaluated by predictive performance in
prediction tasks. For example, Pardos and Dadu (2017) applied a skip-gram model (a neural
network commonly known as word2vec) to model both the content of a problem and prob-
lems around it and reached a 90% accuracy in predicting the missing skill from a KC model.
Michalenko et al. (2017) utilized word embeddings to detect misconceptions from students’
textual responses to open-response questions. Other text mining techniques have also been
applied, such as semantic analysis for identifying relevant Wikipedia concepts in text-based
learning objects (Gasparetti et al., 2015), named entity recognition for extracting educa-
tional concepts in curriculum standards (Chen et al., 2018), and correlational topic modeling
for identifying topics by analyzing the content of mathematics problems (Slater et al., 2017).

Another new trend that has received increasing attention in recent years is crowdsourcing
domain models. This work is situated in the broader ongoing research into crowdsourcing
explanations, feedback, and other pedagogical interactions (Heffernan et al., 2016; Williams
et al., 2016). For example, crowdsourcing has been used to identify KCs in the domains of
mathematics and English writing; it was found that roughly one-third of the crowdsourced KCs
directly matched those generated by domain experts (Moore et al., 2020). Learnersourcing is
a form of crowdsourcing where learners collectively contribute novel content for future learn-
ers while they are engaged in a meaningful learning experience themselves (Kim, 2015). One
active line of learningsourcing research is in video learning, including subgoal label genera-
tion (Weir et al., 2015), solution structure extraction (Kim, 2015), and concept map genera-
tion (Liu et al., 2018) from educational videos. Several studies found that learner-generated
labels or content can be comparable in quality to expert-generated ones (Liu et al., 2018; Weir
et al., 2015), and that the learnersourcing workflow did not detract learners from the learning
experience (Weir et al., 2015). Learnersourcing was also used for understanding large-scale
variation in student solutions in programming and hardware design, and has proven valuable
for both teachers and students (Glassman & Miller, 2016).

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

154 Handbook of artificial intelligence in education

DISCUSSION

Our review of AIED domain modeling paradigms, summarized in Tables 7.1 and 7.2, shows
an astounding richness. Many domain modeling paradigms for AIED systems have been
explored, developed, and proven to be useful. Within each paradigm, multiple systems have
been built and have been found to be effective in helping students learn in real educational
settings.

The use of domain models in AIED systems offers many advantages, as described above
and summarized in Table 7.1. A domain model enables a system to provide adaptive step-
level guidance to students within complex problem-solving activities, which enables the
system to support student learning more effectively than systems without step-level support
(VanLehn, 2011) and to guide students during richer problem-solving experiences. Domain
models can be the basis for student modeling and hence for many forms of adaptivity within
AIED systems, including personalized mastery learning. As well, domain models can be used
to guide the design of many aspects of AIED systems. Finally, some have argued that the
use of domain models may promote interoperability between system components and sys-
tems (Sottilare et al., 2016, Chapter 4). Although domain models are key in many effective
AIED systems, it should be noted that several adaptive instructional systems, including some
widely used ones, do not have a strong domain model, for example ASSISTments (Heffernan
& Heffernan, 2014), MathSprings (Arroyo et al., 2014), Khan Academy (Kelly & Rutherford,
2017), and Duolingo (von Ahn, 2013). Without domain models, these systems provide simple
practice problems with immediate feedback and forms of personalized task selection, which
can be effective for learners. These systems, however, cannot support the greater adaptivity
and more complex problem solving afforded by a domain model.

Although, as Table 7.1 attests, there is substantial overlap in the functionality supported by
the different domain modeling paradigms, some interesting differences emerge as well. Such
differentiation across AIED paradigms is attractive, for example because it gives the AIED
system developer different tools in their toolkit. For example, the AIED domain modeling
paradigms differ in the degree to which they can readily handle problems that have large
solution spaces. In such problems (e.g., computer programming or solving algebraic equa-
tions), there is great variability in student solutions, even among the correct solutions, or the
steps that lead to correct solutions. Constraint-based tutors and model-tracing tutors deal well
with such domains. On the other hand, example-tracing tutors are not well-suited to practice
problems with large solution spaces, although they can still handle problems with multiple
alternative solution paths. In addition, although BNs in theory could be constructed to sup-
port domain modeling with vast solution spaces, the construction of such BNs may be labor
intensive if done by human engineering, or challenging in terms of both computational effi-
ciency and accuracy if done by automated methods. Systems that rely on stores of examples
have the potential to handle large solution spaces, although doing so might require sophisti-
cated canonicalization and matching approaches (e.g., Rivers & Koedinger, 2017). Advances
in machine learning have shown promise to tackle some of these challenges.

Different domain modeling paradigms assess student work in different ways. In some para-
digms (e.g., model-tracing tutors, BNs in Andes), the domain model captures general problem-
solving knowledge, which enables the system to simulate the process of solving problems
and to assess student solutions steps by comparing them against solution steps or processes
generated by the model. In other paradigms (e.g., constraint-based tutors), the domain model

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

155

Ta
bl

e
7.

2

 St
re

ng
th

s
an

d
w

ea
kn

es
se

s
of

 A
IE

D
 d

om
ai

n
m

od
el

in
g

pa
ra

di
gm

s

Pa
ra

di
gm

s
C

an
 h

an
dl

e
la

rg
e

so
lu

ti
on

sp

ac
es

A
m

en
ab

le
 to

 m
ac

hi
ne

le

ar
ni

ng
 o

r
da

ta
-

dr
iv

en
 r

efi
ne

m
en

t

E
as

e
of

 a
ut

ho
ri

ng
/a

ut
ho

ri
ng

to

ol
s

ex
is

t
R

eq
ui

ri
ng

 d
at

a
to

de

ve
lo

p
M

od
el

 id
en

ti
fia

bi
li

ty

an
d/

or
 d

eg
en

er
ac

y
is

su
es

In
te

rp
re

ta
bi

li
ty

R
ul

es
Y

es
Y

es
, S

im
St

ud
en

t c
an

le

ar
n

ru
le

s.
 M

an
y

m
et

ho
ds

 f
or

 d
at

a-
dr

iv
en

 K
C

 m
od

el

re
fi

ne
m

en
t

C
T

A
T,

 S
im

St
ud

en
t

C
og

ni
ti

ve
 ta

sk

an
al

ys
is

 u
pf

ro
nt

re

co
m

m
en

de
d

N
/A

Y
es

C
on

st
ra

in
ts

Y
es

Y
es

R
eq

ui
re

s
do

m
ai

n
kn

ow
le

dg
e/

A
SP

IR
E

N
o

da
ta

 r
eq

ui
re

d
(t

ho
ug

h
ca

n
us

e
da

ta

if
 y

ou
 h

av
e

it)

N
/A

Y
es

B
eh

av
io

r
G

ra
ph

s
N

o
M

an
y

m
et

ho
ds

 f
or

da

ta
-d

ri
ve

n
K

C
 m

od
el

re

fi
ne

m
en

t.

C
T

A
T

—
no

n-
pr

og
ra

m
m

er

au
th

or
in

g
C

og
ni

ti
ve

 ta
sk

an

al
ys

is
 u

pf
ro

nt

re
co

m
m

en
de

d

N
/A

Y
es

B
ay

es
ia

n
N

et
w

or
ks

H
ar

d
Y

es
Y

es
, b

ut
 n

ot
 in

te
gr

at
ed

 w
it

h
IT

S
au

th
or

in
g

Y
es

Y
es

Y
es

Su
pe

rv
is

ed

L
ea

rn
in

g
H

ar
d

—
Y

es
, b

ut
 n

ot
 in

te
gr

at
ed

 w
it

h
IT

S
au

th
or

in
g

Y
es

Y
es

D
ep

en
ds

U
ns

up
er

vi
se

d
L

ea
rn

in
g

Y
es

—
Y

es
, b

ut
 n

ot
 in

te
gr

at
ed

 w
it

h
IT

S
au

th
or

in
g

Y
es

N
o.

 N
o

co
nc

ep
tu

al

as
su

m
pt

io
ns

.
D

ep
en

ds

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g
Y

es
—

Y
es

, b
ut

 n
ot

 in
te

gr
at

ed
 w

it
h

IT
S

au
th

or
in

g
Y

es
In

 p
ri

nc
ip

le
, y

es
.

D
ep

en
ds

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

156 Handbook of artificial intelligence in education

captures knowledge for assessing solutions and partial solutions. This approach enables the
system to provide rich feedback on student work without the ability to generate problem solu-
tions. Issue-based approaches capture knowledge for evaluating specific solution aspects (e.g.,
identifying inquiry strategies or recognizing common issues or undesirable properties of stu-
dent work) without fully evaluating a complete solution (issue-based approaches or some ML
approaches). Finally, some example-based approaches store solutions or solution paths, and
have smart, flexible ways of comparing student solutions to stored solutions, so as to provide
feedback and hints (Aleven et al., 2016; Rivers & Koedinger, 2017; Stamper et al., 2013).

Relatedly, across domain models, we see some differences in the type of formative feed-
back that the systems can give to students. As mentioned, formative feedback is a key function
of domain models. Many domain modeling approaches evaluate the overall quality of the
student’s work (e.g., correctness of the entire solution), but others (e.g., issue-based approaches
and some ML approaches) focus only on specific aspects of solutions, without the intent of
assessing the overall quality of student work. An issue-based approach may be appropriate
in domains where AI/ML has not advanced to the point that complete evaluation of solution
quality is possible (e.g., complex, open-ended domains; Lynch et al., 2009). Another differ-
ence in tutoring behaviors is in the specificity of next-step hints. Model-tracing tutors and
example-tracing tutors can always suggest a specific next step (together with reasons why).
On the other hand, constraint-based tutors provide hints that state missing solution elements,
or extra elements; they can also present example solutions to students. A final observation is
that most domain modeling paradigms allow for modeling of errors or misconceptions for the
purpose of providing error-specific feedback to students, though without strictly requiring it.

Although, as mentioned, creating a domain model is labor intensive, various developments
make doing so easier, including the development of AIED authoring tools, the vastly increased
use of ML in creating AIED systems, and (in a very recent development) the use of crowd-
sourcing (Williams et al., 2016; Yang et al., 2021). AIED authoring tools have long existed
for established domain modeling paradigms such as rules (Aleven et al., 2006b; Koedinger
et al., 2003), constraints (Mitrovic et al., 2009; Suraweera et al., 2010), and behavior graphs
(Aleven et al., 2016). A number of these projects involve machine learning to support non-
programmers in creating domain models for use in AIED systems (Matsuda et al., 2015;
Mitrovic et al., 2009), often integrated with other authoring functions (e.g., tutor interfaces,
student models, etc.). We see an on-going trend toward the use of ML to facilitate represen-
tation learning (Li et al., 2018), factoring interactive learning approaches to domain knowl-
edge (MacLellan & Koedinger, 2020), and addressing human–computer interaction aspects
(Weitekamp et al., 2020). We also see opportunities for further integration, both between
AIED domain modeling paradigms and with existing general AI/ML toolkits, to facilitate
experiments with AIED systems.

The use of machine learning to create domain models has grown dramatically in recent
years. Machine learning has been used to create domain models that range in focus from
specific aspects of student work (e.g., Gobert et al., 2013) to more general models of problem-
solving knowledge within a specific domain (e.g., Barnes & Stamper, 2008). A broad range
of machine learning techniques have also been used across different domain modeling tasks,
including supervised learning, unsupervised learning, and reinforcement learning methods.
Interestingly, machine learning is not tied to a particular computational representation or for-
malism. Rather, machine learning can be used to create domain models (and student models)
with a broad range of representations, including the major paradigms discussed in this chapter

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 157

(e.g., rules, constraints, Bayesian networks, etc.) as well as others. In fact, data-driven tech-
niques for creating or refining domain models, which are informed by machine learning, have
proven useful across all domain modeling paradigms (see Table 7.2). The data-driven methods
used in AIED research differ starkly with respect to the amount of data needed. Some para-
digms depend on the availability of large amounts of data right from the start (i.e., many ML
approaches). Others can operate while requiring less or even no data initially (e.g., interactive
ML or qualitative cognitive task analysis; Clark et al., 2007). Some require limited data for
the initial creation of a model, but require more data later (e.g., for data-driven refinement).
We see great promise for approaches and tools that integrate data-driven improvement and
authoring of AIED systems, a challenge (and an opportunity!) for the field.

The review highlights many connections and dependencies between an AIED system’s
domain model and its student model, traditionally considered to be separate modules. These
two models tend to be closely coupled and sometimes fully integrated. For example, overlay
models and KC modeling are ways of tightly linking domain models and student models.
As another example, BNs have been applied in an AIED system (VanLehn et al., 2005) in a
manner that elegantly blends domain modeling with student modeling. Another interesting
connection is seen where ML-based domain models are trained from student learning data, or
when a KC model is refined using log data from a tutoring system.

An interesting issue arises regarding the practice of AIED: given that professional AIED
designers, developers, and learning engineers have multiple domain modeling paradigms to
choose from, how should they select the most appropriate paradigm for any given AIED
development project or the most appropriate combination of paradigms (see Roll et al., 2010)?
So far, the field of AIED has not produced a strong, evidence-based set of guidelines; generat-
ing such guidelines is a great challenge because research studies comparing different domain
modeling paradigms are very hard to do. Based on our review, some relevant factors that
influence this choice may be:

 1) The desired behavior of the tutoring system. We noted some differences with respect
to whether feedback is based on a full evaluation of correctness or focuses on spe-
cific issues only, the specificity of next-step advice, and whether error feedback is
accommodated.

 2) Whether the tutored tasks have large solution spaces. We noted some differences among
the domain modeling paradigms in how well they deal with large solution spaces.

 3) Whether one has confidence that AI can do a good enough job either in generating or fully
evaluating solutions. We noted some differences among the paradigms in this regard as
well. This factor may correlate with how well- or ill-defined the domain is.

 4) The skill and experience of the design and development team (e.g., whether they have
experience with the given modeling paradigm).

 5) The availability of dedicated authoring tools or the demonstrated use of ML techniques
to facilitate building the system.

To conclude, domain models are a key feature of many AIED systems. They support many
of the behaviors that distinguish AIED systems from other educational technologies. AIED
systems use a very wide range of AI knowledge representations. We hope that this chapter
succeeds in highlighting that great richness, as well as the many advantages that derive from
having a domain model.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

158 Handbook of artificial intelligence in education

REFERENCES

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial
intelligence (XAI). IEEE Access, 6, 52138–52160.

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., & van Velsen,
M. (2014). Using erroneous examples to improve mathematics learning with a web-based tutoring
system. Computers in Human Behavior, 36, 401–411.

Agrawal, R., Gollapudi, S., Kannan, A., & Kenthapadi, K. (2014). Study Navigator: An algorithmically
generated aid for learning from electronic textbooks. Journal of Educational Data Mining, 6(1),
53–75.

Aleven, V. (2003). Using background knowledge in case-based legal reasoning: A computational model
and an intelligent learning environment. Artificial Intelligence, 150(1–2), 183–237.

Aleven, V. (2010). Rule-based cognitive modeling for intelligent tutoring systems. In R. Nkambou,
J. Bourdeau, & R. Mizoguchi (Eds.), Advances in intelligent tutoring systems (pp. 33–62). Berlin,
Germany: Springer.

Aleven, V., Connolly, H., Popescu, O., Marks, J., Lamnina, M., & Chase, C. (2017). An adaptive coach
for invention activities. International conference on artificial intelligence in education (pp. 3–14).
Cham, Switzerland: Springer.

Aleven, V., & Koedinger, K. R. (2013). Knowledge component (KC) approaches to learner modeling.
Design Recommendations for Intelligent Tutoring Systems, 1, 165–182.

Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2006a). Toward meta-cognitive tutoring: A model
of help seeking with a Cognitive Tutor. International Journal of Artificial Intelligence in Education,
16(2), 101–128.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2006b). The Cognitive Tutor Authoring
Tools (CTAT): Preliminary evaluation of efficiency gains. International conference on intelligent
tutoring systems (pp. 61–70). Berlin, Heidelberg, Germany: Springer.

Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S., … Koedinger, K. R.
(2016). Example-tracing tutors: Intelligent tutor development for non-programmers. International
Journal of Artificial Intelligence in Education, 26(1), 224–269. doi:10.1007/s40593-015-0088-2.

Alsaad, F., Boughoula, A., Geigle, C., Sundaram, H., & Zhai, C. (2018). Mining MOOC lecture
transcripts to construct concept dependency graphs. Proceedings of the 11th International Conference
on Educational Data Mining (pp. 467–473).

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive

Science, 13(4), 467–505.
Anderson, J. R., Conrad, F. G., Corbett, A.T., Fincham, J.M., Hoffman, D., & Wu, Q. (1993). Computer

programming and transfer. In J. R. Anderson (Ed.), Rules of the mind (pp. 205–233). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4(2), 167–207.

Arasasingham, R. D., Martorell, I., & McIntire, T. M. (2011). Online homework and student achievement
in a large enrollment introductory science course. Journal of College Science Teaching, 40, 70–79.

Arasasingham, R. D., Taagepera, M., Potter, F., Martorell, I., & Lonjers, S. (2005). Assessing the effect
of web-based learning tools on student understanding of stoichiometry using knowledge space
theory. Journal of Chemical Education, 82, 1251–1262.

Arroyo, I., Woolf, B. P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multimedia adaptive
tutoring system for mathematics that addresses cognition, metacognition and affect. International
Journal of Artificial Intelligence in Education, 24(4), 387–426.

Ausin, M. S., Maniktala, M., Barnes, T., & Chi, M. (2020). Exploring the impact of simple explanations
and agency on batch deep reinforcement learning induced pedagogical policies. In I. I. Bittencourt, M.
Cukurova, K. Muldner, R. Luckin & E. Millán (Eds.), Proceedings of the International Conference
on Artificial Intelligence in Education (pp. 472–485). Cham, Switzerland: Springer.

Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem-solving in
a constraint-based CSCL environment for UML class diagrams. International Journal of Computer-
Supported Collaborative Learning, 2(2), 159–190.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 159

Baker, R., Corbett, A., & Aleven, V. (2008). More accurate student modeling through contextual
estimation of slip and guess probabilities in Bayesian knowledge tracing. International Conference
on Intelligent Tutoring Systems (pp. 406–415). Berlin, Heidelberg, Germany: Springer.

Baker, R., Corbett, A. T., & Koedinger, K. R. (2007). The difficulty factors approach to the design of
lessons in intelligent tutor curricula. International Journal of Artificial Intelligence in Education,
17(4), 341–369.

Baker, R., Mitrovic, A., & Mathews, M. (2010). Detecting gaming the system in constraint-based
tutors. In de Bra, P., Kobsa, A., Chin, D. (Eds.), Proceedings of the 18th International Conference
on User Modeling, Adaptation, and Personalization (pp. 267–278). Berlin, Heidelberg, Germany:
Springer.

Barnes, T., & Stamper, J. (2008). Toward automatic hint generation for logic proof tutoring using
historical student data. In Woolf, B., Aïmeur, E., Nkambou, R., Lajoie, S. (Eds.), Proceedings of
the 9th International Conference on Intelligent Tutoring Systems (pp. 373–382). Berlin, Heidelberg,
Germany: Springer.

Beck, J. E., & Chang, K. M. (2007). Identifiability: A fundamental problem of student modeling.
International Conference on User Modeling (pp. 137–146). Berlin, Heidelberg, Germany: Springer.

Beck, J., Woolf, B. P., & Beal, C. R. (2000). ADVISOR: A machine learning architecture for intelligent
tutor construction. In H. Kautz & B. Porter (Eds.), Proceedings of the 17th National Conference on
Artificial Intelligence (pp. 552–557). Menlo Park, CA: AAAI.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Biswas, G., Leelawong, K., Schwartz, D., Vye, N., & The Teachable Agents Group at Vanderbilt.

(2005). Learning by teaching: A new agent paradigm for educational software. Applied Artificial
Intelligence, 19(3–4), 363–392.

Biswas, G., Segedy, J. R., & Bunchongchit, K. (2016). From design to implementation to practice a
learning by teaching system: Betty’s Brain. International Journal of Artificial Intelligence in
Education, 26(1), 350–364.

Boroš, P., Nižnan, J., Pelánek, R., & Řihák, J. (2013). Automatic detection of concepts from problem
solving times. Proceedings of 16th International Conference on Artificial Intelligence in Education
(pp. 595–598).

Bredeweg, B., & Forbus, K. D. (2016). Qualitative representations for education. In R. A. Sottilare et al.
(Eds.), Design recommendations for intelligent tutoring systems: Volume 4—Domain modeling (pp.
57–68). Orlando, FL: US Army Research Laboratory.

Bredeweg, B., Liem, J., Beek, W., Linnebank, F., Gracia, J., Lozano, E., ... & Mioduser, D. (2013).
DynaLearn–An intelligent learning environment for learning conceptual knowledge. AI Magazine,
34(4), 46–65.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal learning
activities. In R. R. Burton, J. S. Brown & D. Sleeman (Eds.), Intelligent Tutoring Systems (pp. 79–98).
New York: Academic Press.

Brownston, L., Farrell, R., Kant, E., & Martin, N. (1985). Programming expert systems in OPS5: An
introduction to rule-based programming. Addison-Wesley Longman.

Brusilovsky, P., & Eklund, J. (1998). A study of user model based link annotation in educational
hypermedia. Journal of Universal Computer Science, 4(4), 429–448.

Brusilovsky, P., & Henze, N. (2007). Open corpus adaptive educational hypermedia. The adaptive web
(pp. 671–696). Berlin, Heidelberg, Germany: Springer.

Brusilovsky, P., & Pesin, L. (1998). Adaptive navigation support in educational hypermedia: An
evaluation of the ISIS-Tutor. Journal of Computing and Information Technology, 6(1), 27–38.

Brusilovsky, P., Schwarz, E., & Weber, G. (1996). ELM-ART: An intelligent tutoring system on the
world-wide web. In C. Frasson, G. Gauthier, & A. Lesgold (Eds.), The Third International Conference
on Intelligent Tutoring Systems (pp. 261–269). Springer.

Burns, H., & Capps, C. (1988). Foundations of Intelligent Tutoring Systems: An introduction. In M.
Polson & J. Richardson (Eds.), Foundations of Intelligent Tutoring Systems (pp. 1–19). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Carmona, C., Millán, E., Pérez-de-la-Cruz, J. L., Trella, M., & Conejo, R. (2005). Introducing
prerequisite relations in a multi-layered Bayesian student model. International Conference on User
Modeling (pp. 347–356). Berlin, Heidelberg, Germany: Springer.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

160 Handbook of artificial intelligence in education

Cen, H., Koedinger, K., & Junker, B. (2006). Learning Factors Analysis–A general method for cognitive
model evaluation and improvement. Proceedings of the 8th International Conference on Intelligent
Tutoring Systems (pp. 164–175). Berlin, Heidelberg, Germany: Springer.

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical
Engineering, 40(1), 16–28.

Chaplot, D. S., MacLellan, C., Salakhutdinov, R., & Koedinger, K. (2018). Learning cognitive models
using neural networks. Proceedings of the 19th International Conference on Artificial Intelligence
in Education (pp. 43–56). Cham, Switzerland: Springer.

Chaplot, D. S., Yang, Y., Carbonell, J., & Koedinger, K. R. (2016). Data-driven automated induction of
prerequisite structure graphs. Proceedings of the 9th International Conference on Educational Data
Mining (pp. 318–323). Raleigh, NC.

Chau, H., Labutov, I., Thaker, K., He, D., & Brusilovsky, P. (2020). Automatic concept extraction for
domain and student modeling in adaptive textbooks. International Journal of Artificial Intelligence
in Education, 31(4), 820–846.

Chen, Y., González-Brenes, J. P., & Tian, J. (2016). Joint discovery of skill prerequisite graphs and
student models. Proceedings of the 9th International Conference on Educational Data Mining (pp.
46–53).

Chen, P., Lu, Y., Zheng, V. W., Chen, X., & Li, X. (2018). An automatic knowledge graph construction
system for K-12 education. Proceedings of the Fifth Annual ACM Conference on Learning at Scale
(pp. 1–4). London, United Kingdom.

Chen, X., Mitrovic, A., & Mathews, M. (2020). Learning from worked examples, erroneous examples,
and problem solving: Toward adaptive selection of learning activities. IEEE Transactions on
Learning Technologies, 13(1), 135–149.

Clark, R. E., Feldon, D., van Merriënboer, J., Yates, K., & Early, S. (2007). Cognitive task analysis.
In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer & M. P. Driscoll (Eds.), Handbook of
research on educational communications and technology (3rd ed., pp. 577–593). Lawrence Erlbaum
Associates.

Collins, J., Greer, J., & Huang, S. (1996). Adaptive assessment using granularity hierarchies and
Bayesian Nets. In C. Frasson, G. Gauthier & A. Lesgold (Eds.), Proceedings of the 3rd International
Conference on Intelligent Tutoring Systems (pp. 569–577). Springer-Verlag.

Conati, C., Gertner, A. & VanLehn, K. (2002). Using Bayesian networks to manage uncertainty in
student modeling. User Modeling and User-Adapted Interaction, 12(4), 371–417.

Conati, C., & VanLehn, K. (2000). Toward computer-based support of meta-cognitive skills: A
computational framework to coach self-explanation. International Journal of Artificial Intelligence
in Education, 11, 389–415.

Corbett, A., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted interaction, 4(4), 253–278.

Corbett, A., Kauffman, L., MacLaren, B., Wagner, A., & Jones, E. (2010). A cognitive tutor for
genetics problem solving: Learning gains and student modeling. Journal of Educational Computing
Research, 42(2), 219–239.

Corbett, A., McLaughlin, M., & Scarpinatto, K. C. (2000). Modeling student knowledge: Cognitive
tutors in high school and college. User Modeling and User-Adapted Interaction, 10(2), 81–108.

Crowley, R., & Medvedeva, O. (2006). An intelligent tutoring system for visual classification problem
solving. Artificial Intelligence in Medicine, 36(1), 85–117.

Crowley, R., Medvedeva, O., & Jukic, D. (2003). SlideTutor: A model-tracing intelligent tutoring system
for teaching microscopic diagnosis. Proceedings of the 11th International Conference on Artificial
Intelligence in Education (pp. 157–164).

Davidovic, A., Warren, J., & Trichina, E. (2003). Learning benefits of structural example-based adaptive
tutoring systems. IEEE Transactions on Education, 46(2), 241–251.

Davis, R., & King, J. J. (1984). The origin of rule-based systems in AI. In B. G. Buchanan & E. H.
Shortliffe (Eds.), Rule-based expert systems: The MYCIN experiments of the Stanford Heuristic
Programming Project (pp. 20–51). Boston, MA: Addison-Wesley.

Desmarais, M. C., & Baker, R. S. (2012). A review of recent advances in learner and skill modeling
in intelligent learning environments. User Modeling and User-Adapted Interaction, 22(1–2),
9–38.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 161

Desmarais, M. C., Meshkinfam, P., & Gagnon, M. (2006). Learned student models with item to item
knowledge structures. User Modeling and User-Adapted Interaction, 16(5), 403–434.

Desmarais, M. C., & Naceur, R. (2013). A matrix factorization method for mapping items to skills
and for enhancing expert-based Q-matrices. Proceedings of the 16th International Conference on
Artificial Intelligence in Education (pp. 441–450). Berlin, Heidelberg, Germany: Springer.

Desmarais, M. C. & Pu, X. (2005). A Bayesian student model without hidden nodes and its comparison
with Item Response Theory. International Journal of Artificial Intelligence in Education, 15,
291–323.

Dimitrova, V. (2003). STyLE-OLM: interactive open learner modelling. International Journal of
Artificial Intelligence in Education, 13, 35–78.

Dimitrova, V., & Brna, P. (2016). From interactive open learner modelling to intelligent mentoring:
STyLE-OLM and beyond. International Journal of Artificial Intelligence in Education, 26(1),
332–349.

Doignon, J. P., & Falmagne, J. C. (1985). Spaces for the assessment of knowledge. International Journal
of Man-Machine Studies, 23(2), 175–196.

Doignon, J. P., & Falmagne, J. C. (2012). Knowledge spaces. Springer Science & Business Media.
Dolog, P., & Nejdl, W. (2003). Challenges and benefits of the semantic web for user modelling.

Proceedings of the Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems (AH2003)
at 12th International World Wide Web Conference. Budapest, Hungary.

Doroudi, S., Aleven, V., & Brunskill, E. (2019). Where’s the reward? A review of reinforcement learning
for instructional sequencing. International Journal of Artificial Intelligence in Education, 29(4),
568–620.

Doroudi, S., & Brunskill, E. (2017). The misidentified identifiability problem of Bayesian knowledge
tracing. In X. Hu, T. Barnes, A. Hershkovitz & L. Paquette (Eds.), Proceedings of the 10th
International Conference on Educational Data Mining (pp. 143–149).

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters
in large spatial databases with noise. In E. Simoudis, J. Han & U. Fayyad (Eds.), Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining (pp. 226–231). Palo Alto,
CA: AAAI.

Falmagne, J. C., Cosyn, E., Doignon, J. P., & Thiéry, N. (2006). The assessment of knowledge, in theory
and in practice. In R. Missaoui & J. Schmid (Eds.), International Conference on Formal Concept
Analysis (ICFCA), Lecture Notes in Computer Science (pp. 61–79). Berlin, Heidelberg, Germany:
Springer.

Fang, Y., Ren, Z., Hu, X., & Graesser, A. C. (2019). A meta-analysis of the effectiveness of ALEKS on
learning. Educational Psychology, 39(10), 1278–1292.

Ganeshan, R., Johnson, W. L., Shaw, E., & Wood, B. P. (2000). Tutoring diagnostic problem solving. In
G. Gauthier, C. Frasson & K. VanLehn (Eds.), Proceedings of the 5th International Conference on
Intelligent Tutoring Systems (pp. 33–42). Berlin, Heidelberg, Germany: Springer.

Gardner, J., Brooks, C., & Baker, R. (2019). Evaluating the fairness of predictive student models
through slicing analysis. Proceedings of the 9th International Conference on Learning Analytics &
Knowledge (pp. 225–234). New York: ACM.

Gasparetti, F., Limongelli, C., & Sciarrone, F. (2015). Exploiting Wikipedia for discovering prerequisite
relationships among learning objects. International Conference on Information Technology Based
Higher Education and Training (ITHET) (pp. 1–6).

Gauthier, G., Lajoie, S., Richard, S. & Wiseman, J. (2007). Mapping and validating diagnostic reasoning
through interactive case creation. In T. Bastiaens & S. Carliner (Eds.), Proceedings of E-Learn
2007—World Conference on E-Learning in Corporate, Government, Healthcare, and Higher
Education (pp. 2553–2562). Quebec City, Canada: Association for the Advancement of Computing
in Education (AACE).

Geden, M., Emerson, A., Carpenter, D., Rowe, J., Azevedo, R., & Lester, J. (2021). Predictive student
modeling in game-based learning environments with word embedding representations of reflection.
International Journal of Artificial Intelligence in Education, 31(1), 1–23.

Glassman, E. L., & Miller, R. C. (2016). Leveraging learners for teaching programming and hardware
design at scale. Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work
and Social Computing Companion (pp. 37–40).

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

162 Handbook of artificial intelligence in education

Gobert, J. D., Pedro, M. S., Raziuddin, J., & Baker, R. S. (2013). From log files to assessment metrics:
Measuring students’ science inquiry skills using educational data mining. Journal of the Learning
Sciences, 22(4), 521–563.

Goguadze, G., Sosnovsky, S. A., Isotani, S., & McLaren, B. M. (2011). Evaluating a Bayesian student model
of decimal misconceptions. International Conference on Educational Data Mining (pp. 301–306).

González-Brenes, J., Huang, Y., & Brusilovsky, P. (2014). General features in knowledge tracing to
model multiple subskills, temporal item response theory, and expert knowledge. Proceedings of the
7th International Conference on Educational Data Mining (pp. 84–91).

Ha, E. Y., Rowe, J., Mott, B., & Lester, J. (2011). Goal recognition with Markov logic networks for
player-adaptive games. Proceedings of the 7th Annual AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (pp. 32–39). Menlo Park, CA: AAAI.

Hagemans, M. G., van der Meij, H., & de Jong, T. (2013). The effects of a concept map-based support
tool on simulation-based inquiry learning. Journal of Educational Psychology, 105(1), 1–24.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data
mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that
brings scientists and teachers together for minimally invasive research on human learning and
teaching. International Journal of Artificial Intelligence in Education, 24(4), 470–497.

Heffernan, N. T., Koedinger, K. R., & Razzaq, L. (2008). Expanding the model-tracing architecture:
A 3rd generation intelligent tutor for algebra symbolization. International Journal of Artificial
Intelligence in Education, 18(2), 153–178.

Heffernan, N. T., Ostrow, K. S., Kelly, K., Selent, D., van Inwegen, E. G., Xiong, X., & Williams, J.
J. (2016). The future of adaptive learning: Does the crowd hold the key? International Journal of
Artificial Intelligence in Education, 26(2), 615–644.

Heller, J., Steiner, C., Hockemeyer, C., & Albert, D. (2006). Competence-based knowledge structures
for personalised learning. International Journal on E-learning, 5(1), 75–88.

Henze, N., & Nejdl, W. (1999). Adaptivity in the KBS hyperbook system. The 2nd Workshop on
Adaptive Systems and User Modeling on the WWW.

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and
implications for teaching and Learning. Boston, MA: The Center for Curriculum Redesign.

Huang, Y. (2018). Learner modeling for integration skills in programming (Doctoral dissertation).
University of Pittsburgh, Pittsburgh, PA.

Huang, Y., González-Brenes, J. P., & Brusilovsky, P. (2015). Challenges of using observational data to
determine the importance of example usage. International Conference on Artificial Intelligence in
Education (pp. 633–637). Cham, Switzerland: Springer.

Huang, Y., González-Brenes, J. P., Kumar, R., & Brusilovsky, P. (2015). A framework for multifaceted
evaluation of student models. Proceedings of the 8th International Conference on Educational Data
Mining (pp. 203–210).

Huang, Y., Guerra-Hollstein, J. P., Barria-Pineda, J., & Brusilovsky, P. (2017). Learner modeling
for integration skills. Proceedings of the 25th Conference on User Modeling, Adaptation and
Personalization (pp. 85–93).

Huang, Y., Lobczowski, N. G., Richey, J. E., McLaughlin, E. A., Asher, M. W., Harackiewicz, J., …
Koedinger, K. R. (2021). A general multi-method approach to data-driven redesign of tutoring systems.
Proceedings of the 11th International Conference on Learning Analytics and Knowledge (pp. 161–172).

Huang, Y., Yudelson, M., Han, S., He, D., & Brusilovsky, P. (2016). A framework for dynamic knowledge
modeling in textbook-based learning. Proceedings of the 2016 conference on User Modeling,
Adaptation and Personalization (pp. 141–150).

Jiang, Y., Bosch, N., Baker, R. S., Paquette, L., Ocumpaugh, J., Andres, J. M. A. L., ... Biswas, G.
(2018). Expert feature-engineering vs. deep neural networks: Which is better for sensor-free affect
detection? Proceedings of the 19th International Conference on Artificial Intelligence in Education
(pp. 198–211). Springer, Cham.

Joyner, D. A., Majerich, D. M., & Goel, A. K. (2013). Facilitating authentic reasoning about complex
systems in middle school science education. Procedia Computer Science, 16, 1043–1052.

Käser, T., Klingler, S., Schwing, A. G., & Gross, M. (2014). Beyond knowledge tracing: Modeling skill
topologies with Bayesian networks. International Conference on Intelligent Tutoring Systems (pp.
188–198).

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 163

Käser, T., & Schwartz, D. L. (2020). Modeling and analyzing inquiry strategies in open-ended learning
environments. International Journal of Artificial Intelligence in Education, 30(3), 504–535.

Kavcic, A. (2004). Fuzzy user modeling for adaptation in educational hypermedia. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 34(4), 439–449.

Kelly, D. P., & Rutherford, T. (2017). Khan Academy as supplemental instruction: A controlled study
of a computer-based mathematics intervention. The International Review of Research in Open and
Distributed Learning, 18(4). doi: 10.19173/irrodl.v18i4.2984

Kim, J. (2015). Learnersourcing: Improving learning with collective learner activity (Doctoral
dissertation). Massachusetts Institute of Technology, Cambridge, MA.

Kinnebrew, J. S., Loretz, K. M., & Biswas, G. (2013). A contextualized, differential sequence mining
method to derive students’ learning behavior patterns. Journal of Educational Data Mining, 5(1),
190–219.

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical
review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin,
119(2), 254.

Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in experiments with Cognitive
Tutors. Educational Psychology Review, 19(3), 239–264.

Koedinger, K. R., & Aleven, V. (2021). Multimedia learning with cognitive tutors. To appear in R. E.
Mayer & L. Fiorella (Eds.), The Cambridge handbook of multimedia learning (3rd ed). Cambridge,
UK: Cambridge University Press.

Koedinger, K. R., Aleven, V., & Heffernan, N. (2003). Toward a rapid development environment for
Cognitive Tutors. Proceedings of the International Conference on Artificial Intelligence in Education
(pp. 455–457).

Koedinger, K. R., Baker, R. S., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010). A data
repository for the EDM community: The PSLC DataShop. Handbook of Educational Data Mining,
43, 43–56.

Koedinger, K. R., Brunskill, E., Baker, R. S., McLaughlin, E. A., & Stamper, J. (2013). New potentials
for data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3),
27–41.

Koedinger, K. R., & Corbett, A. T. (2006). Cognitive Tutors: Technology bringing learning sciences to
the classroom. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 61–78).
New York: Cambridge University Press.

Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The Knowledge‐Learning‐Instruction framework:
Bridging the science‐practice chasm to enhance robust student learning. Cognitive Science, 36(5),
757–798.

Koedinger, K., Liu, R., Stamper, J., Thille, C., & Pavlik, P. (2017). Community based educational data
repositories and analysis tools. Proceedings of the Seventh International Conference on Learning
Analytics & Knowledge (pp. 524–525).

Koedinger, K., & McLaughlin, E. (2010). Seeing language learning inside the math: Cognitive analysis
yields transfer. Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32), 471–476.

Koedinger, K. R., McLaughlin, E. A., & Stamper, J. C. (2012). Automated student model improvement.
Proceedings of the 5th International Conference on Educational Data Mining (pp. 17–24).

Koedinger, K.R., Stamper, J.C., McLaughlin, E.A., & Nixon, T. (2013). Using data-driven discovery of
better student models to improve student learning. In H.C. Lane, K. Yacef, J. Mostow & P. Pavlik
(Eds.), International Conference on Artificial Intelligence in Education (pp. 421–430). Berlin,
Heidelberg, Germany: Springer.

Kotu, V., & Deshpande, B. (2014). Predictive analytics and data mining: Concepts and practice with
rapidminer. Morgan Kaufmann.

Labutov, I., Huang, Y., Brusilovsky, P., & He, D. (2017). Semi-supervised techniques for mining learning
outcomes and prerequisites. Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 907–915).

Lenat, D. B., & Durlach, P. J. (2014). Reinforcing math knowledge by immersing students in a simulated
learning-by-teaching experience. International Journal of Artificial Intelligence in Education, 24(3),
216–250.

Lindsey, R. V., Khajah, M., & Mozer, M. C. (2014). Automatic discovery of cognitive skills to improve
the prediction of student learning. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence & K.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

164 Handbook of artificial intelligence in education

Q. Weinberger (Eds.), Proceedings of the 28th International Conference on Advances in Neural
Information Processing Systems (pp. 1386–1394).

Li, H., Gobert, J., Dickler, R., & Moussavi, R. (2018). The impact of multiple real-time scaffolding
experiences on science inquiry practices. International Conference on Intelligent Tutoring Systems
(pp. 99–109). Springer, Cham.

Li, N., Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015). Integrating representation learning and
skill learning in a human-like intelligent agent. Artificial Intelligence, 219, 67–91.

Liu, C., Kim, J., & Wang, H. C. (2018). Conceptscape: Collaborative concept mapping for video learning.
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–12).

Liu, R., & Koedinger, K. R. (2017). Closing the loop: Automated data-driven cognitive model discoveries
lead to improved instruction and learning gains. Journal of Educational Data Mining, 9(1), 25–41.

Livieris, I. E., Drakopoulou, K., Tampakas, V. T., Mikropoulos, T. A., & Pintelas, P. (2019). Predicting
secondary school students' performance utilizing a semi-supervised learning approach. Journal of
Educational Computing Research, 57(2), 448–470.

Lodder, J., Heeren, B., Jeuring, J., & Neijenhuis, W. (2021). Generation and use of hints and feedback
in a Hilbert-style axiomatic proof tutor. International Journal of Artificial Intelligence in Education,
31(1), 99–133.

Long, Y., & Aleven, V. (2014). Gamification of joint student/system control over problem selection
in a linear equation tutor. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.),
Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp.
378–387). New York: Springer.

Lovett, M. C. (1998). Cognitive task analysis in service of intelligent tutoring system design: A case
study in statistics. In International Conference on Intelligent Tutoring Systems (pp. 234–243). Berlin,
Heidelberg, Germany: Springer.

Lynch, C., Ashley, K. D., Pinkwart, N., & Aleven, V. (2009). Concepts, structures, and goals: Redefining
ill-definedness. International Journal of Artificial Intelligence in Education, 19(3), 253–266.

MacLellan, C. J., & Koedinger, K. R. (2020). Domain-general tutor authoring with Apprentice Learner
models. International Journal of Artificial Intelligence in Education.

Martinez-Maldonado, R., Clayphan, A., Yacef, K., & Kay, J. (2014). MTFeedback: Providing
notifications to enhance teacher awareness of small group work in the classroom. IEEE Transactions
on Learning Technologies, 8(2), 187–200.

Martínez-Maldonado, R., Kay, J., & Yacef, K. (2010, November). Collaborative concept mapping at the
tabletop. In ACM International Conference on Interactive Tabletops and Surfaces (pp. 207–210).

Mathan, S. A., & Koedinger, K. R. (2005). Fostering the intelligent novice: Learning from errors with
metacognitive tutoring. Educational Psychologist, 40(4), 257–265.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015). Teaching the teacher: Tutoring SimStudent
leads to more effective cognitive tutor authoring. International Journal of Artificial Intelligence in
Education, 25(1), 1–34.

Matsuda, N., Furukawa, T., Bier, N., & Faloutsos, C. (2015). Machine beats experts: Automatic discovery
of skill models for data-driven online course refinement. Proceedings of the 8th International
Conference on Educational Data Mining (pp. 101–108).

Matsuda, N., Weng, W., & Wall, N. (2020). The effect of metacognitive scaffolding for learning by
teaching a teachable agent. International Journal of Artificial Intelligence in Education, 1–37.

Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Cohen, W. W., Stylianides, G. J., & Koedinger,
K. R. (2013). Cognitive anatomy of tutor learning: Lessons learned with SimStudent. Journal of
Educational Psychology, 105(4), 1152–1163.

Mayo, M., & Mitrovic, A., (2001) Optimising ITS behaviour with Bayesian networks and decision
theory. International Journal on Artificial Intelligence in Education, 12(2), 124–153.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human-Computer
Interaction, 5(4), 381–413.

McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of worked
examples compared to erroneous examples, tutored problem solving, and problem solving in
computer-based learning environments. Computers in Human Behavior, 55, 87–99.

Means, B., & Gott, S. P. (1988). Cognitive task analysis as a basis for tutor development: Articulating
abstract knowledge representations. In J. Psotka, L. D. Massey & S. A. Mutter (Eds.), Intelligent
tutoring systems: Lessons learned (pp. 35–57). Lawrence Erlbaum Associates.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 165

Melis, E., Andres, E., Büdenbender, J., Frischauf, A., Goguadze, G., Libbrecht, P., … & Ullrich, C.
(2001). ActiveMath: A generic and adaptive web-based learning environment. International Journal
of Artificial Intelligence in Education, 12(4), 385–407.

Michalenko, J. J., Lan, A. S., & Baraniuk, R. G. (2017). Data-mining textual responses to uncover
misconception patterns. Proceedings of the Fourth ACM Conference on Learning @ Scale (pp.
245–248).

Millán, E., Loboda, T., & Pérez-De-La-Cruz, J. L. (2010). Bayesian networks for student model
engineering. Computers & Education, 55(4), 1663–1683.

Millán, E., & Pérez-de-la Cruz, J.-L. (2002). A Bayesian diagnostic algorithm for student modeling and
its evaluation. User Modeling and User-Adapted Interaction, 12(2), 281–330.

Min, W., Frankosky, M., Mott, B., Rowe, J., Smith, A., Wiebe, E., … Lester, J. (2020). DeepStealth:
Game-based learning stealth assessment with deep neural networks. IEEE Transactions on Learning
Technologies, 13(2), 312–325.

Min, W., Mott, B., Rowe, J., Liu, B., & Lester, J. (2016). Player goal recognition in open-world
digital games with long short-term memory networks. Proceedings of the 25th International Joint
Conference on Artificial Intelligence (pp. 2590–2596).

Mislevy, R. J., & Gitomer, D. H. (1995). The role of probability‐based inference in an intelligent tutoring
system. ETS Research Report Series, 1995(2), i-27.

Mitrovic, A. (1998). Experiences in implementing constraint-based modeling in SQL-Tutor. In B.
Goettl, H. Halff, C. Redfield & V. Shute (Eds.), Proceedings of the International Conference on
Intelligent Tutoring Systems (pp. 414–423). Springer.

Mitrovic, A. (2003). An intelligent SQL tutor on the Web. International Journal of Artificial Intelligence
in Education, 13(2–4), 173–197.

Mitrovic, A. (2010). Modeling domains and students with constraint-based modeling. In R. Nkambou, J.
Bordeaux & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring Systems. Studies in Computational
Intelligence (pp. 63–80). Berlin, Heidelberg, Germany: Springer.

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are
going. User Modeling and User-Adapted Interaction, 22(1–2), 39–72.

Mitrovic, A., Koedinger, K., & Martin, B. (2003). A comparative analysis of cognitive tutoring and
constraint-based modelling. In P. Brusilovsky, A. Corbett & F. de Rosis (Eds.), Proceedings of the 9th
International Conference on User Modeling (pp. 313–322). Berlin, Heidelberg, Germany: Springer.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., & McGuigan, N. (2009).
ASPIRE: An authoring system and deployment environment for constraint-based tutors. International
Journal of Artificial Intelligence in Education, 19(2), 155–188.

Mitrovic, A., Mathews, M., Ohlsson, S., Holland, J., & McKinlay, A. (2016). Computer-based post-
stroke rehabilitation of prospective memory. Journal of Applied Research in Memory and Cognition,
5(2), 204–214.

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language.
International Journal of Artificial Intelligence in Education, 10(3–4), 238–256.

Mitrovic, A., & Ohlsson, S. (2006). Constraint-based knowledge representation for individualized
instruction. Computer Science and Information Systems, 3(1), 1–22.

Mitrovic, A., Ohlsson, S., & Barrow, D. (2013). The effect of positive feedback in a constraint-based
intelligent tutoring system. Computers & Education, 60(1), 264–272.

Mitrovic, A., & Weerasinghe, A. (2009). Revisiting the ill-definedness and consequences for ITSs. In
V. Dimitrova, R. Mizoguchi, B. du Boulay, A. Graesser (Eds.), Proceedings of the 14th International
Conference on Artificial Intelligence in Education (pp. 375–382).

Moore, S., Nguyen, H. A., & Stamper, J. (2020). Towards crowdsourcing the identification of knowledge
components. Proceedings of the Seventh ACM Conference on Learning@ Scale (pp. 245–248).

Mott, B., Lee, S., & Lester, J. (2006). Probabilistic goal recognition in interactive narrative environments.
In Gil, Y. & Mooney, R. (Eds.), Proceedings of the Twenty-First National Conference on Artificial
Intelligence (pp. 187–192).

Murray, R. C., VanLehn, K., & Mostow, J. (2004). Looking ahead to select tutorial actions: A decision-
theoretic approach. International Journal of Artificial Intelligence in Education, 14(3, 4), 235–278.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
Novak, J. D. (1996). Concept mapping: A tool for improving science teaching and learning. Improving

Teaching and Learning in Science and Mathematics, 32–43.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

166 Handbook of artificial intelligence in education

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103(2), 241.
Ohlsson, S., & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent

tutoring systems. Technology, Instruction, Cognition and Learning, 5(2), 101–132.
Olsen, J. K., Rummel, N., & Aleven, V. (2019). It is not either or: An initial investigation into combining

collaborative and individual learning using an ITS. International Journal of Computer-Supported
Collaborative Learning, 14(3), 353–381.

Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2014). Effectiveness of Cognitive Tutor
Algebra I at scale. Educational Evaluation and Policy Analysis, 36(2), 127–144.

Pane, J. F., McCaffrey, D. F., Slaughter, M. E., Steele, J. L., & Ikemoto, G. S. (2010). An experiment to
evaluate the efficacy of cognitive tutor geometry. Journal of Research on Educational Effectiveness,
3(3), 254–281.

Paquette, L., & Baker, R. (2019). Comparing machine learning to knowledge engineering for student
behavior modeling: A case study in gaming the system. Interactive Learning Environments, 27(5–6),
585–597.

Pardos, Z. A., & Dadu, A. (2017). Imputing KCs with representations of problem content and context.
Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (pp.
148–155).

Pardos, Z. A., Heffernan, N. T., Anderson, B., & Heffernan, C. L. (2006). Using fine-grained skill
models to fit student performance with Bayesian networks. Proceedings of the Workshop in
Educational Data Mining held at the 8th International Conference on Intelligent Tutoring Systems.
Taiwan, China.

Park, D. H., Hendricks, L. A., Akata, Z., Rohrbach, A., Schiele, B., Darrell, T., & Rohrbach, M. (2018).
Multimodal explanations: Justifying decisions and pointing to the evidence. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 8779–8788).

Pavlik, P.I ., Brawner, K., Olney, A., & Mitrovic, A. (2013). A review of student models used in intelligent
tutoring systems. In R. A. Sottilare, A. Graesser, X. Hu & H. Holden (Eds), Design Recommendations
for Intelligent Tutoring Systems, 1, 39–68. Orlando, FL: US Army Research Laboratory.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan
Kaufmann.

Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: An overview of learner
modeling techniques. User Modeling and User-Adapted Interaction, 27(3–5), 313–350.

Pinkwart, N., Ashley, K., Lynch, C., & Aleven, V. (2009). Evaluating an intelligent tutoring system
for making legal arguments with hypotheticals. International Journal of Artificial Intelligence in
Education, 19(4), 401–424.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.
Rafferty, A. N., & Griffiths, T. L. (2015). Interpreting freeform equation solving. Proceedings of the

17th International Conference on Artificial Intelligence in Education (pp. 387–397). Springer, Cham.
Rafferty, A. N., Jansen, R., & Griffiths, T. L. (2016). Using inverse planning for personalized feedback.

In T. Barnes, M. Chi & M. Feng (Eds.), Proceedings of the 9th International Conference on
Educational Data Mining (pp. 472–477).

Reilly, J. M., & Dede, C. (2019). Differences in student trajectories via filtered time series analysis in
an immersive virtual world. Proceedings of the 9th International Conference on Learning Analytics
& Knowledge (pp. 130–134).

Reye, J. (1996). A belief net backbone for student modelling. Proceedings of the International
Conference on Intelligent Tutoring Systems (pp. 596–604). Berlin, Heidelberg, Germany: Springer.

Ritter, S. (1997). Communication, cooperation and competition among multiple tutor agents. In B. du
Boulay & R. Mizoguchi (Eds.), Artificial Intelligence in Education, Proceedings of AI-ED 97 World
Conference (pp. 31–38). Amsterdam, Netherlands: IOS Press.

Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A. (2007). Cognitive Tutor: Applied research in
mathematics education. Psychonomic Bulletin & Review, 14(2), 249–255.

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: A self-
improving Python programming tutor. International Journal of Artificial Intelligence in Education,
27(1), 37–64.

Roll, I., Aleven, V., & Koedinger, K. R. (2010). The invention lab: Using a hybrid of model tracing
and constraint-based modeling to offer intelligent support in inquiry environments. In International
Conference on Intelligent Tutoring Systems (pp. 115–124). Berlin, Heidelberg, Germany: Springer.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 167

Rosé, C. P., McLaughlin, E. A., Liu, R., & Koedinger, K. R. (2019). Explanatory learner models: Why
machine learning (alone) is not the answer. British Journal of Educational Technology, 50(6),
2943–2958.

Rowe, J., & Lester, J. (2010). Modeling user knowledge with dynamic Bayesian networks in interactive
narrative environments. Proceedings of the Sixth Annual Artificial Intelligence and Interactive
Digital Entertainment (pp. 57–62).

Rowe, J. & Lester, J. (2015). Improving student problem solving in narrative-centered learning
environments: A modular reinforcement learning framework. Proceedings of the Seventeenth
International Conference on Artificial Intelligence in Education (pp. 419–428).

Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (Fourth Edition). Pearson.
Salden, R. J., Aleven, V., Schwonke, R., & Renkl, A. (2010). The expertise reversal effect and worked

examples in tutored problem solving. Instructional Science, 38(3), 289–307.
Salden, R. J., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010). Accounting for

beneficial effects of worked examples in tutored problem solving. Educational Psychology Review,
22(379–392). doi: 10.1007/s10648-010-9143-6.

Sao Pedro, M. A., Baker, R., Gobert, J. D., Montalvo, O., & Nakama, A. (2013). Leveraging machine-
learned detectors of systematic inquiry behavior to estimate and predict transfer of inquiry skill.
User Modeling and User-Adapted Interaction, 23(1), 1–39.

Sawyer, R., Rowe, J., Azevedo, R., & Lester, J. (2018). Filtered time series analyses of student problem-
solving behaviors in game-based learning. Proceedings of the Eleventh International Conference on
Educational Data Mining (pp. 229–238).

Schank, R. C. (1990). Case‐based teaching: Four experiences in educational software design. Interactive
Learning Environments, 1(4), 231–253.

Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing
with contrasting cases: The effects of telling first on learning and transfer. Journal of Educational
Psychology, 103(4), 759.

Shen, S., Mostafavi, B., Barnes, T., & Chi, M. (2018). Exploring induced pedagogical strategies through
a Markov decision process framework: Lessons learned. Journal of Educational Data Mining, 10(3),
27–68.

Shi, Y., Shah, K., Wang, W., Marwan, S., Penmetsa, P., & Price, T. (2021). Toward semi-automatic
misconception discovery using code embeddings. Proceedings of the 11th International Conference
on Learning Analytics and Knowledge (pp. 606–612).

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.
Shute, V. J., Wang, L., Greiff, S., Zhao, W., & Moore, G. (2016). Measuring problem solving skills via

stealth assessment in an engaging video game. Computers in Human Behavior, 63, 106–117.
Sklavakis, D., & Refanidis, I. (2013). Mathesis: An intelligent web-based algebra tutoring school.

International Journal of Artificial Intelligence in Education, 22(4), 191–218.
Slater, S., Baker, R., Almeda, M. V., Bowers, A., & Heffernan, N. (2017). Using correlational topic

modeling for automated topic identification in intelligent tutoring systems. Proceedings of the
Seventh International Learning Analytics & Knowledge Conference (pp. 393–397).

Sleeman, D., Kelly, A. E., Martinak, R., Ward, R. D., & Moore, J. L. (1989). Studies of diagnosis and
remediation with high school algebra students. Cognitive Science, 13(4), 551–568.

Sosnovsky, S., & Dicheva, D. (2010). Ontological technologies for user modelling. International Journal
of Metadata, Semantics and Ontologies, 5(1), 32–71.

Sosnovsky, S., Brusilovsky, P., Yudelson, M., Mitrovic, A., Mathews. M., & Kumar, A. (2009).
Semantic integration of adaptive educational systems. In T. Kuflik, S. Berkovsky, F. Carmagnola &
D. Heckmann (Eds.), Advances in Ubiquitous User Modelling: Revised Selected Papers, Springer
LCNS, 5830, 134–158.

Sosnovsky, S., Hsiao, I. H., & Brusilovsky, P. (2012). Adaptation “in the wild”: Ontology-based
personalization of open-corpus learning material. In European Conference on Technology Enhanced
Learning (pp. 425–431). Berlin, Heidelberg, Germany: Springer.

Sottilare, R. A., Graesser, A. C., Hu, X., Olney, A., Nye, B., & Sinatra, A. M. (Eds.). (2016). Design
recommendations for Intelligent Tutoring Systems: Volume 4-Domain Modeling (Vol. 4). Orlando,
FL: US Army Research Laboratory.

Sowa, J. (1994). Conceptual structures: Information processing in mind and machine. Boston, MA:
Addison-Wesley.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

168 Handbook of artificial intelligence in education

Stacey, K., Sonenberg, E., Nicholson, A., Boneh, T., & Steinle, V. (2003). A teaching model exploiting
cognitive conflict driven by a Bayesian network. International Conference on User Modeling (pp.
352–362). Berlin, Heidelberg, Germany: Springer.

Stamper, J., Eagle, M., Barnes, T., & Croy, M. (2013). Experimental evaluation of automatic hint
generation for a logic tutor. International Journal of Artificial Intelligence in Education, 22(1–2),
3–17.

Sukthankar, G., Geib, C., Bui, H. H., Pynadath, D., & Goldman, R. P. (Eds.). (2014). Plan, activity, and
intent recognition: Theory and practice. San Francisco, CA: Morgan Kaufman.

Suraweera, P., Mitrovic, A., & Martin, B. (2010). Widening the knowledge acquisition bottleneck
for constraint-based tutors. International Journal on Artificial Intelligence in Education, 20(2),
137–173.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge, MA: MIT
Press.

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item
response theory. Journal of Educational Measurement, 20(4), 345–354.

Taub, M., Azevedo, R., Bradbury, A., Millar, G., & Lester, J. (2018). Using sequence mining to reveal the
efficiency in scientific reasoning during STEM learning with a game-based learning environment.
Learning and Instruction, 54, 93–103.

Thaker, K., Huang, Y., Brusilovsky, P., & Daqing, H. (2018). Dynamic knowledge modeling with
heterogeneous activities for adaptive textbooks. The 11th International Conference on Educational
Data Mining (pp. 592–595).

Tofel-Grehl, C., & Feldon, D. F. (2013). Cognitive task analysis–based training: A meta-analysis of
studies. Journal of Cognitive Engineering and Decision Making, 7(3), 293–304.

van der Kleij, F. M., Feskens, R. C., & Eggen, T. J. (2015). Effects of feedback in a computer-based
learning environment on students’ learning outcomes: A meta-analysis. Review of Educational
Research, 85(4), 475–511.

Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning,
109(2), 373–440.

VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions. Cambridge, MA: MIT
Press.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist, 46(4), 197–221.

VanLehn, K., Burkhardt, H., Cheema, S., Kang, S., Pead, D., Schoenfeld, A., & Wetzel, J. (2021). Can an
orchestration system increase collaborative, productive struggle in teaching-by-eliciting classrooms?
Interactive Learning Environments, 29(6), 987–1005.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., … Wintersgill, M. (2005).
The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence
in Education, 15(3), 147–204.

Vomlel, J. (2004). Bayesian networks in educational testing. International Journal of Uncertainty,
Fuzziness and Knowledge Based Systems, 12, 83–100.

Von Ahn, L. (2013). Duolingo: learn a language for free while helping to translate the web. Proceedings
of the 2013 International Conference on Intelligent User Interfaces (pp. 1–2).

Walker, E., Rummel, N., & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer
tutoring in algebra. International Journal of Artificial Intelligence in Education, 24(1), 33–61.

Wang, S., Liang, C., Wu, Z., Williams, K., Pursel, B., Brautigam, B., … Giles, C. L. (2015). Concept
hierarchy extraction from textbooks. Proceedings of the 2015 ACM Symposium on Document
Engineering (pp. 147–156).

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for web-based instruction.
International Journal of Artificial Intelligence in Education, 12, 351–384.

Weerasinghe, A., & Mitrovic, A. (2006). Facilitating deep learning through self-explanation in an open-
ended domain. International Journal of Knowledge-based and Intelligent Engineering Systems,
10(1), 3–19.

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive
approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann.

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

 Domain modeling for AIED systems 169

Weir, S., Kim, J., Gajos, K. Z., & Miller, R. C. (2015). Learnersourcing subgoal labels for how-to
videos. Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work &
Social Computing (pp. 405–416).

Weitekamp, D., Harpstead, E., & Koedinger, K. R. (2020). An interaction design for machine teaching
to develop AI tutors. Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (pp. 1–11).

Williams, J. J., Kim, J., Rafferty, A., Maldonado, S., Gajos, K. Z., Lasecki, W. S., & Heffernan, N. (2016).
Axis: Generating explanations at scale with learnersourcing and machine learning. Proceedings of
the Third (2016) ACM Conference on Learning@ Scale (pp. 379–388).

Yang, K. B., Nagashima, T., Yao, J., Williams, J. J., Holstein, K., & Aleven, V. (2021). Can crowds
customize instructional materials with minimal expert guidance? Exploring teacher-guided
crowdsourcing for improving hints in an AI-based tutor. Proceedings of the ACM on Human-
Computer Interaction, 5(CSCW1), 1–24.

Xu, Y., & Mostow, J. (2012). Comparison of methods to trace multiple subskills: Is LR-DBN best?
Proceedings of the 5th International Conference on Educational Data Mining (pp. 41–48).

Zhi, R., Price, T. W., Marwan, S., Milliken, A., Barnes, T., & Chi, M. (2019). Exploring the impact of
worked examples in a novice programming environment. Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (pp. 98–104).

Vincent Aleven, Jonathan Rowe, Yun Huang, and Antonija Mitrovic -
9781800375413

Downloaded from https://www.elgaronline.com/ at 01/22/2024 08:36:07PM
via The University of British Columbia Library

